FYS1120: Oblig 2 Syklotron

Like dokumenter
FYS1120: Oblig 2 Syklotron

FYS1120: Oblig 2 Syklotron

FYS1120: Oblig 2 Syklotron

FYS1120 Elektromagnetisme, Oppgavesett 4

Theory Norwegian (Norway)

UNIVERSITETET I OSLO

Frivillig test 5. april Flervalgsoppgaver.

Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger

UNIVERSITETET I OSLO

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Kommentarer til eksempelinnleveringene

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

MAT-INF 1100: Obligatorisk oppgave 1

FYS1120 Elektromagnetisme, Ukesoppgavesett 1

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999

MAT-INF 1100: Obligatorisk oppgave 2

UNIVERSITETET I OSLO

EKSAMENSOPPGAVE I FYS-1002

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

MAT-INF 1100: Obligatorisk oppgave 1

FYS2140 Hjemmeeksamen Vår 2014

Elektrisk potensial/potensiell energi

Flervalgsoppgaver. Gruppeøving 8 Elektrisitet og magnetisme. 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. E.

Onsdag og fredag

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

Fra harmoni til kaos

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer

FYS1120 Elektromagnetisme

FYS1120 Elektromagnetisme H10 Midtveiseksamen

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

UNIVERSITETET I OSLO

To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet.

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag

Fasit eksamen Fys1000 vår 2009

Elektrisk og Magnetisk felt

UNIVERSITETET I OSLO

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl

Midtsemesterprøve fredag 10. mars kl

FYS1120 Elektromagnetisme - Ukesoppgavesett 2

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

UNIVERSITETET I OSLO

Oppgave 1A.8: En forenklet kode for stjernedannelse

UNIVERSITETET I OSLO

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).

Fysikk 3FY AA6227. Elever og privatister. 26. mai Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Løsningsforslag Fysikk 2 V2016

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

UNIVERSITETET I OSLO

FYS1120 Elektromagnetisme ukesoppgavesett 7

UNIVERSITETET I OSLO

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1

Oppgave 1A.8: En forenklet kode for stjernedannelse

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

NTNU Fakultet for lærer- og tolkeutdanning

UNIVERSITETET I OSLO

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag.

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

UNIVERSITETET I OSLO

Tirsdag r r

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

FYS2140 Hjemmeeksamen Vår 2014 Løsningsforslag

UNIVERSITETET I OSLO

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

Kvadrupol massespektrometer

Løsningsforslag til øving 5

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

FYS 3120/4120: Klassisk mekanikk og elektromagnetisme. Midtterminevaluering våren 2004 Obligatorisk sett innleveringsoppgaver

Prosjektoppgave FYS2130. Vår Innleveringsfrist: 09/ , 20 CEST

Oppgaver og fasit til seksjon

UNIVERSITETET I OSLO

E, B. q m. TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 12.

UNIVERSITETET I OSLO

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).

MEK1100, vår Obligatorisk oppgave 1 av 2.

Onsdag og fredag

UNIVERSITETET I OSLO

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer

Simulerings-eksperiment - Fysikk/Matematikk

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

Løsningsforslag til øving 3

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME

Kap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø

ProFag Realfaglig programmering

Transkript:

