Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006

Størrelse: px
Begynne med side:

Download "Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006"

Transkript

1 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer to vektorer med motsatt retning. b) Den totale energien E = E k1 +E k2 = 2 * ½ mv 2 = 1,543*10 6 J Øvelse 2-14* E k =1/2m e v 2 = hf W hvor f er frekvens og W arbeidsfunksjonen til materialet. f = c/λ hvor c lyshastighet. Løser mhp v: v = (2(hc/λ W)/m e ) 1/2 = 4,6*10 5 m/s Oppgave 2.1** a) Hva er akselerasjonen? 1kg T 1 2kg T 2 3kg S Newton s 2. lov sier at summen av kreftene på et objekt er lik objektets masse ganger akselerasjonen til objektet. ΣF=ma, hvor F og a er vektorer. Kraften S trekker på hele systemet av klosser og vi har at S=(1 kg + 2 kg + 3 kg)* a= 3 N Løser mhp a, a= 3 N/6 kg = 0,5 m/s 2 b) Hva er dragkraften T 1 og T 2? Vi har at alle klossene har en akselerasjon lik 0,5 m/s 2. Bruker N. 2. lov ΣF=ma, på et system av gangen. T 1 = 1 kg* 0,5 m/s 2 = 0,5 N og T 2 = (1 kg +2 kg)* 0,5 m/s 2 = 1,5 N c) Kan N. 3. lov verifiseres i dette tilfellet? T 1 2kg T 2 Ser på kreftene som virker på den midterste klossen og bruker N. 2. lov. ΣF = T 2 T 1 = ma

2 Løser mhp. T 1 : T 1 = ma - T 2 = 2 kg*0,5 m/s 2 1,5 N = - 0,5 N Vi har vist at T 1 = - T 1 som er i overensstemmelse med N. 3. lov om at kraft =motkraft. Tilsvarende kan det vises at det eksisterer en kraft T 2 = - T 2 som virker på den fremste klossen. Oppgave 2.2** Hva er akselerasjonen til klossene? N S 1 θ= 28 o, m 1 = 3,70 kg, m 2 = 1,86 kg m 1 m 2 S 2 Tegn inn alle krefter som virker på klossene. θ w 1 w2 Fra N. 3. lov får vi at S 1 =S 2. N. 2. lov brukt på de to systemene (kloss 1 og kloss 2) gir oss at: Kloss 1: Kloss 2: ΣF = S 1 + w 1 + N = m 1 a (vektorform) ΣF = S 2 + w 2 = m 2 a (vektorform) Definerer nedover som positiv retning for kloss 1 og oppover for kloss 2. Dekomponerer kreftene som virker på kloss 1 i x og y retning (x-akse parallell med skråplanet og y-akse normalt på skråplanet) og setter inn i N. 2. lov: (2) ΣF x = -S 1 + w 1x = m 1 a, w 1x = m 1 g sin θ (3) ΣF y = -w 1y + N = 0, w 1y = m 1 g cos θ For kloss 2 har vi: (4) ΣF y = S 2 - w 2 = m 2 a som løses mhp S 2 S 2 = S 1 = m 2 a + w 2, settes inn for S 1 i (2): - (m 2 a + m 2 g) + m 1 g sin θ = m 1 a, som kan løses mhp akselerasjonene a: a= - m 2 g + m 1 g sin θ/( m 2 + m 1 ) a=1,86 kg*9,8 m/s 2 + 3,70 kg*9,8 m/s 2 *sin 28 O /(3,70 kg +1,86 kg) a= 0,22 m/s 2

