Optimal long-term investment in general insurance
|
|
|
- Aage Tollefsen
- 8 år siden
- Visninger:
Transkript
1 Optimal long-term investment in general insurance Didrik Saksen Bjerkan May 11, / 1
2 2 / 1
3 Introduksjon Ruinsannsynligheten for et forsikringsselskap med mulighet for å invistere deler av egenkapitalen i aksjemarkedet. Azcue og Muler (2009) uendelig tidsperspektiv. Normalt vil 5 til 15 år være mer enn nok. Denne oppgaven forsøker å finne optimale dynamiske strategier for mer realistiske tidsperspektiver. 3 / 1
4 Modeller Balansen til et forsikringsselskap ved tidspunkt n Y n, er gitt ved følgende prosess. Y n = (1 + R n) (π + Y n 1) X n Y 0 = y 0 Avkastningen R n kommer fra investeringer i aksjer og pengemarkedet, og er beskrevet som R n = ω R s n + (1 ω) r 4 / 1
5 Modeller Verdien på tidspunkt t for aksjen er beskrevet som (µ σ2 S t = S 0e 2 ) t+σb t hvor S 0 er start verdien, µ prosentvis drift, σ volatiliteten er konstant og B t er Brownsk bevegelse. For avkastningen i pengemarkedet vil jeg anta at r er konstant. 5 / 1
6 Modeller Forsikringskravene X n er beskrevet ved XN n X n = Z i Her er N antall skader, som er Poissonfordelt med parameter λ. Z i er skadestørrelse og er simulert med 2 langhalede fordelinger, Pareto og Eksponensial. Premien for en periode er gitt ved: π = E(X 1) (1 + γ) 6 / 1
7 Monte Carlo simuleringer Y 1(ω) = (1 + ω R s 1 + (1 ω) r) (π + y 0) X 1 Y vanskelig sannsynlighetsfordeling, bruker derfor Monte-Carlo. Y1 i (ω) = (1 + ω R s i 1 + (1 ω) r) (π + y 0) X1 i for i (1,m) 7 / 1
8 Monte Carlo simuleringer Ruinsannsynlighet for en periode: ψ 1(y 0,ω 0)=P (Y 1 < 0 ω 0) H(Y 1,..., Y N )= j 0, min(y1,..., Y N ) > 0 1, min(y 1,..., Y N ) < 0 ψ 1(y 0,ω 0)= 1 m mx H(Y i 1 (ω 0)) Ruinsannsynlighet for en periode med optimal strategi: ˆψ 1(y 0) = inf ω 0 ψ 1(y 0,ω 0) 8 / 1
9 Introduksjon til dynamisk programmering I 1940 innførte Richard Bellman dynamisk programmering som metode for å løse et problem hvor vi har mulighet til å endre vår strategi for hver tidsperiode. Dynamisk programmering bryter et optimaliseringsproblem i to problemer, gjør en første beslutning basert på startkapital og tar beslutninger for resten av perioden der vi bare har en sannsynlighet for hva balansen vil bli. 9 / 1
10 Dynamisk programmering Ruinsannsynligheten for en n periode beskrevet med dynamisk programmerings rekursive metode: ψ n(y 0,ω 0)= Z Bruker Monte-Carlo: Z H(y 1) P (y 1 y 0,ω 0)dY + ˆψ n 1(y 1) P (y 1 y 0,ω 0)dY ψ n(y 0,ω 0)= 1 m mx H(Y1 i (ω 0)) + 1 Xm ˆψ n 1(Y m 1 i (ω 0)) 10 / 1
11 Dynamisk programmering Ruinsannsynligheten for en n periode med optimal invisteringsstrategi: ˆψ n(y 0) = inf ω 0 { 1 m mx H(Y1 i (ω 0)) + 1 Xm ˆψ n 1(Y m 1 i (ω 0))} Bellmans prinsipp om optimalitet Rekursiv funksjon 11 / 1
12 Løser med datamaskin ψ 1(y 0,ω 0)= 1 m mx H(Y i 1 (ω 0)) ˆψ 1(y 0) = inf ω 0 ψ 1(y 0,ω 0) Funksjonen til ψ jevnt synkende i forhold til y 0, kan bruke interpolasjon til å lage en funksjon som kalles ˆψ 1 (y0) som erstatter ˆψ 1(y 0). for n =2 ψ 2(y 0,ω 0)= 1 m mx Ved tidspunkt n har vi en funksjon for n-1. H(Y1 i )+ 1 Xm ˆψ m 1(Y 1 i ) 12 / 1
13 Løser med datamaskin Ruinsannsynlighet for n periode med optimale investeringsstrategier som løses med Monte-Carlo og interpolasjon: ˆψ n(y 0) = inf ω 0 { 1 m mx H(Y1 i )+ 1 Xm ˆψ m n 1(Y 1 i )} 13 / 1
14 Numeriske eksperimenter Eksperimenter under samme vilkår som i Azcue og Muler for å sammenligne. Pareto og Eksponensial fordelingene har begge forventet skade 1, så forskjellen i ligger volatiliteten. Aksjeavkastningen er simulert med µ =0.04, σ =0.1, r =0, og skadekravene er simulert med λ =1, ξ =1, σ z =0.4. Premien er π = / 1
15 Numeriske eksperimenter Survival probability for Pareto Survival probability for Exponential surv(y0) years 10 years 25 years surv(y0) years 10 years 25 years Initial capital Initial capital 15 / 1
16 Optimale vekter Pareto Exponential Initial weight on equity years 10 years 25 years Initial weight on equity years 10 years 25 years Initial capital Initial capital 16 / 1