FYS1120: Oblig 2 Syklotron Obligatorisk oppgave i FYS1120-Elektromagnetisme gitt ved UiO høsten 2016. Obligen begynner med noen innledende oppgaver som tar for seg partikler i elektrisk og magnetisk felt hver for seg. Deretter følger oppgaver der vi kombinerer elektrisk og magnetisk felt til en syklotron. Til slutt kommer en oppgave om Gauss lov. Praktisk informasjon Innleveringsfristen er fredag 28. oktober 2016 klokken 23.59. Besvarelsen leveres i Devilry, som du finner på https://devilry.ifi.uio.no. Logg inn med brukenavn og passord fra UiO. Sjekk at du får til å levere i Devilry i god tid før fristen vi godtar ikke andre leveringsformer. Du må gjøre et ærlig forsøk på alle deloppgavene i oppgave 2, 3 og 4 for å få obligen godkjent. Oppgave 1 er en innledende oppgave for å komme i gang. Dere trenger ikke å skrive inn noe fra denne oppgaven i besvarelsen. Vi godtar kun ett innleveringsformat: En maskinskrevet rapport i PDF-format. Rapporten skal kun inneholde tekst og figurer og koden skal være lagt ved separat (i egen fil/egne filer). Du kan velge hvilket programmeringsspråk du vil bruke, og vi kommer ikke til å kjøre koden, bare se på den. Det betyr at alle figurer må være inkludert i rapporten. Rapporten kan du skrive i for eksempel L A TEX eller Word/OpenOffice i det siste tilfellet må du eksportere dokumentet som PDF. Felles for begge leveringsformene gjelder følgende: Alle figurer skal ha figurtekst. Det skal være navn og enhet på aksene. Dersom det er flere grafer i samme plott skal de ha forskjellig farge/markør og en tegnforklaring ( legend ). Det er god skrivetrening å gi korte og konsise svar på alle spørsmål som stilles i oppgavene. Det krever bedre forståelse og oversikt å gi et enkelt svar som allikevel dekker nøyaktig det oppgaven ber om, enn en lang diskusjon som tilfeldigvis også er innom selve svaret. Med mindre noe annet er spesifisert ønsker vi at svar gis med noen få setninger. Vi oppfordrer dere til å samarbeide, fordi man lærer mye av å diskutere og forklare for hverandre. Sammen vil man også langt lettere finne feil i koden. Hver student skal allikevel skrive sin egen kode og sin egen rapport og besvarelsene leveres og vurderes individuelt. Alle skal følge god akademisk praksis og oppgi i rapporten hvem de har samarbeidet med og referere til kilder de har brukt. Referansebruk ble gjennomgått i egen forelesning tidligere i høst, og det ligger også et notat om litteratur og referansehåndtering på emnesidene. Vi forventer at alle deloppgaver er besvart, og kommer ikke til å godkjenne obliger som mangler deloppgaver. Med besvart mener vi at du viser at du har gjort et ærlig forsøk på å løse oppgaven. Dersom dere svarer blankt på en oppgave eller skriver kommentarer av typen dette fikk jeg ikke til, har ikke den som retter noe annet valg enn å gi null uttelling. Det er ofte helt unødvendig. Dersom du vet at figurene du får er feil, så bør du putte dem inn i rapporten og forklare hvorfor de er feil. Det viser at du har forstått hva som bør forventes, ofte basert på en fysisk eller matematisk innsikt i problemet. Kanskje er det bare en liten detalj som mangler før du får riktig svar. Dersom du etter en utledning får et svar som 1

