UNIVERSITETET I OSLO

Like dokumenter
UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Viktig informasjon. Taylorrekker

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ

UNIVERSITETET I OSLO

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Viktig informasjon. Taylorrekker

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Løsningsforslag MAT102 Vår 2018

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I BERGEN

UNIVERSITETET I OSLO

1 Oppgave 1 Skriveoppgave Manuell poengsum. 2 Oppgave 2 Code editor Manuell poengsum. 3 Oppgave 3 Skriveoppgave Manuell poengsum

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II

MA1102 Grunnkurs i analyse II Vår 2014

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

MAT-INF 1100 Modellering og beregninger. Fredag 12. oktober 2018 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

UNIVERSITETET I OSLO. Løsningsforslag

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Eksamen i TMA4122 Matematikk 4M

EKSAMEN I NUMERISK MATEMATIKK (TMA4215)

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.

Prøveunderveiseksamen i MAT-INF 1100, H-03

1. (a) Finn egenverdiene og egenvektorene til matrisen A =

UNIVERSITETET I BERGEN

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124

Løsningsforslag eksamen 18/ MA1102

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

EKSAMEN I MA0002 Brukerkurs B i matematikk

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

UNIVERSITETET I OSLO

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

TMA4100 Matematikk 1 Høst 2014

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Obligatorisk oppgave MAT-INF Lars Kristian Henriksen UiO

Fasit MAT102 juni 2016

9 + 4 (kan bli endringer)

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i TMA4122,TMA4123,TMA4125,TMA4130 Matematikk 4N/M

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

3x + 2y 8, 2x + 4y 8.

UNIVERSITETET I OSLO

TDT4110 IT Grunnkurs Høst 2012

TMA4100 Matematikk1 Høst 2009

UNIVERSITETET I OSLO

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

UNIVERSITETET I OSLO

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Løsningsforslag MAT102 - v Jon Eivind Vatne

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D

OPPGAVE 1 LØSNINGSFORSLAG

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Fasit eksamen i MAT102 4/6 2014

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Transkript:

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: Formelark, svarark. Godkjent kalkulator. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Første del av eksamen består av 10 flervalgsoppgaver som teller 1.5 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 5 poeng. Den totale poengsummen er altså maksimalt 50 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige! Husk å levere arkene med flervalgssvarene! Oppgave 1. f(x) = x 2? A: 1 + 2(x 1) B: 1 + (x 1) C: 1 D: x 1 E: 1 + x 2 Oppgave 2. f(x) = ln x? Del 1: Flervalgsoppgaver Hva er Taylor-polynomet av grad 1 om a = 1 for funksjonen Hva er Taylor-polynomet av grad 3 om a = 1 for funksjonen A: 1 + (x 1) 1 2 (x 1)2 + 1 3 B: (x 1) 1 2 (x 1)2 C: (x 1) + 1 2 (x 1)2 + 1 3 D: (x 1) 1 2 (x 1)2 + 1 3 E: (x 1) (x 1) 2 + 2(x 1) 3 (Fortsettes på side 2.)

Eksamen i MAT-INF 1100L, Fredag 2. Desember 2016. Side 2 Oppgave 3. Hva er Taylor-polynomet av grad 1 om a = 0 for funksjonen f(x) = sin(sin x)? A: x. B: cos(1)x. C: sin(1)x. D: 0. E: sin(1) cos(1)x. Oppgave 4. Løsningen av differensialligningen y 4y + 4y = 0, y(0) = 1, y (0) = 1 er gitt ved A: y(x) = e 2x B: y(x) = e 2x xe 2x C: y(x) = e 2x + xe 2x D: y(x) = xe 2x E: y(x) = 2e 2x 2xe 2x Oppgave 5. En løsning av differensialligningen x 2 y y 2 = 2x er A: y(x) = (6 ln x) 1/3 B: y(x) = ln x C: y(x) = (6 ln x) 1/2 D: y(x) = 3x 1/3 E: y(x) = (ln x) 1/3 Oppgave 6. Et tredjegradspolynom som interpolerer datasettet er x 0 1 3 4 f(x) 1 0 2 1 A: p 3 (x) = 1 x 2 3 x(x 1) + 1 3x(x 1)(x 3) B: p 3 (x) = 1 + x + 2x(x 1) 1 3x(x 1)(x 3) C: p 3 (x) = 1 x + 2 3 x(x 1) 1 3x(x 1)(x 3) D: p 3 (x) = 1 + 2x(x 1) 1 3x(x 1)(x 3) E: p 3 (x) = 1 x 2 (Fortsettes på side 3.)