3 Oppgave 2.3** Knall og fall F v Kula på 1 kg gis en impuls på 1 Ns i enten (a) vertikal eller (b) horisontal retning. (1) Hvor lang tid tar det før kula treffer bakken? Og (2) hvor langt har den beveget seg i horisontalretningen? 1 m w F h Impuls er lik endringen i bevegelsesmengde: P= mv 1 -mv 0, v 0 =0 Etter impulsen har kula en hastighet v 1 = P/m=1 Ns/1 kg= 1 m/s (a, 1) Kula følger bevegelseslikningen : s= vt+1/2at 2 hvor a=-g Høyden h 2 kan bestemmes fra energibetraktning: h 2 mg v 2 = 0 E k1 + E p1 =E k2 + E p2 hvor E k2 = 0 1/2mv mgh 1 = mgh 2 h 2 =(1/2v gh 1 )/g h 2 =(1/2*(1m/s) 2 + 9,8 m/s 2 *1m)/9,8 m/s 2 h 2 =1,05m h 1 =1 m h 3 =0 m mg mg v 1 =1 m/s v 3 Tiden det tar for kula å stige fra h 1 til h 2 er lik tiden det tar å falle tilbake til h1. Vi finner tiden det tar å gå fra h 2 til h 1 og h 2 til h 3 ved å løse bev.likn. mhp t. Totaltiden er summen av disse. t 2-1 =(2*(h 2 -h 1 )/g) 1/2 t 2-1 =(2*(0,05 m)/9,8 m/s 2 ) 1/2 t 2-1 =0,10s t 2-3 =(2*(h 2 -h 3 )/g) 1/2 t 2-3 =(2*(1,05 m)/9,8 m/s 2 ) 1/2 t 2-3 =0,46s t total =0,10 s + 0,46s = 0,56 s (a,2) Forflytningen langs horisontalretningen s x = 0 m (b, 1, 2) Kula følger bevegelseslikningen : s= vt+1/2at 2, Dekomponert langs x- og y-akse har vi følgende: (1) s x = v x t

4 (2) s y =1/2gt 2 = h Løser mhp t for å finne tiden det tar for kula å nå bakken t=(2h/g) 1/2 = (2*1m/9,8 m/s 2 ) 1/2 = 0,45 s Setter inn tiden og farten funnet tidligere i oppgaven i (1): s x = 1m/s*0,45 s= 0,45 m Oppgave 2.4** a) Kulens mekaniske energi: E = mgh = (1/2mv 2 0 ) = 0,049 J b) Hvor stor del hf utgjør av den mekaniske energien: E/hf =ET/h = 1,5*10 32 (hf =3,3* J) h= 10 cm m= 50 g T= 2 s v 0 Oppgave 2.5*** Et tog Hvilken vinkel danner snoren med vertikalretningen? Sett ovenfra Sett bakfra l = 40 cm Toget går i sirkelbane og har sentripitalakselerasjon lik: 100 m a 30 km/h a T w = mg a s = v 2 /r = (30 *10 3 m/60*60 s) 2 /100m a s =0,69 m/s 2 m=200g Bruker N.2. lov ΣF = T + w = ma (vektorform) og dekomponerer i x- og y- retning: ΣF x = T* sinθ = ma s ΣF y = T* cosθ w = 0 (w/cosθ)* sinθ = ma s T = w/cosθ tanθ = ma s /w = a s /g θ= arctan (0,69/9,8) θ = 4,0 o

5 Oppgave 2.6** Energien til et 1 kg lodd som er i ro a) uendelig langt ute i verdensrommet: E = 0 per definisjon b)10 km over jordoverflaten: Integrerer F fra km til uendelig og får E = -γm 1 m 2 /r der m 1 er jordens masse, m 2 er 1 kg, og r er km. Alternativt kan en regne ut potensiell energi med jordoverflaten som referansepunkt: g~9,8m/s 2, den potensielle energien er gitt ved E = mgh=1 kg * 9,8 m/s 2 *10000 m = 98 J c) h=0 Avhenger igjen av referansepunkt: Enten E = -γm 1 m 2 /r der r er jordradien, eller E=mgh=0. Oppgave 2.7* Sandsekkens kinetisk energi når den treffer bakken er lik sekkens potensielle energi når den var i ro i lufta: E k2 =E p1 = mgh= 1 kg * 9,8 m/s 2 * 1000 m = J = 9,8 kj Oppgave 2.8* a) Hvor stor energireserve utgjør innsjøen? Innsjøen har pot.energi gitt ved E p = mgh, hvor m er lik volumet av innsjøen* tettheten av vann. V=1*10 8 m 3, ρ=998kg/m 3. E p =9,78*10 14 J. Oppgave 2.9* a) Hva er potensialforskjellen mellom platene? U = Es = V/m * 0,01 m = 100 V b) Hvor lang tid tar det for et elektron å gå fra den negative til den positive siden? Kraften som virker på elektronet er gitt ved F=Eq e. Fra N. 2. lov har vi også at F=m e a. Dette gir a= Eq e /m e. Elektronet følger bevegelseslikningen : s= vt+1/2at 2 hvor v=0 (elektronet er i ro på negativ plate ved start). Løst mhp t har vi at: t=(2s/a) 1/2 ==(2sm e /Eq e ) 1/2 =3,37*10-9 s Oppgave 2.10** Hvilket forhold er det mellom gravitasjonskraften og den elektrostatiske tiltrekningen mellom H kjernen og dets elektron?

