UNIVERSITETET I OSLO

Like dokumenter
UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Løsningsforslag til underveiseksamen i MAT 1100

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Løsningsforslag til underveiseksamen i MAT 1100, 6/

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

QED Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

UNIVERSITETET I OSLO

Løsningsforslag til underveiseksamen i MAT 1100, H-06

Deleksamen i MAT111 - Grunnkurs i Matematikk I

UNIVERSITETET I OSLO

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Flervalgseksamen: MET 11802

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

Eksamensoppgave i MA1101 Grunnkurs i analyse

UNIVERSITETET I OSLO

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

UNIVERSITETET I OSLO

Potensrekker Forelesning i Matematikk 1 TMA4100

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1

UNIVERSITETET I BERGEN

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

MET Matematikk for siviløkonomer

Eksamen i MAT1100 H14: Løsningsforslag

Løsningsforslag til Eksamen i MAT111

UNIVERSITETET I OSLO

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

UNIVERSITETET I OSLO

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

OPPGAVE 1 LØSNINGSFORSLAG

= x lim n n 2 + 2n + 4

Notasjon i rettingen:

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

EKSEMPLER TIL ETTERTANKE MAT1100 KALKULUS

Svararket skal påføres følgende informasjon: - Eksamenskode - Initialer - Eksamenssted - Studentnummer

Potensrekker Forelesning i Matematikk 1 TMA4100

Løsningsforslag midtveiseksamen Mat 1100

Løsningsforslag MAT102 Vår 2018

Grunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3,

Formelsamling Kalkulus

UNIVERSITETET I OSLO

Oppgave 1. Oppgave 2

Emnenavn: Eksamenstid: Faglærer: Christian F Heide

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)

Notasjon i rettingen:

Prøveunderveiseksamen i MAT-INF 1100, H-03

UNIVERSITETET I OSLO

Institutt for samfunnsøkonomi. Eksamensdato: , kl Tillatte hjelpemidler:

Løsningsforslag til eksamen i MAT 1100, H06

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

TMA4100 Matematikk 1 Høst 2014

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11

MAT-INF 1100 Modellering og beregninger. Fredag 12. oktober 2018 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

MA oppsummering så langt

Fasit - det står en sort prikk bak riktig svar. (NB! Rekkefølgen på oppgavesettene varierte).

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo

EKSAMEN I EMNET Mat Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00

MAT jan jan feb MAT Våren 2010

Transkript:

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT00 Kalkulus Eksamensdag: Fredag 9. oktober 205 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark, formelsamling. Tillatte hjelpemidler: Ingen. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Eksamen inneholder 20 oppgaver. De første 0 teller 2 poeng hver, de siste 0 teller 3 poeng hver. Det er bare ett riktig alternativ på hver oppgave. Om du svarer galt eller lar være å svare på en oppgave, får du 0 poeng. Du blir altså ikke straffet for å gjette. Før svarene dine inn på svararket. Krysser du av mer enn ett alternativ på en oppgave, får du 0 poeng. Oppgave. (2 poeng) Hvilket av disse utsagnene er sant: A) Alle komplekse tall har realdel ulik 0 B) Ingen komplekse tall har et irrasjonalt tall som realdel C) Ingen komplekse tall har et rasjonalt tall som imaginærdel D) Alle reelle tall er også komplekse tall E) Alle komplekse tall er også reelle tall Oppgave 2. (2 poeng) Det komplekse tallet z = + i 3 kan skrives: A) z = 3 i B) z = 2e i(π/3) C) z = 2e i(2π/3) D) z = 2e i(4π/3) E) z = 2e i 3 Oppgave 3. (2 poeng) Det komplekse tallet z = 2e i(5π/6) kan skrives: A) z = 3 + i B) z = + i C) z = 3 i D) z = 2 i 2 E) z = i (Fortsettes på side 2.)

Eksamen i MAT00, Fredag 9. oktober 205 Side 2 Oppgave 4. (2 poeng) Ligningen z 2 2z + ( 2i) = 0 har løsninger: A) z = i og z 2 = i B) z = 2 + i og z 2 = i C) z = 2 i og z 2 = i D) z = i (kun en løsning) E) z = + i (kun en løsning) Oppgave 5. (2 poeng) La {a n } n= følgende utsagn er sant: være en følge av reelle tall. Hvilket av A) Hvis følgen er voksende og nedad begrenset, så konvergerer den B) Hvis følgen er voksende og oppad begrenset, så konvergerer den C) Hvis følgen konvergerer og er nedad begrenset, så er den voksende D) Hvis følgen konvergerer, så er lim n a n = 0 E) Hvis følgen konvergerer, så er den voksende og oppad begrenset Oppgave 6. (2 poeng) lim x ln(4x 2 +) ln(x+) er lik: B) D) Oppgave 7. (2 poeng) lim x 0 (sin x) 2 5x+x 2 er lik: B) D) Oppgave 8. (2 poeng) La P (z) være et polynom med reelle tall som koeffisienter. Hvilket av følgende utsagn er sant: A) Alle røttene til P (z) er reelle tall B) Polynomet P (z) har minst en reell rot C) Polynomet P (z) har minst to ulike komplekse røtter D) Hvis et komplekst tall z er en rot til P (z), så er også det konjugerte tallet z en rot til P (z) E) Hvis et komplekst tall z er en rot til P (z), så må imaginærdelen til z være ulik 0 (Fortsettes på side 3.)