ikke fungerer eller virker galt bør du skrive det! Gjør du en dimensjonsanalyse og viser at svaret ditt har feil enheter viser du at du kan tenke som en fysiker, og du kan få en del poeng selv om du ikke klarer å lokalisere feilen. I arbeidet med obliger har dere i tillegg flere muligheter til å søke hjelp, og det er derfor ingen grunn til å svare blankt. Snakk med medstudenter eller lærere, og benytt det undervisningstilbudet som gis. Dere er ikke garantert å få til alt, men dere vil nesten helt sikkert bygge opp innsikt i hver oppgave som dere kan putte inn i rapporten. Oppgave 1: Partikkel i elektrisk felt Programkode og verifisering I denne oppgaven skal du lage et program som lar deg finne banen til en partikkel i et kraftfelt i dette tilfellet et elektrisk felt. Dette programmet skal utvikles videre i oppgave 2 og 3, der vi tar med magnetfelter. Vi vil kun at du legger ved den endelige koden fra oppgave 3. Du trenger heller ikke å skrive noe i besvarelsen om det du har gjort i oppgave 1. Denne oppgaven er kun for å komme i gang. For enkelhets skyld gjør vi tidsintegrasjonen med Euler-Cromers metode. I Euler-Cromers metode brukes den nyeste verdien av hastigheten v til å beregne neste verdi av posisjonen r = (x, y, z). For mer informasjon om Euler-Cromers metode anbefaler vi kapittel 4 og 5 fra Elementary Mechanics Using Python av Anders Malthe-Sørenssen: http://link.springer.com/book/1007/978-3-319-19596-4. Plasser et elektron (masse m e = 9.11 10 31 kg og ladning e = 1.60 10 19 C i et konstant elektrisk felt E = ( 5.0 N C 1, 0, 0). Velg r(t = 0) = (0, 0, 0) og v(t = 0) = (0, 0, 0). Integrer beveglsen fra t = 0.0 s til t = 1 µs både med tidssteg t = 1 ns og t = 100 ns. Den analytiske løsningen av forrige oppgave er r(t) = 1 2 at2, der a = F/m. Plott den analytiske løsningen i samme aksekors som den numeriske løsningen for begge de oppgitte verdiene av t. Om du har programmert riktig skal figurene se ut som dem i figur 1. Velg så E = ( 1 N C 1, 2 N C 1, 5 N C 1 ). Plott x(t), y(t) og z(t) i samme aksekors med hver sin farge. Vis banen til partikkelen i punktet over i 3D. Tenk gjerne ut en fremstilling som gir et inntrykk av partikkelens akselerasjon. Om du har programmert riktig på de to siste punktene vil figurene dine se ut som dem i figur 2. Oppgave 2: Partikkel i magnetisk felt Det du gjør herifra skal dokumenteres i besvarelsen (med unntak av koden, der vil vi fortsatt kun ha den endelige koden fra oppgave 3). I denne oppgaven bytter vi ut det elektriske feltet med et magnetisk felt B. Elektronet påvirkes av en magnetisk kraft der q er ladningen og v hastigheten til elektronet. F B = q (v B), a) Bruk samme masse og ladning som i oppgave 1, og sett r(t = 0) = (0, 0, 0) og v(t = 0) = (10 km s 1, 0, 0). La magnetfeltet være B = (0, 0, 2 T). Se på bevegelsen fra t = 0 til t = 30 ps med tidssteg t = 1 fs. Plott x(t), y(t) og z(t) i samme aksekors med hver sin farge. Lag et annet plott som viser v x (t), v y (t) og v z (t). Ta også med et plott som viser banen til partikkelen i 3D. b) Mål omløpstiden T til partikkelen. 2

x [m] 0.5 0.4 0.3 Numerisk løsning Analytisk løsning 0.0 t [s] 1e 6 x [m] 0.45 0.40 0.35 0.30 5 0 5 0 0.05 Numerisk løsning Analytisk løsning 0.00 t [s] 1e 6 Figur 1: Numerisk og analytisk løsning av partikkel i elektrisk felt for t = 100 ns (til venstre) og t = 1 ns (til høyre). 0.0 0.3 0.4 x y z 0.5 tid [s] 1e 6 0.00 0.05 0 5 0 5 0.30 0.35 0.40 0.45 0.00 0.010.020.030.04 0.06 0.08 0 2 4 6 8 0.05 0.06 0.07 0.08 0.09 0.00 0.020.04 Figur 2: Partikkel i elektrisk felt. x(t), y(t) og z(t) når E = (1 N C 1, 2 N C 1, 5 N C 1 ). 3

c) Vis analytisk at syklotronfrekvensen til dette systemet er der B = B, og bruk dette til å vise at ω c = qb m, T = 2πm qb. Kommenter det numeriske resultatet fra oppgave b). d) Gå nå tilbake til programmet ditt og endre initialhastigheten til v(t = 0) = (5 km s 1, 0, 2 km s 1 ). Lag plottet som viser banen til partikkelen i 3D. Sammenlign gjerne med den analytiske løsningen. Oppgave 3: Partikkel i syklotron En syklotron er en partikkelakselerator for ladde partikler. Energi tilføres av et elektrisk felt, mens et magnetisk felt brukes for å holde partiklene inne i syklotronen. En enkel syklotron består av to lukkede metalliske halvsylindere plassert like ved siden av hverandre, som vist i Figur 3. Halvsylindrene, som ofte kalles D-er på grunn av formen, ligger i et konstant magnetfelt vinkelrett på papirplanet. En protonkilde fører protoner inn i området mellom sylinderne, vi skal se på bevegelsen til et slikt proton. Mellom halvsylinderne virker det et oscillerende E-felt i x-retningen. Inne i halvsylinderne er det elektriske feltet lik null. Ved at spenningen over halvsylinderne veksler i takt med syklotronfrekvensen protonene har i B-feltet vil de få en akselerasjon hver gang de passerer fra en halvsylinder til den andre. Dermed vil farten og radien øke ved hver passering. Når partikkelbanens radius blir større enn radien i sylinderne forlater partiklene syklotronen. En partikkel i en syklotron vil kunne oppnå relativistiske hastigheter, og det vil gi relativistiske korreksjoner til banen. Disse skal vi se bort fra i vår modell. I denne oppgaven skal vi foreløpig anta at vi jobber med en syklotron der B-feltet kan varieres fra 1 til 2 T og at syklotronspenningen er 50 kv. For at vi skal klare å gjøre beregninger på en vanlig laptop eller skrivebordsmaskin innenfor rimelig tid (under 1 minutt) er vi nødt til å gjøre noen justeringer fra hva som er vanlige dimensjoner på en syklotron. Vi skal derfor anta at partikkelen slippes fri fra syklotronen i en avstand r D = 50 mm fra sentrum, og at avstanden mellom D-ene i syklotronen, såkalt valley gap, er 90 µm. Figur 3: Skisse av en syklotron. Hentet fra [1]. a) Lag et nytt program med utgangspunkt i det foregående programmet, nå for bevegelse i kombinert E- og B-felt. Bruk m = m p (protonmassen), q = e, v(t = 0) = (0, 0, 0) og r(t = 0) = (0, 0, 0). Sett magnetfeltet i z-retning til en verdi innenfor spennet til Oslo-syklotronen og { E0 cos(ωt)ê E = x for x [ d/2, d/2], 0 ellers. 4

