TFY4104 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
|
|
- Unn Petersen
- 6 år siden
- Visninger:
Transkript
1 TFY4104 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv og cm 3, sa vi ser at usikkerheten i V er ca 0.15 cm 3. Alternativt, og litt raskere, kan vi si at 2) E: 3) A: 4) D: V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3 = m=v 5 = 7:86 g=cm 3 I 0 = 2mr 2 =5 = 21:2 g cm 2 K = mv 2 =2 + I 0! 2 =2 = 7mv 2 =10 j Uj = K ) v = 10gy 0 =7 = 0:84 m=s 5) B: Brattest i x = L, med helningsvinkel gitt ved tan = dy=dx. Her er som i x = L er dy=dx = 4y 0 x 3 =L 4 ; jdy=dxj max = 4y 0 =L = 0:4: Det gir en maksimal helningsvinkel max = arctan 0:4 = 22. 6) A: Siden y = 0 i x = 0, er banen at, uten krumning i bunnen. Dermed er a = 0 her, og N = mg = 0:43 N. 7) C: N2 translasjon: mg sin f = ma. N2 rotasjon om CM: fr = I 0 a=r = 2mar=5, dvs f = 2ma=5, som innsatt i N2 for translasjon gir mg sin = 7ma=5, dvs a = (5g=7) sin. I x = L er = 21:8 grader, slik at a = 2:6 m/s 2. 8) E: P = dk=dt = konstant, dvs P = F v = mav = konstant. Med konstant masse m og jevnt kende kinetisk energi K ma det bety at farten v ker mens akselerasjonen a avtar med tiden t. Dermed er verken A, B, C eller D riktig. 9) A: Energibevarelse gir kx 2 =2 = mv 2 =2, dvs v = p kx 2 =m = 0:267 m/s. 1
2 10) C: Kula starter i hyde L L cos 60 = L=2 over banens bunnpunkt. Energibevarelse gir da mv 2 =2 = mgl=2, dvs a = v 2 =L = g = 9:8 m/s 2 i det kula passerer banens laveste punkt. 11) B: N2 for klossen pa bordet: S = 3ma. N2 for klossen utenfor bordet: mg S = ma. Eliminerer a og nner S = 3mg=4 = 1:8 N. 12) B: Ombytte av massene gir ligningene S = ma og 3mg S = 3ma. Eliminerer a og nner ogsa her S = 3mg=4 = 1:8 N. (Men merk at her blir a tre ganger sa stor som i forrige oppgave, siden den ytre akselererende kraften er 3mg mot mg i forrige oppgave.) 13) E: N2 for kloss A: F S mg 2mg = ma. N2 for kloss B: S mg = ma. Addisjon av disse to ligningene gir F 4mg = 2ma, dvs a = F=2m 2g = 10 m/s 2. 14) A: Bilens akselerasjon er v 2 =r slik at nettokraften er F = mv 2 =r. Her er r = 200=2 m, v = 60=3:6 m/s og m = 1150 kg, slik at F = 10 kn. 15) B: mg = Dv 2 t slik at v t = p mg=d = 5:6 m/s. 16) A: P = dk=dt som med konstant eekt P gir t = K=P. Her er K = 2K 0 = mv 2 0 = = J, slik at t = 33750=60000 = 0:56 s. 17) E: K f = K i + P t f = = J, slik at v f = 2K f =m = 42:7 m/s = 154 km/h. 18) C: = I ) bf = mb 2 =3 ) (t) = 3F t 2 =2mb ) t = 2mb=3F = 4 s 19) A: Anta f eks at klossen er trukket en liten lengde x mot hyre. Da vil begge fjrer virke pa klossen med krefter mot venstre, henholdsvis k 1 x og k 2 x. N2 gir da (k 1 + k 2 )x = mx eller x + (k 1 + k 2 )x=m = 0. Dette er en enkel harmonisk oscillator med vinkelfrekvens! = p (k 1 + k 2 )=m, og dermed frekvens f =!=2 = p (k 1 + k 2 )=m=2 = 5:6 Hz. 20) B: N = t=t = t=(2 p L=g) = 45 60=(2 p 25=9:81) = ) C: Vinkelamplituden avtar eksponentielt med tiden: (t) = (0)e bt=2m ; 2