6 F g =γm 1 m 2 /r 2 =4.06*10-47 N, F e /F g =2,3*10 39 F e =k e q 1 q 2 /r 2 =9.2*10-8 N v 1 Oppgave 2.11*** Hva må E Z være for å bøye av et elektron med totalt 10 o? 1. Elektronenes pot. energi går over til kinetisk energi når de akselereres. E p =30 kv*q e =E k =1/2m e v 1 2 Løses mhp v: v 1 = (2E p /m e ) 1/2 = 1,03*10 8 m/s 2. Det virker en kraft F=q e E Z, N.2. lov gir også at F=ma. F og a virker i motsatt retning av E z da elektronene har negativ ladning. Løser mhp akselerasjonen a: a= q e E Z /m 3. Siden elektronene kun akselereres i y-retning vil komponenten v 2x være lik v 1x = v 1. Vi har da at v 2x = v 1 = v 2 cos10 o og v 2y = v 2 sin10 o = v 1 sin10 o /cos10 o = v 1 tan10 o v 2y = at og t=s/v 1 som gir: v 2y = q e E Z s/v 1 m= v 1 tan10 o Løser dette uttrykket mhp E Z : E Z = mv 1 2 tan10 o /q e s = 2,1*10 5 N/C 30 kv (Benevningen for elektrisk feltstyrke kan alternativt angis som V/m) v 1 E z S= 5 cm v 2 θ=10 o Oppgave 2.12** Regn ut banen til et elektron med hastighet v i konstant magnetfelt x x F x x x B Elektronet føler en konstant kraft F gitt ved F=q(vxB) x x x x x v som virker normalt på hastighetsvektoren. Dette gir x x x x x elektronet en sentripital akselerasjon gitt ved: a=f/m=v 2 /r, hvilket betyr at elektronet vil gå i en sirkelbane med radius r: x x x x x r =mv 2 /F= mv/qb= 5,7*10-4 m F v Oppgave 2.13**

7 Hva er strømmen i en rektangulær spole med sidekanter a og b og motstand R når den utsettes for et vekslende magnetfelt B=B o sin(ωt)? V=R*I, V=AdB/dt, A=ab, db/dt = B o ω cos(ωt) I=V/R=abB o ωcos(ωt)/r Oppgave 2.14** Hva ville jordens gj.snitts temperatur være dersom vi ikke hadde atmosfære? Antar at jordens utstråling er lik absorpsjon av energi fra solen. 30% av solenergien blir direkte reflektert. S 1) Jordens absorpsjon av energi fra sola pr. tidsenhet: j W abs =S j *A t *0,7 = 1,22*10 17 W hvor S j solarkonstanten, A t er tverrsnittsarealet av jorda og 0,7 angir at 70% absorberes. 2) Utstråling fra Jorden med overflateareal A o : M e =σt 4 = W abs /A o Løses mhp T T=( W abs /A o σ) 1/4 = 255K= -18 o C Oppgave 2.15* Fotoelektrisk eksperiment. W = hc/λ - E k = W Cu Oppgave 2.16 * Elektromagnetiske bølger for a) Hvitt lys (forskjellig bølgelengder, vektorretninger og fase) b) Monokromatisk lys (en bølgelengde, ikke nødv. i fase)