Eksamen i MAT00, Fredag 9. oktober 205 Side 3 Oppgave 9. (2 poeng) La {a n } n= være en følge av reelle tall der vi har a n+ = 3 (a 3 n + )/2 for alle n. Hvilket av følgende utsagn er sant: A) Hvis følgen konvergerer, så konvergerer den mot 0 B) Hvis følgen konvergerer, så konvergerer den mot C) Hvis følgen konvergerer, så konvergerer den mot 2 D) Hvis følgen konvergerer, så konvergerer den mot 3 E) Følgen divergerer uansett hvilken verdi a har Oppgave 0. (2 poeng) La {a n } n= være gitt ved a n = e n (cos n + ( 2) n ) for n. Hvilket av følgende utsagn er sant: A) Følgen konvergerer mot B) Følgen konvergerer mot 0 C) Følgen konvergerer mot e/2 + cos D) Følgen konvergerer mot 2/e E) Følgen divergerer Oppgave. (3 poeng) Hvilket av følgende utsagn er sant: A) Alle komplekse tall z 0 har minst en reell kvadratrot B) Alle komplekse tall har minst 4 ulike kvadratrøtter C) Alle komplekse tall er kvadratroten til et reelt tall D) Alle komplekse tall z 0 har nøyaktig 5 ulike komplekse femterøtter E) Det finnes komplekse tall z 0 som ikke har noen kvadratrot Oppgave 2. (3 poeng) Den deriverte til f(x) = sin(sin x)+e x ln() er: A) cos(sin x) + e x ln(2x + ) + ex B) cos(sin x) cos x + e x ln(2x + ) + 2ex C) cos(sin x) sin x + e x ln(2x + ) + 2ex D) sin(sin x) cos x + e x ln(2x + ) + ln(2x + ) ex E) cos(sin x) cos x + e x ln(2x + ) + e Oppgave 3. (3 poeng) Funksjonen f(x) = x2 x A) Horisontal asymptote y = B) Vertikal asymptote x =, skråasymptote y = x C) Vertikal asymptote x =, skråasymptote y = x + D) Vertikal asymptote y =, skråasymptote y = 2x E) Funksjonen har ingen asymptoter Oppgave 4. (3 poeng) lim x 0 ( x) /x er lik: B) D) e har følgende asymptoter: (Fortsettes på side 4.)

Eksamen i MAT00, Fredag 9. oktober 205 Side 4 Oppgave 5. (3 poeng) Funksjonen f(x) = xe x er: A) Strengt konkav på [0, ) B) Strengt konkav på ( 6, ) C) Strengt konkav på ( 3, 0) D) Strengt konveks på ( 2, ) E) Strengt konveks på ( 6, 0) Oppgave 6. (3 poeng) La a, b og c være reelle tall. Den deriverte av funksjonen f(x) = ln(a + ln(b + ln(c + x))) er lik: A) b+ln() B) b+ln() C) D) a+ln(b+ln()) E) b+ln() Oppgave 7. (3 poeng) Hvis f er kontinuerlig på intervallet [a, b] og deriverbar på (a, b), så kan vi konkludere med at det finnes et tall c (a, b) slik at: A) f(b) f(a) = f (c) B) f(b) f(a) = f (c) (a b) C) f(b) = f(a) + f (c) (b a) D) f (c) = (f(b) f(a)) (b a) E) f(c) = (f(b) f(a)) (b a) Oppgave 8. (3 poeng) En skråasymptote til f(x) = xe 7/x er: A) y = x + 7 B) y = 7x C) y = 7x + 7 D) y = x 7 E) y = x + Oppgave 9. (3 poeng) Hvilket komplekst tall er en tredjerot til tallet z = 8e i(3π/2) : A) z = 2e i(7π/6) B) z = 2e i(π/6) C) z = (8/3)e i(π/2) D) z = e i(π/6) E) z = e i(π/6) (Fortsettes på side 5.)

Eksamen i MAT00, Fredag 9. oktober 205 Side 5 Oppgave 20. (3 poeng) Hvis funksjonen f ikke er kontinuerlig i punktet a, så gjelder: A) Det fins ɛ > 0 slik at for alle δ > 0 fins det et tall x som oppfyller x a < δ og f(x) f(a) ɛ B) Det fins ɛ > 0 og δ > 0 slik at for alle tall x gjelder at x a < δ medfører f(x) f(a) ɛ C) For alle ɛ > 0 og δ > 0 fins det et tall x med x a < δ og f(x) f(a) > ɛ D) For alle ɛ > 0 fins δ > 0 slik at x a < δ medfører f(x) f(a) > ɛ E) Det fins ɛ > 0 slik at for alle δ > 0 fins det et tall x som oppfyller x a < δ og f(x) f(a) < ɛ Slutt