3 som med tallverdiene t = 3600 s, m = 40 kg og b = 0:0075 kg/s gir (3600)=(0) = exp( 0:3375) = 0:71, dvs en reduksjon pa 29%. 22) C: Eksakt forytning er s(t 4 ) = v 0 t 4 + at 2 4 =2 = 0:1181 m. Numerisk beregner vi steg for steg. I hvert tidssteg er fartsendringen like stor, da akselerasjonen er konstant: v = a t = (9:81=2) 0:05 = 0:24525 m/s. s 1 = s 0 + v 0 t = 0:1 0:05 = 0:005 m v 1 = v 0 + v = 0:1 + 0:24525 = 0:34525 m/s s 2 = s 1 + v 1 t = 0: : :05 = 0: m v 2 = v 1 + v = 0: :24525 = 0:59050 m/s s 3 = s 2 + v 2 t = 0: : :05 = 0: m v 3 = v 2 + v = 0: :24525 = 0:83575 m/s s 4 = s 3 + v 3 t = 0: : :05 = 0: m Feil i s 4 : 0:1181 0: = 0: m = 25 mm. Litt mindre tallregning hvis en frst innser at s 4 = 4v 0 t + 6a( t) 2. 23) D: Feilen i f eks s 4 er js(t 4 ) s 4 j = 2g( t) 2 sin ( t) 2 Her kan det bemerkes at et kortere tidssteg ogsa medfrer at man trenger ere tidssteg for a beregne forytningen i et gitt tidsrom. Men dette antallet ker linert med 1= t, slik at alt i alt blir beregningen mer nyaktig med et kortere tidssteg. 24) C: Vi ser at systemet har null total impuls. Fellesfarten for de to klossene etter kollisjonen er derfor null, slik at hele den opprinnelige kinetiske energien 3mv 2 tapes. 25) E: For a bevare total impuls (lik null) og total kinetisk energi (lik 3mv 2 ) er eneste mulighet at begge klossene ganske enkelt reverserer sine hastigheter. Dvs, klossen med masse 2m har hastighet v mot hyre etter kollisjonen. 26) B: Hver punktladning bidrar like mye til det totale elektriske feltet midt mellom de to. Total feltstyrke der blir E = 2 =4" 0 (d=2) 2 = 2=" 0 d 2 27) A: Arbeidet tilsvarer forskjellen i potensiell energi med uendelig avstand og med avstand d: W = U(1) U(d) = 0 ( ) 4" 0 d = 2 4" 0 d 28) E: p = 0:0225e 1:128 A = ea = 4: Cm = D, siden 1 D = 3: Cm 3
4 29) A: V (r) = =4" 0 r. Med r = d=2 har vi da d = =2" 0 V = 3:0 mm. 30) B: dp = x d = x (x) dx = ( 0 =L 3 )x 4 dx slik at 31) D: Z p = Z L dp = ( 0 =L 3 ) x 4 dx = 2 0 L 2 =5 L E = rv = (2V 0 =a 2 )(2x^x 2y^y + z^z) som i posisjon (a; a; 2a) gir feltstyrken je(a; a; 2a)j = (2V 0 =a) p = 4 p 3V 0 =a = 69 kv=m 32) E: p = 2 3a a = 5a (med retning mot hyre) 33) D: U = 2 4" 0 a ( 4=3 + 2=2 2=1 + 2=2 1=1 2=1) = " 0 a 34) E: Midt i systemet er E = 2 =4" 0 (a=2) 2 2 2=4" 0 (3a=2) 2 = 14=9" 0 a 2 35) A: Kraft pa ladningen 2e: F = Akselerasjonen blir e2 4" 0 a 2 2=1 + 2=2 2 4=3 2 = A = F=m = 13e 2 36" 0 a 2 m som med a = 2:00 mm og m = 40u er ca 1.25 km/s 2 13e 2 36" 0 a 2 36) C: Metallstykket er et ekvipotensial, da E = 0 inni metallet og E star normalt pa metallets overate i alle posisjoner pa overaten. 37) A: C = (1=5:5 + 1=8:0 + 1=2:5) 1 nf = 1.4 nf. 38) C: Med patrykt spenning V 0 blir potensialforskjellen mellom kondensatorplatene lik V 0 selv om plateavstanden varieres. 39) B: Ledningenes motstand: 2L=A = 5:0=60 = 1=12. Kretsens totale motstand: Strmstyrke: I = 9:0=0:2533 = 36 A 4