8 c) Polarisert lys (Svinger kun i ett plan, uavh. av bølgelengde og fase) x x d) Koherent lys (monokromatisk lys i fase)

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005 Utarbeidet av A. E. Gunnæs Oppgave 2.1** a) Hva er akselerasjonen? 1kg T 1 2kg T 2 3kg S Newton s 2. lov sier at summen av kreftene

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011 NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!! TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Fasit for Midtvegsprøva i Fys1000 V 2009

Fasit for Midtvegsprøva i Fys1000 V 2009 Fasit for Midtvegsprøva i Fys000 V 2009 Oppgave a) På toppen av banen er horisontalkomponeneten av farta v y = 0, og horisontalkomponenten (konstant lik) v x = v 0x = v o cosθ 0 = v 0 /2. Stigehøgda h

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYPIADEN 0 0 Andre runde: / 0 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: 3 klokketimer Hjelpemidler:

Detaljer

Løsningsforslag Fysikk 2 V2016

Løsningsforslag Fysikk 2 V2016 Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst? TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

Vektorstørrelser (har størrelse og retning):

Vektorstørrelser (har størrelse og retning): Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

Løsningsforslag til eksamen i FYS1000, 15/8 2014

Løsningsforslag til eksamen i FYS1000, 15/8 2014 Løsningsforslag til eksamen i FY1000, 15/8 2014 Oppgave 1 a) Lengden til strengen er L = 1, 2 m og farten til bølger på strengen er v = 230 m/s. Bølgelengden til den egensvingningen med lavest frekvens

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer Oppgave 1 To biljardkuler med samme masse m kolliderer elastisk. Den ene kulen er blå og ligger i ro før kollisjonen, den andre er rød og beveger seg med en fart v 0,r = 5 m s mot sentrum av den blå kula

Detaljer

Løsningsforslag til eksamen i FYS1000, 16/8 2013

Løsningsforslag til eksamen i FYS1000, 16/8 2013 Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009 Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 04 05 Andre runde: 5/ 05 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: klokketimer

Detaljer

Oppsummert: Kap 1: Størrelser og enheter

Oppsummert: Kap 1: Størrelser og enheter Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk

Detaljer

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999 E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 (ny læreplan) Elever og privatister 28. mai 1999 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Oppgaver i naturfag 19-åringer, fysikkspesialistene

Oppgaver i naturfag 19-åringer, fysikkspesialistene Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

Kap. 3 Arbeid og energi. Energibevaring.

Kap. 3 Arbeid og energi. Energibevaring. Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE HØGSKOLEN I SØR-TRØNDELAG ADELING FOR TEKNOLOGI HØGSKOLEN I SØR-TRØNDELAG TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE Dato: Onsdag 07.05.08 arighet: 09.00-14.00 Klasser: 1FA 1FB 1FC 1FD Faglærere: Guri

Detaljer

T 1 = (m k + m s ) a (1)

T 1 = (m k + m s ) a (1) Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi

Detaljer

FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011

FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN Andre runde: 3/ Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:3 klokketimer Hjelpemidler:Tabell

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver: Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501

Detaljer

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N LÆRINGSSENTERET Fysikk 3FY AA6227 Elever 6. juni 2003 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste side. Eksamenstid:

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 05 06 Andre runde:. februar 06 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 01 017 Andre runde: 7. februar 017 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Realfagbygget Professor Catharina Davies 73593688 BOKMÅL EKSAMEN I EMNE

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Fysikkolympiaden 1. runde 29. oktober 9. november 2007

Fysikkolympiaden 1. runde 29. oktober 9. november 2007 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 9. oktober 9. november 007 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Høgskolen i Agder Avdeling for EKSAMEN

Høgskolen i Agder Avdeling for EKSAMEN Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,

Detaljer

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

Kontinuasjonseksamensoppgave i TFY4120 Fysikk Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver: Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA

Detaljer

Løsningsforslag til eksamen i FYS1000, 19/8 2016

Løsningsforslag til eksamen i FYS1000, 19/8 2016 Løsningsforslag til eksamen i FY1000, 19/8 016 Oppgave 1 a) C D A B b) I inusert A + B I ien strømmen går mot høyre vil magnetfeltet peke ut av planet inne i strømsløyfa. Hvis vi velger positiv retning

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

eksamen-f0b-v2001.nb 1

eksamen-f0b-v2001.nb 1 eksamen-f0b-v200.nb Løsningsforslag Eksamen Fysikk for forkurs Våren 200 Alle forbehold om feil og uklarheter; dette er som navnet sier et forslag. OPPGAVE a) Regn ut bølgelengden til et foton med energi

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

År: Et legeme på et skråplan. Gravitasjonskraften (G) er tegnet som en lang pil, og dekomponert i to krefter G x og G y.