17 Optimale vekter ruin probability function ruin probability initial weight Figure: the ruin probability for the first year with exponential distributed claims and an initial capital of five, depending on the initial weight. 17 / 1
18 Oppsummering Numeriske løsningmetoder gjør det mulig å løse kompliserte problemer uten å forenkle. Vi fant strategier for endelige tidsperspektiver, med en analytisk metode så man kun på uendelige tidperspektiver. Metoden virker godt for vårt problem, kan også bli brukt på andre finansielle problemstillinger. F.eks Reassuranse. 18 / 1
Modellrisiko i porteføljeforvaltning
Modellrisiko i porteføljeforvaltning Hans Gunnar Vøien 12. mai 2011 1/25 Innhold Problem og introduksjon Problem og introduksjon Lévyprosesser Sammenlikning GBM og eksponentiell NIG Oppsummering 2/25 Problem
Kap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar
Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 4 FYS-13 Lars Kristian Henriksen UiO. februar 15 Oppgave 1 Vi betrakter bølgefunksjonen Ψ(x, t) Ae λ x e iωt hvor A, λ og ω er positive reelle konstanter. a) Finn normaliseringen
Kap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar
Bootstrapping og simulering Tilleggslitteratur for STK1100
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
Kap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform Onsdag Normal Onsdag Eksponensial I dag Gamma I dag Kji-kvadrat I dag Student-T (Kap
Binomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:
Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,
Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind
Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind [email protected] Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK45 Livsforsikring og nans. Eksamensdag: Mandag 8. juni 215 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 5 sider. Vedlegg:
Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen
Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:
Optimal reassuranse av totalskader
Optimal reassuranse av totalskader av Navdeep Singh Malhi Masteroppgave i studieprogrammet Modellering og Dataanalyse med studieretning Finans, Forsikring og Risiko 2015 Veileder: Erik Bølviken Det matematisk-naturvitenskapelige
Eksamen i STK4500 Vår 2007
Eksamen STK4500 Vår 2007 Prosjektoppgave. Det matematisk-naturvitenskapelige fakultet. Utlevering fredag 15. juni kl. 09.00. Innlevering mandag 18. juni kl. 15.00. Oppgaven skal innen fristen leveres pr.
Behovet for beregninger i næringslivet. Tørres Trovik Analyse og modellering Storebrand Liv
Behovet for beregninger i næringslivet Tørres Trovik Analyse og modellering Storebrand Liv Bakgrunn fra økonomi og finans: Utvikling i bruk av verktøy? Sweave Normal student fra økonomifag PMML: http://www.amazon.com/dp/1452858268/ref=cm_sw_su_dp?mkt_tok=3rkmmjwwff9wsronv6zmzkxonjhpfsx66uolwkog38431ufwdcjkpmjr1yuattqhcouuewcwgog80glofeyaailp9pzsblgntdlxhw%253d%253d#reader_1452858268
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.
x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt
Transformasjoner av stokastiske variabler
Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså
Løsningsforslag. MOT 110 Matematisk statistikk og stokastiske prosesser B, høst Oppgave 1
MOT 110 Matematisk statistikk og stokastiske prosesser B, høst 2004. Løsningsforslag Oppgave 1 a) Autokovariansen for en tidsrekke X t } er: γ(t + h, t) Cov(X t+h, X t ). Tidsrekken X t } er stasjonær
Resultat av teknisk regnskap
RESULTATREGNSKAP 01.01-30.09.2018 2018 2017 2017 (Beløp i NOK 1000) 30.09.2018 30.09.2017 31.12.2017 TEKNISK REGNSKAP FOR SKADEFORSIKRING Premieinntekter mv. Opptjente bruttopremier 913 471 916 136 1 223
Aksjeavkastningsparadoxet
Aksjeavkastningsparadoxet Kjell Arne Brekke October 16, 2001 1 Mer om risikofrie sannsynligheter Vi skal nå tilbake til modellen vi studerte ovenfor, med to tidsperioder og en konsumvare i hver periode.
Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.
Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i emnet STK4500 v2009: Finans og forsikring Prosjektoppgave, utlevering onsdag 27. mai kl. 9.00, innleveringsfrist fredag 29. mai
Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015
Qi-Wu-Zhang model 2D Chern insulator León Martin 19. November 2015 Motivation Repeat: Rice-Mele-model Bulk behavior Edge states Layering 2D Chern insulators Robustness of edge states Motivation topological
Bootstrapping og simulering
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk, men
Bernoulli forsøksrekke og binomisk fordeling
Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene
Dekkes av kap , 9.10, 9.12 og forelesingsnotatene.
Estimering 2 -Konfidensintervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesingsnotatene. En (punkt-)estimator ˆΘ gir oss et anslag på en ukjent parameterverdi, men gir oss ikke noen direkte informasjon
NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER
NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER SIE 3080 STOKASTISKE OG ADAPTIVE SYSTEMER Oddvar Hallingstad 0. februar 00 Vi skal her utlede noen nyttige formler for arbeidet med kovariansmatriser
HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp)
HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI Dixit-Stiglitz-Krugman modellen Åge Haugslett Vedlegg til Masteroppgave i - Samfunnsøkonomi ( stp) Vedlegg kap,.. VEDLEGG KAPITTEL KapModATilf.mcd. Den enklestet
Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet.
INF4170 Logikk Dagens plan Forelesning 10: fri-variabel sekventkalkyle og sunnhet Martin iese 1 Institutt for informatikk, Universitetet i Oslo 14. april 2008 Institutt for informatikk (UiO) INF4170 Logikk
TMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk
Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1
Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,
Gammafordelingen og χ 2 -fordelingen
Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet
Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019
Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019 Henrik Hillestad Løvold Institutt for Informatikk, UiO Program 1. Hva er programmering?
TMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
Tillegg om strømfunksjon og potensialstrøm
Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x
(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1
Forvaltningsprosess og markedssyn. Seniorstrateg Christian Lie Danske Bank Wealth Management
Forvaltningsprosess og markedssyn Seniorstrateg Christian Lie Danske Bank Wealth Management Strategic asset allocation forum Credit bond competencies Danske Capital Senior management Asset allocation competencies
EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember
STK-MAT Arne Bang Huseby
STK-MAT 2011 Arne Bang Huseby F. F. R. Finans: Bernt Øksendal Fred Espen Benth Tom Lindstrøm Giulia Di Nunno Forsikring: Erik Bølviken Frank Proske Risiko: Bent Natvig Arne Bang Huseby +++ Statistikk/Dataanalyse
Oppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind
ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind [email protected] Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler
NHH, 21. april, 2017 Professor Øystein Thøgersen
Finansiell økonomi (FIE) NHH, 21. april, 2017 Professor Øystein Thøgersen FIE: Introduksjon FIE den mest populære av NHHs masterprofiler - Ca. 35% av masterstudentene Mulige årsaker - Interessant og spennende!
Kontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a
EKSAMEN I EMNE SIF5072 STOKASTISKE PROSESSER Onsdag 31. juli 2002 Tid: 09:00 14:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Bo Lindqvist 73 59 35 32 EKSAMEN I EMNE SIF5072 STOKASTISKE PROSESSER Onsdag
Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og
STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
MAT-INF 2360: Obligatorisk oppgave 2
6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels
TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
Løysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
Kap. 6.1: Fordelingen til en observator og stok. simulering
Kap. 6.1: Fordelingen til en observator og stok. simulering Data, observatorer og relaterte fordelinger. Stokastisk simulering. Illustrasjon: - Sammenligning av jury bedømmelser i idrett. Fra data til
Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.
Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen
Impact Investing Gudleik Njå, Formål & Effekt, 14. april 2016
Impact Investing Gudleik Njå, Formål & Effekt, 14. april 2016 Agenda Hvordan har verden utviklet seg de siste årene? Mitt store forbilde Hans Røsling og the GapMinder Fra negativ screening til impact investing
Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i emnet STK4500/STK9500 v2012: Finans og forsikring Prosjektoppgave, utlevering fredag 1. juni kl. 9.00, innlevering mandag 4. juni
Kapitalverdimodellen
Kapitalverdimodellen Kjell Arne Brekke October 23, 2001 1 Frontporteføljer En portefølje er en front-portefølje dersom den har minimal varians gitt avkastningen. Først, hva blir avkastning og varians på
Løsningsforslag til hjemmeeksamen i INF3440 / INF4440
Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte
Sektor Portefølje III
Sektor Portefølje III Kvartalsrapport 2 kvartal 2014 - et selskap i Sektor Portefølje III konsern Resultat 2. kvartal 2014 Sektor Portefølje III AS har som formål å utvikle, eie og forvalte fast eiendom,
Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)
Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F
Eksamensoppgave i TMA4265 Stokastiske Prosesser
Institutt for matematiske fag Eksamensoppgave i TMA4265 Stokastiske Prosesser Faglig kontakt under eksamen: Jo Eidsvik Tlf: 901 27 472 Eksamensdato: Desember 1, 2016 Eksamenstid (fra til): 09:00 13:00
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
Oppsummering av STK2120. Geir Storvik
Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
Løsningsforslag til eksamen i TFY4230 STATISTISK FYSIKK Tirsdag 9. aug 2011
NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY430 STATISTISK FYSIKK Tirsdag 9. aug 011 Oppgave 1.
MAT1110: Obligatorisk oppgave 2, V Løsningsforslag
MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10
Ideer og design bak Solvency II.
Erik Bølviken, Matematisk Institutt, UiO. 16 Februar 2016 Hva er Solvency II? Et system for regulering og kontroll av Europeisk forsikring. Utviklet av EIOPA (European Insurance and Occupational Pensions
LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
Statoil Kapitalforvaltning ASA - Vår måte å forvalte midler
Statoil Kapitalforvaltning ASA - Vår måte å forvalte midler Thomas Ludvigsen, daglig leder 13. januar 2012 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Kapitalforvaltning
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
Netfonds Holding ASA - consolidated Quarterly Accounts (Delårsregnskaper)
Netfonds Holding ASA - consolidated Net interest (Netto renteinntekt) 13,9 8,8 15,0 9,2 20,2 0,0 0,0 0,0 0,0 0,0 24,3 36,6 51,2 14,5 29,6 14,2 21,5 30,1 7,8 14,9 0,1 0,2 0,2 0,1 0,2 Salaries etc (Lønninger
La U og V være uavhengige standard normalfordelte variable og definer
Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser
INF L4: Utfordringer ved RF kretsdesign
INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer
Stokastiske prosesser i kontinuerlig tid
Stokastiske prosesser i kontinuerlig tid Kjell Arne Brekke October 29, 2001 1 Brownsk bevegelse Vi starter med å definere en Brownsk bevegelse. Denne prosessen bruker vi så senere til å definere en større
Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon.
INF3170 / INF4171 Predikatlogikk: Semantikk og naturlig deduksjon Andreas Nakkerud 3. september 2015 Eksempel Gitt en similaritetstype 0, 2; 1; 2 bygger vi en struktur (modell) hvor A = {c 1, c 2, a, b},
INF3170 / INF4171. Normalisering. Andreas Nakkerud. 24. september 2015
INF3170 / INF4171 Andreas Nakkerud 24. september 2015 [σ ] 2 E [σ ] 2 [ ψ] 1 σ E E I ψ ψ σ σ E I 1 ( ψ) σ I 2 (σ ) (( ψ) σ) [σ ] 1 σ E I ( ψ) σ (σ ) (( ψ) σ) I 1 Forberedelse efinisjon Formelene rett over
Forskningsresultater som brukes og synes ved Norsk Regnesentral
www.nr.no www.nr.no Forskningsresultater som brukes og synes ved Norsk Regnesentral André Teigland Forskningssjef SAMBA Mathilde Wilhelmsen NR er et forskningsinstitutt Privat stiftelse Anvendt oppdragsforskning
Stationary Phase Monte Carlo Methods
Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. [email protected] www.het.brown.edu Introduction: Motivations
UNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er
Falske positive i lusetellinger?
Falske positive i lusetellinger? 50 % grense = 0,2 grense = 0,5 Sannsynlighet for en falsk positiv 40 % 30 % 20 % 10 % 0 % 0,0 0,1 0,2 0,3 0,4 0,5 Faktisk lusetall Notatnr Forfatter SAMBA/17/16 Anders
Eksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
Algdat - øvingsforelesning
Algdat - øvingsforelesning Dynamisk programmering Nils Barlaug Dagens plan 1. 2. 3. 4. Praktisk og dagens plan LF øving 8 a. Teori b. Praksis Dynamisk programmering a. Introduksjon b. Rod Cutting c. Matrise-multiplikasjon
Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
FORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