5 40) E: Total motstand: R + (1=2R + 1=5R) 1 + 3R = 38R=7. Total strm: 7V 0 =38R. Andel i hyre gren: 2/7, slik at I = V 0 =19R. 41) B: mv 2 =2 = V slik at v = p 2V=m. Videre: vb = mv 2 =r slik at r = mv=b = (1=B) p 2mV= = 0:29 m = 29 cm. 42) D: m = NIA = 4:0 Am 2. 43) A: max = NIAB = mb = 0:10 Nm. 44) B: Nabospinn vekselvirker i en ferromagnet. 45) D: V = 0:12 V. (Utdypende LF senere.) 46) C: T = 2= p 1=LC R 2 =4L 2 ' 2 p LC = 28 ns. 47) E: I exp( t=) med = 1 = (R=2L) 1 = 200 ns. 48) D: P = V 0 I 0 =2 = V0 2 =2R = 8:60 W, som gir varmemengden 8:60 60 J = 516 J ' 0.52 kj. 49) B: I 0 = V 0 =!L = 5:8 A. 50) A: I 0 = V 0!C = 3:5 A. 5
TFY4106 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
TFY4106 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv 5.729 og 5.425 cm 3, sa
TFY4106 Fysikk Lsningsforslag til Eksamen 2. juni 2018
TFY406 Fysikk Lsningsforslag til Eksamen 2. juni 208 ) D: = m=v = m=(4r 3 =3) = m=(d 3 =6) = 6 30:0= 2:00 3 = 7:6 g=cm 3 2) E: = = ( m=m) 2 + ( 3 d=d) 2 = (0:=30) 2 + (0:3=20) 2 = 0:05 = :5% 3) B: U =
4. D. v = ds=dt = 6:0 t + 2:0 ) v = 14 m/s ved t = 2:0 s ) P = F v = 140 W ved t = 2:0 s.
TFY410 Fysikk Eksamen 16. desember 017 Lsningsforslag 1. A. I vakuum er det ingen luftmotstand, og eneste kraft pa W og B er tyngdekraften. Dermed null snordrag. Snordrag forskjellig fra null ville ha
4. D. v = ds=dt = 6:0 t + 2:0 ) v = 14 m/s ved t = 2:0 s ) P = F v = 140 W ved t = 2:0 s.
TFY4104 Fysikk Eksamen 16. desember 017 Lsningsforslag 1. A. I vakuum er det ingen luftmotstand, og eneste kraft pa W og B er tyngdekraften. Dermed null snordrag. Snordrag forskjellig fra null ville ha
TFY4104/TFY4115 Fysikk Eksamen 6. desember Lsningsforslag Oppgave 1 { 25 Mekanikk
TFY4104/TFY4115 Fysikk Eksamen 6. desember 2018 Lsningsforslag Oppgave 1 { 25 Mekanikk 1) A: Ingen horisontale krefter pa kula, sa a x = 0, v x er konstant, og x ker linert med tiden t. 2) A: Energibevarelse
TFY4106 Fysikk Lsningsforslag til Eksamen 16. mai t= + t 2 = 2 ) exp( t=);
TFY46 Fysikk Lsningsforslag til Eksamen 6. mai 9 ) D Bilen snur der v = : dvs v = for t =, som tilsvarer v = d=dt = a (t t =) ep( t=); ) E Maksimal positiv hastighet nar a = (og v > ): = a () ep( ) = 4:5
Midtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
TFY4115 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. ) v 1 = p 2gL. S 1 m 1 g = L = 2m 1g ) S 1 = m 1 g + 2m 1 g = 3m 1 g.
TFY4 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. Ogave. a) Hastigheten v til kule like fr kollisjonen nnes lettest ved a bruke energibevarelse Riktig svar C. gl v ) v gl b) Like fr sttet
TFY4104_S2018_Forside
TFY4104_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4104 Fysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 17. august 2018 ksamenstid (fra-til): 09.00-13.00
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen
TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11.