25 kv 90 µm der E 0 = (som gir en maksimal spenningsforskjell på 50 kv). Vinkelfrekvensen ω må du velge lik syklotronfrekvensen. La tiden gå fra t = 0 til t = 300 ns med et tidssteg på t = 100 fs. Plott y(t) mot x(t). Hvorfor øker ikke radien like mye i hvert omløp? b) Som nevnt tidligere i oppgaven skal vi se på en situasjon der protonene slippes ut av syklotronen når de er i en avstand 50 mm fra sentrum av syklotronen. Vi kaller denne avstanden r D (radien til de D-formende delene av syklotronen). Implementer i programmet ditt at partikkelen slippes ut i denne avstanden. Plott x(t), y(t) og z(t) mot t i samme figur. Plott også v x (t), v y (t) og v z (t) mot t i en annen figur. c) Finn farten partikkelen forlater syklotronen med. d) Vis at den kinetiske energien til partikkelen når den går i bane i en avstand r fra sentrum av syklotronen kan skrives der r = r. E k = 1 q 2 B 2 r 2 2 m e) Bruk en relevant søkemotor (slik som scopus eller google scholar) til å finne en eller flere vitenskapelige artikler som oppgir parametre tilsvarende r D og B, altså radien der partiklene slippes fri og magnetfeltet i syklotronen. Vi stiller ikke krav til at dere finner artikler som beskriver syklotroner med nøyaktig samme geometri som den vi jobber med i denne oppgaven (geometrien blir gjerne mer komplisert i virkeligheten enn på teoriplanet). Bruk så uttrykket fra forrige deloppgave til å beregne energien et proton har når det slippes løs fra en syklotron med parametrene du fant i artikkelen. Sammenlign med protonmassen og kommenter den ikke-relativistiske tilnærmingen som er gjort i modellen (likningen fra forrige deloppgave). Dersom artikkelen du fant også oppgir den typiske energien et proton kan få når det slippes ut av den syklotronen som beskrives, kan du sammenligne med denne verdien også. Hvor godt er samsvaret? Oppgave 4 Gauss lov I denne oppgaven ønsker vi at du skal bruke Gauss lov til å finne følgende: a) Det elektriske feltet i en avstand r fra sentrum i en uniformt ladet kule med ladning Q og radius R. b) Det elektriske feltet i en avstand x fra en uniformt ladet plate (uendelig stor og uendelig tynn) med uniform ladningstetthet σ. c) Det elektriske feltet i en avstand r fra en uniformt ladet rett stav (uendelig lang og uendelig tynn) med ladningstetthet λ. I denne oppgaven er det viktig å få med alle antagelser du gjør underveis, slikt som symmetrier osv. Bibliografi [1] Lillestøl, Egil and Hunderi, Ola and Lien, Jan R., Generell fysikk for universiteter og høgskoler, 2001. 5