År: Et legeme på et skråplan. Gravitasjonskraften (G) er tegnet som en lang pil, og dekomponert i to krefter G x og G y. Sensurveiledning Emnekode: LGU51007 Semester: høst År: 2016 Emnenavn: Naturfag 1 (5-10) emne 1, deleksamen fysikk Eksamenstype: ordinær, individuell skriftlig Oppgaveteksten: Oppgave 1 (12 av 36 poeng)

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU53005 Emnenavn: Naturfag 2 5-10, emne 2 Studiepoeng: 15 Eksamensdato: 20. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE

Detaljer

EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap og teknologi Tid:

EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap og teknologi Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Hanne Mehli Tlf.: 7359367 EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 19. august 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N = FY1001/TFY4145 Mekanisk Fysikk ksamen 9. august 2016 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: v = at = 9.81 0.5 m/s = 4.9 m/s. (Kula er fortsatt i fritt fall, siden h = at 2 /2

Detaljer

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg TFY4104 Fysikk ksamen 17. august 2016 Løsningsforslag 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. ) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3 π ( R

Detaljer

En blomsterpotte faller fra en veranda 10 meter over bakken. Vi ser bort fra luftmotstand. , der a g og v 0 0 m/s.

En blomsterpotte faller fra en veranda 10 meter over bakken. Vi ser bort fra luftmotstand. , der a g og v 0 0 m/s. Fy1 - Ekstra vurdering - 06.01.17 Løsningsskisser Bevegelse og krefter Oppgave 1 En blomsterpotte faller fra en veranda 10 meter over bakken. Vi ser bort fra luftmotstand. a) Hvor lang tid tar det før

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Høgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk

Høgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk 3 //i Høgskoleni østfold Avdeling for ingeniorfag Eksamen ingeniodysikk Fag:IRF00 Ingeniørfysikk Faglærer: Per Erik Skogh Nilsen 47 8 85 3 Sensurfrist..4 Dato: 8.desember 03 Tid: 0900 00 Antall oppgavesider:

Detaljer

Fysikkolympiaden 1. runde 23. oktober 3. november 2017

Fysikkolympiaden 1. runde 23. oktober 3. november 2017 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 3. oktober 3. november 017 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Frivillig test 5. april Flervalgsoppgaver.

Frivillig test 5. april Flervalgsoppgaver. Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 23. mars 2017 Tid for eksamen: 14.30-17.30, 3 timer Oppgavesettet er på 8 sider Vedlegg: Formelark

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 4. Juni 2015 Tid for eksamen: 14.30-17.30 Oppgavesettet er på X sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk

Detaljer

FYS1120 Elektromagnetisme, Ukesoppgavesett 1

FYS1120 Elektromagnetisme, Ukesoppgavesett 1 FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

Eksamensoppgave i LGU53005 Naturfag 2 (5-10) emne 2

Eksamensoppgave i LGU53005 Naturfag 2 (5-10) emne 2 Institutt for grunnskolelærerutdanning 5-10 og bachelor i tegnspråk og tolking Eksamensoppgave i LGU53005 Naturfag 2 (5-10) emne 2 Faglig kontakt under eksamen: Rodrigo de Miguel (93805362), Jan Tore Malmo

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 14

Løsningsforslag for øvningsoppgaver: Kapittel 14 Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag.

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. NITH 11. oktober 013 Oppgave 1 Skissér kraftutvekslingen i følgende situasjoner: En mann som dytter en bil: (b) En traktor som trekker en kjerre

Detaljer