TFY0 Fysikk. Institutt for fysikk, NTNU. ving. Opplysninger: Noe av dette kan du fa bruk for: =" 0 = 9 0 9 Nm /, e = :6 0 9, m e = 9: 0 kg, m p = :67 0 7 kg, g = 9:8 m/s Symboler angis i kursiv (f.eks
Kap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7. Oppgave 1 Prinsippet for en mekanisk klokke er et hjul med treghetsmoment I festet til ei spiralfjr som virker pa hjulet med et dreiemoment som er proporsjonalt
TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 10.
TFY404 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 0. Oppgave A B C D x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0 x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 29 x 20 x ) Glass-staven er ikke i berring med
Ansla midlere kraft fra foten pa en fotball i et vel utfrt straespark.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 4. Oppgave 1 To like biler med like stor fart kolliderer fullstendig uelastisk front mot front. Hvor mye mekanisk energi gar tapt? A 10% B 30% C 50% D 75%
Løsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m
TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. Ogave 1 L/ d A F A B F B L mg Stuebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter i vertikal retning
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
Løsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
TFY4104 Fysikk Eksamen 16. desember 2017 Side 1 av 10
TFY4104 Fysikk Eksamen 16 desember 2017 Side 1 av 10 1 Systemet i guren bestar av ei stalkule B forbundet med ei snor til en trekloss W Hvis systemet slippes i vakuum, blir snorkraften A) null B) lik dieransen
EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål
KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK
BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE
TFY4102 Fysikk Eksamen 16. desember 2017 Side 1 av 10
TFY4102 Fysikk Eksamen 1 desember 2017 Side 1 av 10 1 Systemet i guren bestar av ei stalkule B forbundet med ei snor til en trekloss W Hvis systemet slippes i vakuum, blir snorkraften A) null B) lik dieransen
5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =
FY1001/TFY4145 Mekanisk Fysikk ksamen 9. august 2016 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: v = at = 9.81 0.5 m/s = 4.9 m/s. (Kula er fortsatt i fritt fall, siden h = at 2 /2
Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006
Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer
Løsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
Fysikkolympiaden Norsk finale 2019 Løsningsforslag
Fysikkolympiaden Norsk finale 09 Løsningsforslag Oppgave Vi kaller strømmene gjennom de to batteriene I og I og strømmen gjennom den ytre motstanden I = I + I. Da må vi ha at U = R I + RI U = R I + RI.
Fasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:
Løsningsforslag til øving 5
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir
TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)
kap8.ppt 03.0.203 TFY445/FY00 ekanisk fysikk Størrelser og enheter (Kap ) Kinematikk i en, to og tre dimensjoner (Kap. 2+3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons
Kap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg
TFY4104 Fysikk ksamen 17. august 2016 Løsningsforslag 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. ) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3 π ( R
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
Stivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM MV + I 0!
TFY404 Fysikk Eksamen 6. desember 207 Formelside av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3. Oppgave 1 En takstein med masse 1.0 kg faller ned fra et 10 m yt us. Hvor stort arbeid ar tyngdekraften gjort pa taksteinen nar den treer bakken? A 9.8
9) Mhp CM er τ = 0 i selve støtet, slik at kula glir uten å rulle i starten. Dermed må friksjonskraften f virke mot venstre, og figur A blir riktig.
TFY4104 Fysikk Eksamen 18. desember 2013 Løsningsforslag, kortversjon uten oppgavetekst og figurer 1) (4 0.264/0.164) (USD/USgal)(NOK/USD)(USg/L) = 6.44 NOK/L C) 6.44 2) N2: F = ma i a i = F/m B) a 1 =
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -
;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00
Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)
TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
Løsningsforslag til øving 1
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett
Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger
Prosjekt - Introduksjon til Vitenskapelige Beregninger Studentnr: 755, 759 og 7577 Mars 6 Oppgave Feltlinjene for en kvadrupol med positive punktladninger Q lang x-aksen i x = ±r og negative punktladninger
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
UNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
,7 km a) s = 5,0 m + 3,0 m/s t c) 7,0 m b) 0,67 m/s m/s a) 1,7 m/s 2, 0, 2,5 m/s 2 1.