Eksamen i MAT-INF 1100L, Fredag 2. Desember 2016. Side 3 Oppgave 7. Vi minner om at sekantmetoden finner tilnærminger til nullpunkter til f ved hjelp av formelen x i = x i 1 x i 1 x i 2 f(x i 1 ) f(x i 2 ) f(x i 1). Vi bruker sekantmetoden med startverdier x 1 = 1 og x 2 = 2 til å finne ett av nullpunktene til funksjonen f(x) = x 2 2. I første iterasjon får vi da at x 3 blir A: 2 B: 1.9 C: 1.5 D: 4/3 E: 5/4 Oppgave 8. Vi bruker f (a) f(a + h) 2f(a) + f(a h) h 2 for å regne ut tilnærminger til den andrederiverte. andrederiverte av f(x) = x 3 i a = 1 er da gitt ved A: 6 B: 6 + h C: 6 h D: 6 + h 2 E: 6 h 2 Tilnærmingen til den Oppgave 9. Vi minner om at trapesmetoden for integralet I delintervaller er gitt ved = b a f(x) dx med n I h ( n 1 f(a) + 2 f(a + ih) + f(b) ), i=1 h = (b a)/n. Hvis vi bruker trapesmetoden med 4 intervaller til å regne ut får vi tilnærmingen A: 33/8 B: 3 C: 8/3 D: 7/3 E: 11/2 2 0 x 2 dx (Fortsettes på side 4.)

Eksamen i MAT-INF 1100L, Fredag 2. Desember 2016. Side 4 Oppgave 10. Differensialligningen x + sin(x 2 + x ) = t, med initialbetingelser x(0) = 0, x (0) = 1 skal skrives som et system av førsteordens differensialligninger. Hvilket system er riktig? A: x 2 = x 1, x 2 = sin(x2 1 + x 2) + t, x 1 (0) = 0, x 2 (0) = 1 B: x 1 = x 2, x 2 = sin(x2 1 + x 2) + t, x 1 (0) = 1, x 2 (0) = 0 C: x 1 = x 2, x 2 = sin(x2 1 + x 2) + t, x 1 (0) = 0, x 2 (0) = 1 D: x 1 = x 2, x 2 = sin(x2 2 + x 1) + t, x 1 (0) = 0, x 2 (0) = 1 E: x 1 = x 2, x 2 = sin(x2 1 + x 2) t, x 1 (0) = 0, x 2 (0) = 1 (Fortsettes på side 5.)

Eksamen i MAT-INF 1100L, Fredag 2. Desember 2016. Side 5 Del 2 Husk at i denne delen må alle svar begrunnes! Og ikke glem å besvare alle delspørsmålene i hver deloppgave. Oppgave 1. I denne oppgaven skal vi studere funksjonen f(x) = xe x. a) Vis ved induksjon at f (k) (x) = (x + k)e x for alle k 0. b) Finn Taylor-polynomet T n (x) av grad n til f om a = 0 og restleddet R n (x). Finn en N slik at for alle n N, og for alle x i intervallet [0, 1], så vil feilen i T n (x) bli mindre enn 0.001. c) Skriv en funksjon T(x, n) i Python som regner ut og returnerer T n (x) definert i b). Du kan bruke funksjonen math.factorial(k) til å regne ut k!. d) Skriv en testfunksjon som sjekker om din implementasjon av T n er riktig. Du kan for eksempel kalle T med en n større enn N som du fant i b), og sjekke at avviket fra den eksakte verdien f(1) = e er mindre enn 0.001. Testfunksjonen skal følge standard konvensjon for slike funksjoner (spesielt skal den ha navn på formen test_*(), og gjøre testen ved hjelp av en assert). Oppgave 2. Vi har gitt differensialligningen x = sin(t + x), x(0) = π/2. a) Finn to tilnærmede løsninger til ligningen i t = 0.1 ved å ta et steg med Eulers metode og et steg med Eulers midtpunktmetode. b) Finn et uttrykk for x (t) ved å derivere begge sider av differensialligningen og regn fra dette ut x (0). Bruk dette til å finne en tilnærming til løsningen i t = 0.1 ved hjelp av det kvadratiske Taylor-polynomet. Finn også en verdi for h som garanterer at feilen i Eulers metode er mindre enn 0.0001. Vi minner om at Eulers midtpunktmetode for ligningen x = f(t, x) med x(t 0 ) = x 0 og steglengde h er gitt ved x k+1 = x k + hf(t k+1/2, x k+1/2 ) der x k+1/2 = x k + hf(t k, x k )/2, t k+1/2 = t k + h/2. Oppgave 3. Vi har datasettet x 0 1 3 f(x) 1 0 2 Finn det kvadratiske interpolasjonspolynomet p som interpolerer disse verdiene og regn ut en tilnærming til den deriverte til f i x = 1 ved hjelp av tilnærmingen f (1) p (1). Lykke til!