222 1 Bevegelse I 1.102 1) og 4) 1.103 49 1.115 1,7 km 1.116 b) 2: 1,3 m/s, 3: 1,0 m/s c) 2: s(t) = 2,0 m + 1,3 m/s t 3: s(t) = 4,0 m 1,0 m/s t 1.104 52,6 min 1.117 a) s = 5,0 m + 3,0 m/s t c) 7,0 m 1.105
Løsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
Fysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 12.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 12. Oppgave 1 En liten kloss med starthastighet v 0 glir nedover et skraplan med helningsvinkel. Hva er friksjonskoesienten mellom kloss og skraplan dersom
Midtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk øsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3 juni 2010 Oppgae 1 a) His i elger nullniå for potensiell energi ed bunnen a skråningen, har du i utgangspunktet
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
TFY4104 Fysikk Eksamen 6. desember 2018 { 6 sider
TFY404 Fysikk Eksamen 6. desember 08 { 6 sider FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas forvrig
Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller
Hvor stor er den kinetiske energien til molekylene i forrige oppgave?
TFY4215 Innfring i kvantefysikk. Institutt for fysikk, NTNU. Test 1. Oppgave 1 Oppgavene 1-6 tar utgangspunkt i artikkelen "Quantum interference experiments with large molecules", av O. Nairz, M. Arndt
Impuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
Kap. 6+7 Arbeid og energi. Energibevaring.
Kap. 6+7 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. F F x Arbeid = areal under
1) Hva blir akselerasjonen (i absoluttverdi) til en kloss som glir oppover et friksjonsfritt skråplan med helningsvinkel
FY1001/TFY4145 Mekanisk Fysikk Eksamen August 2015 Løsningsforslag OPPGAVE 1: Flervalgsoppgaver (Teller 45%, 18 stk som teller 2.5% hver) 1) Hva blir akselerasjonen (i absoluttverdi) til en kloss som glir
Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005
Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005 Utarbeidet av A. E. Gunnæs Oppgave 2.1** a) Hva er akselerasjonen? 1kg T 1 2kg T 2 3kg S Newton s 2. lov sier at summen av kreftene
Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002
Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg
Fysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK
Flervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme
Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
A) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
Høgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk
3 //i Høgskoleni østfold Avdeling for ingeniorfag Eksamen ingeniodysikk Fag:IRF00 Ingeniørfysikk Faglærer: Per Erik Skogh Nilsen 47 8 85 3 Sensurfrist..4 Dato: 8.desember 03 Tid: 0900 00 Antall oppgavesider:
Repetisjonsoppgaver kapittel 0 og 1 løsningsforslag
Repetisjonsoppgaver kapittel 0 og løsningsforslag Kapittel 0 Oppgave a) Gjennomsnittet er summen av måleverdiene delt på antallet målinger. Summen av målingene er,79 s. t sum av måleverdiene antallet målinger,79
F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
Løsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
TFY4104 Fysikk Eksamen 15. august 2017 Side 1 av 12
TFY4104 Fysikk Eksamen 15. august 2017 Side 1 av 12 1) Med moderne nanoteknologi er det mulig å lage svært tynne metalltråder. Hvor mye sølv inneholder tråder av rent sølv med diameter 55 nm og total lengde
FYSIKK-OLYMPIADEN
Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 017 018 Andre runde: 6. februar 018 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:
UNIVERSITETET I OSLO
UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
TFY4104 Fysikk Eksamen 16. desember 2017 Formelside 1 av 6
TFY404 Fysikk Eksamen 6. desember 07 Formelside av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Stivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
TFY4104 Fysikk Eksamen 28. november Løsningsforslag. L = V/A = m/ρπ(d/2) 2 = / π ( /2) 2 = 4.
TFY4104 Fysikk ksamen 28. november 2016 Løsningsforslag 1) L = V/ = m/ρπ(d/2) 2 = 1.0 10 3 /10.5 10 3 π (55 10 9 /2) 2 = 4.0 10 7 m 2) Med startposisjon x = y = 0 har vi ligningene for konstant akselerasjon:
Frivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
Løsningsforslag til eksamen i FYS1000, 15/8 2014
Løsningsforslag til eksamen i FY1000, 15/8 2014 Oppgave 1 a) Lengden til strengen er L = 1, 2 m og farten til bølger på strengen er v = 230 m/s. Bølgelengden til den egensvingningen med lavest frekvens
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet
Den franske fysikeren Charles de Columb er opphavet til Colombs lov.
4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden