Innføring i bevisteknikk
|
|
- Esther Gundersen
- 7 år siden
- Visninger:
Transkript
1 Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen og q kalles for konklusjonen. Det er nok å vise at hvis p er sann så er q sann. Direkte bevis. Vi antar at p er sann. Så bruker vi holdbare argumenter til å vise at da er også q sann. Eksempel på direkte bevis: La n være et naturlig tall. Påstand: «Hvis n er et oddetall, så er n 2 er oddetall.» p: n er et oddetall q: n 2 er oddetall. Bevis: Hvis n er et oddetall kan n skrives som 2k + 1, der k er et tall. n 2 kan da skrives som (2k + 1) 2 = (2k) k = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1. Vi ser at 2(2k 2 + 2k) må være et partall siden vi har 2 som faktor. Legger vi til 1 får vi et oddetall. Følgelig må n 2 være et oddetall. Det betyr at q er sann og påstanden er bevist. Kontrapositivt bevis. Istedenfor å bevise at p q, viser vi at det ekvivalente og kontrapositive utsagnet q p er sant. Vi starter med å anta at q er usann (dvs. q er sann). Så bruker vi på vanlig måte holdbare argumenter til å vise at da må også p også være usann. 1
2 Eksempel på et kontrapositivt bevis: La n være et naturlig tall. Påstand: «Hvis n 2 er et oddetall, så er n er oddetall.» p: n 2 er oddetall. q: n er et oddetall Bevis: Istedenfor p q, viser vi q p Anta at q er sant. Da er n ikke et oddetall men et partall. Vi skal vise at det gjelder også p, som betyr at n 2 ikke er et oddetall men et partall. Et partall kan skrives som n = 2 k. Da blir n 2 = (2 k) 2 = 4k 2 = 2 2k 2. Vi ser at n 2 har 2 som faktor og følgelig må n 2 være et partall. Dermed har vi bevist at q p. Bevis ved selvmotsigelse. Ut fra definisjonen av en implikasjon vet vi at det eneste tilfellet der implikasjonen er usann er når premissen er sann og konklusjonen er usann: Hvis vi antar at nettopp dette er situasjonen, altså at premissen p er sann og at konklusjonen q er usann, og kan vise at dette leder til en selvmotsigelse, har vi bevist at p q. 2
3 Ved å bruke holdbare argumenter slutter vi oss til noe som åpenbart er i strid med antagelsen vår og kan trekke den slutning at hvis p er sann så må q også være sann, dvs. p q. Eksempel på bevis ved selvmotsigelse: La n være et naturlig tall. Påstand: «Hvis n 2 er et oddetall, så er n er oddetall.» p: n 2 er oddetall. q: n er et oddetall Vi antar at premissen p er sann og at konklusjonen q er usann. Hvis q er usann må n være et partall. Et partall kan skrives som n = 2 k. Da blir n 2 = (2 k) 2 = 4k 2 = 2 2k 2. Vi ser at n 2 har 2 som faktor og følgelig må n 2 være et partall. Dette strider mot antagelsen vår om at p er sann, dvs. at n 2 er oddetall. Dermed har vi en selvmotsigelse. Følgelig kan q ikke være usann men må være sann. Som vi ser av tabellen var dette det eneste tilfellet som kunne gjøre implikasjonen usann, og dermed har vi vist at den må være sann: p q 3
4 Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller medlemmer) og betegner med små bokstaver, a, b, c, osv. Hvis er A en mengde og a et element i mengden A skriver vi: a A ( leses «a er element i A» ) Hvis a ikke er et element i mengden A skriver vi: a A ( leses «a er ikke element i A» ) Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Eksempel: La A være mengden av de hele tallene fra 1 til 5. Vi skriver da: A = { 1, 2, 3, 4, 5 } Her sier vi at A er på listeform. Hvis mengden har mange elementer, pleier vi kun å ramse opp noen i starten og noen i slutten. Vi tar med så mange som er nødvendig for at vi skal se et mønster. Eksempler: La B være mengde av heltallene fra 1 til 100. Det kan vi skrive mengden på listeform slik: B = {1, 2, 3,.., 99, 100} Prikkene representerer elementene som mangler. 4
5 La C være mengde av alle partall fra 2 til 100. På listeform: C = {2, 4, 6,.., 98, 100} La D være alle positive heltall. Da har vi en uendelig mengde: D = {1, 2, 3, } En mengde kan defineres ved hjelp av en utsagnsfunksjon med en gitt definisjonsmengde (eng: domain): La A være definisjonsmengden til utsagnsfunksjonen P(x). Da kan vi definere en ny mengde B som B = {a A P(a) } Dette betyr at B er mengden av de elementene i A som gjør P(a) sann. Eksempel: La P(x) være gitt ved: x > 10 der x er et heltall. Det betyr at definisjonsmengden A for P(x) er alle heltallene. Mengden B blir da B = {x A P(x) } = { x A x > 10 } = { 11, 12, 13, } Kan leses som: «B er mengden av de x tilhørende A slik at x > 10.» Symbolet { } kalles mengdebygger ( eng: set builder) Den vertikale streken leses som «slik at». Noen tallmengde har fått egne symboler: 5
6 N = {0, 1, 2, 3,.. } er de naturlige tallene Z = {, -2, -1, 0, 1, 2, 3, } er de hele tallene Q = er de rasjonale tallene R = er de reelle tallene Programmering: En datatype (int, double, ) kan også sees på som en mengde. Datatypen int er mengden av alle heltall fra til Likhet mellom mengder: To mengder A og B er like hvis de inneholder de sammen elementene. Da er A = B. Hvis de er ulike er A B. Eksempel 1. La A = {1, 7, 3, 5} og B = {7, 5, 3, 1}. Er A = B? Ja fordi A og B inneholder de samme elementene. Rekkefølgen elementene står i spiller ingen rolle. Eksempel 2. La A = {1, 1, 2, 2, 3} og B = {1, 2, 3}. Er A = B? Ja, fordi både A og B inneholder elementene 1, 2 og 3. En mengde blir ikke større om et element tas med flere ganger! Venn-diagram. En mengde kan betegnes som en runding («rund» figur). Det som er innenfor rundingen er med i mengden: 6
7 En delmengde (eng: subset) En mengde A er en delmengde av en mengde B hvis alle elementene i A også er elementer i B. Dette betegnes med A B og er definert formelt ved: Symbolet kalles for inkluderingssymbolet. Hvis A ikke er en delmengde av B skriver vi A B. NB! En mengde er alltid en delmengde av seg selv: A A for alle mengder A. Det er flere måter å si at A er en delmengde av B: A er inneholdt i B A er inkludert i B B omfatter A Eksempler. La A = {2, 3, 5} og B = {1, 2, 3, 4, 5} Her er A B. 7
8 La A = {2, 3, 5, 6 } og B = {1, 2, 3, 4, 5 } Her er A B fordi 6 A, men 6 B. NB! Vi har at A = B hvis og bare hvis A B og B A. (A = B) (A B Λ B A) Ekte delmengde: Hvis A B og er A B, så sier vi at A er en ekte delmengde av B og skriver det som A B. Observasjon: N Z Q R Den tomme mengde, Ø En mengde som ikke inneholder noen elementer kalles den tomme mengden. Den betegnes som {} eller bokstaven Ø. Den tomme mengden er delmengde av alle andre mengder: Ø A for alle mengder A. Eksempel: En mengde kan være element i en annen mengde. La f. eks. A være gitt ved: A= {1, 2, Ø, {1}, 2, 2} 8
9 Elementene i mengden er både tall og mengder. Både 1 og {1} er elementer i A: 1 A og {1} A. Den tomme mengde Ø er både et element i A og en delmengde av A: Ø A og Ø A. Hva er forskjellen mellom 1, {1} og { {1} }? Først har vi tallet 1, så har vi mengden av tallet 1 og så har vi mengden av mengden av tallet 1. Vi har: 1 {1} 1 { {1} } {1} { {1} } En mengdes kardinalitet. (eng: cardinality) En mengdes kardinalitet (eller størrelse) er antallet forskjellige elementer i mengden. Kardinaliteten til A betegnes med A. Eksempler: A = {a, b, c, d } A = 4 B = {1, 2, 3, 4, 5, 6} B = 6 C = {1, 2, 2, 3, 3, 3} C = 3 D = {2, 4, 6, 8,., 98, 100} D = 50 E = Ø Ø = 0 F = {a, {a}, {a,b}} F = 3 NB! b F G = mengden av bokstaver i alfabetet G = 29 9
10 Potensmengder: La A være en mengde. Potensmengden til A betegnes med P(A)og er den mengden som har alle delmengder av A som elementer. Eksempler: A = { a, b }, P(A) = {Ø, {a}, {b}, {a, b}} P(A) = 2 A = 2 2 = 4 B = {1, 2, 3} P(B) = {Ø, {1}, {2},{3}, {1,2}, {1,3}, {2,3}, {1,2,3}} P(B) = 2 B = 2 3 = 8 Formel: P(A) = 2 A Kartesisk produkt: (eng. Cartesian product) La A og B være mengder. Det kartesiske produktet av A og B betegnes med A x B (leses som A kryss B) og er definert ved mengden av alle par (a, b) der førstekoordinaten tilhører A og andrekoordinaten tilhører B: A x B = {(a,b) a A og b B} Vi har at A x B = A B Eksempel: La A = {a, b} og B = {1, 2, 3} A x B = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)} Vi kan tegne A x B I et koordinatsystem: 10
11 De seks kryssene utgjør mengden A x B. 11
Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.
Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller
DetaljerVi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.
Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller
DetaljerTMA 4140 Diskret Matematikk, 3. forelesning
TMA 4140 Diskret Matematikk, 3. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 5, 2011 Haaken Annfelt Moe (NTNU) TMA
DetaljerINF1800 Forelesning 2
INF1800 Forelesning 2 Mengdelære Roger Antonsen - 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste av det vi gjør her kan leses uavhengig av boken. Følgende avsnitt i boken
DetaljerMengdelære INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE. Læreboken. Mengder. Definisjon (Mengde) Roger Antonsen
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Mengdelære Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Læreboken Mengder Definisjon
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste
DetaljerEkvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p
Ekvivalente utsagn Definisjoner: Et sammensatt utsagn som ALLTID er SANT kalles for en TAUTOLOGI. Et sammensatt utsagn som ALLTID er USANT kalles for en SELVMOTIGELSE eller en KONTRADIKSJON (eng. contradiction).
DetaljerRepetisjonsforelesning - INF1080
Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en
DetaljerEmne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall.
Emne 12 Mengdelære En mengde er en samling elementer. Mengden er veldefinert hvis vi entydig kan avgjøre om et vilkårlig element tilhører mengden eller ikke. Mengder på listeform. Endelige mengder:, Uendelige
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55) Repetisjon
DetaljerRepetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Repetisjon Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55)
DetaljerDen første implikasjonen er bevist i oppgave 1.30c. Den andre vises kontrapositivt slik:
1. Noen bevismetoder OPPGAVE 1.0 a) x og y er begge partall x= 2 k og y = 2 l og k og l er begge hele tall x y = 2k 2l = 22 kl = 2 s Når både k og l er hele tall, må også s = 2 kl være et helt tall. Derfor
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk
DetaljerKapittel 5: Mengdelære
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2010 (Sist oppdatert: 2010-02-17 12:41) MAT1030 Diskret Matematikk
DetaljerSlides til 1.6 og 1.7. Andreas Leopold Knutsen
Slides til 1.6 og 1.7 Andreas Leopold Knutsen January 17, 2010 Begreper Matematiske resultater/utsagn som er sanne kalles gjerne: Teorem = viktig utsagn Proposisjon/Sats/Setning = litt mindre viktig utsagn
DetaljerKarakteriseringen av like mengder. Mengder definert ved en egenskap.
Notat 2 for MAT1140 2 Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor
DetaljerDagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.
INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1
DetaljerLøsningsforslag oblig. innlevering 1
Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,
DetaljerTMA 4140 Diskret Matematikk, 4. forelesning
TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA
DetaljerMAT1030 Forelesning 10
MAT1030 Forelesning 10 Mengdelære Roger Antonsen - 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære Oversikt Vi har nå innført de Boolske operasjonene, union snitt komplement
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret
DetaljerKapittel 5: Mengdelære
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) MAT1030 Diskret
DetaljerKalles p for premissen og q for konklusjonen. Utsagnet kan uttrykkes på mange forskjellige måter:
Logisk implikasjon (eng: conditional statement) La p og q være to utsagn. Utsagnet leses som «p impliserer q». Utsagnet er usant hvis p er sant og q er usant, og er sant ellers. Huskeregel: «SUSS» Operatoren
DetaljerTo mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.
Forelesning 0: Mengdelære, Induksjon Martin Giese - 23. januar 2008 1 Mengdelære 1.1 Mengder Mengder Definisjon 1.1. En mengde er en endelig eller uendelig samling objekter der innbyrdes rekkefølge og
DetaljerMatematikk for IT, høsten 2015
Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,
DetaljerHint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.
Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)
DetaljerSammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f
Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).
DetaljerEt utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand.
Utsagnslogikk. Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand. Eksempler: Avgjør om følgende setninger er et utsagn, og i så fall;
DetaljerEksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:
Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles
Detaljera) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.
Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave
DetaljerForelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted
Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen - 22. januar 2007 1 Praktisk informasjon 1.1 Forelesere og tid/sted Foreleser: Christian Mahesh Hansen (chrisha@ifi.uio.no) Kontor 2403,
DetaljerEksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:
Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles
DetaljerEt utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand.
Utsagnslogikk. Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand. Eksempler: Avgjør om følgende setninger er et utsagn, og i så fall;
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til
DetaljerLøsningsforslag til oblig 1 i DM 2018
Løsningsforslag til oblig 1 i DM 2018 Oppgave 2 p: «Det regner» q: «Det blåser» a) ikke p og ikke q blir: p q = ( p q) b) q hvis ikke p blir det samme som hvis ikke p så q: p q c) p bare hvis ikke q blir:
DetaljerDagens plan. INF3170 Logikk
INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3
DetaljerINF3170 Forelesning 1
INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................
DetaljerVi startet forelesningen med litt repetisjon fra forrige uke: Det omvendte, kontrapositive og inverse utsagnet. La p og q være to utsagn, og p -> q
Vi startet forelesningen med litt repetisjon fra forrige uke: Det omvendte, kontrapositive og inverse utsagnet. La p og q være to utsagn, og p -> q Begrepene «tilstrekkelig», «nødvendig» og «bare hvis».
DetaljerLitt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel
INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02
DetaljerINF3170 Forelesning 2
INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................
DetaljerLO118D Forelesning 3 (DM)
LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel 5 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 21. februar 2008 Oppgave 5.1 Skriv følgende mengder på listeform. (a) Mengden
DetaljerOppgaver med et odde nummer har fasit bakerst i læreboken. Her er løsningsforslag med mellomregninger for de gitte øvingsoppgavene.
Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Oppgaver med et odde nummer har fasit bakerst i
DetaljerLøsningsforlag til eksamen i Diskret matematikk. 29. november 2017
Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller
DetaljerHva man må kunne i kapittel 2 - Algebra
Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.
DetaljerMAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008
MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste
DetaljerMengdelære. Kapittel Hva er en mengde?
Kapittel 1 Mengdelære 1.1 Hva er en mengde? Mengdebegrepet gjennomsyrer mye av matematikken i dag, både i skolematematikken og høyere opp i systemet. En mengde (engelsk: Set, tysk:menge) er en samling
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall
DetaljerKapittel 5: Mengdelære
MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret
DetaljerMatematikk for IT, høsten 2017
Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)
DetaljerTMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA44 Diskret Matematikk Høst 26 Seksjon 3. Husk at w = λ, den tomme strengen, for enhver streng w. 4 a) Følgende utledning/derivasjon
DetaljerAksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.
Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.
DetaljerLøsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016
Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016 Oppgave 1 a) b) r = p q p q s = p q q p q p t = p q p q c) Vi ser av sannehetsverditabellen at uttrykkene (p q) r og p (q r)
DetaljerNoen løsningsforslag/fasitsvar
Kapittel 8 Noen løsningsforslag/fasitsvar Etter ønske fra kursdeltagerne suppleres heftet med fasit for noen av oppgavene. Der det er aktuelt, gir vi også mer utfyllende forslag til hvordan oppgaven kan
DetaljerFagdag 4 - R
Innhold: Gjennomgå Algebraprøve Begreper i sannsynlighetsregning Bevis Fagdag 4 - R1-27.11.08 Vi arbeider og samarbeider i grupper som vanlig. I Sannsynlighetsregning Begreper: Diskuter og prøv å forstå
DetaljerR for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
DetaljerMAT1030 Plenumsregning 5
MAT1030 Plenumsregning 5 Ukeoppgaver Mathias Barra - 13. februar 2009 (Sist oppdatert: 2009-03-06 18:29) Oppgave 4.18 Uttrykk følgende påstander i predikatlogikk, og finn deres sannhetsverdier. (a) Det
DetaljerMAT1030 Diskret matematikk
MAT30 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel Roger Antonsen Matematisk Institutt, Universitetet i Oslo. februar 008 Oppgave. Skriv følgende mengder på listeform. (a) Mengden av alle
DetaljerForelesning 6 torsdag den 4. september
Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne
DetaljerForelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5
Forelesning 9 Mengdelære Dag Normann - 11. februar 2008 OVER TIL KAPITTEL 5 De fleste som tar MAT1030 har vært borti mengder i en eller annen form tidligere. I statistikk og sannsynlighetsteori på VGS
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den
DetaljerPrøveunderveiseksamen i MAT-INF 1100, H-03
Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene
DetaljerLøsningsforslag for 1. obligatoriske oppgave høsten 2014
Løsningsforslag for 1 obligatoriske oppgave høsten 2014 Oppgave 1a) 1) Bruk av sannhetsverditabell: p q p p ( p ) p (( p ) S S U S U S S U U S U S U S S S S S U U S U U S Vi ser at (( p ) er en tautologi,
DetaljerDagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen
Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.
DetaljerOppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn.
Plenumsregning 5 Ukeoppgaver fra kapittel 4 Roger Antonsen - 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden,
DetaljerForelesning 7 mandag den 8. september
Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi
DetaljerForelesning 14 torsdag den 2. oktober
Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 5: Ukeoppgaver fra kapittel 4 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse
DetaljerDenne følgen har N+1 ledd. En generell uendelig følge kan settes opp slik:
Følger En følge (eng: sequence) er en oppramsing av tall. Hvert tall i oppramsingen har et nummer eller en posisjon som er bestemt av hvor i følgen tallet står. Det første tallet har vanligvis posisjonen
DetaljerSekventkalkyle for utsagnslogikk
Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet
DetaljerLøsningsforslag til øving 12
Høgskolen i Gjøvik vd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving OPPGVE Husk at N {alle naturlige tall} { 0,,,,... }, Z {alle heltall} {...,,,0,,,,... }, R {alle reelle tall} og
DetaljerNotater fra forelesning i MAT1100 mandag
Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a
DetaljerPrøveeksamen 2016 (med løsningsforslag)
Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. desember 2015 Tid for eksamen: 08.15 12:15 Oppgave 1 Grunnleggende mengdelære
DetaljerForelesning 10. Mengdelære. Dag Normann februar Venn-diagrammer. Venn-diagrammer. Venn-diagrammer. Venn-diagrammer
Forelesning 10 Mengdelære Dag Normann - 13. februar 2008 Venn-diagrammer Mandag innførte vi de Booleske operasjonene Union Snitt Komplement A Mengdedifferens A B samt de faste mengdene og E. Venn-diagrammer
DetaljerRelasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A.
Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis ( a, a) R for alle a A. R er symmetrisk hvis ( a, b) R, så er (
DetaljerVenn-diagrammer. MAT1030 Diskret matematikk. Venn-diagrammer. Venn-diagrammer. Eksempel. Forelesning 10: Mengdelære
Venn-diagrammer MAT1030 Diskret matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 13. februar 2008 Mandag innførte vi de Booleske operasjonene Union Snitt Komplement
DetaljerMAT1140: Kort sammendrag av grafteorien
MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)
DetaljerForelesning januar 2006 Induktive denisjoner og utsagnslogikk
Forelesning 2-30. januar 2006 Induktive denisjoner og utsagnslogikk 1 Praktisk informasjon INF5170 { Logikkseminar Tirsdager 14:15-16:00 pa Buerommet (3. etg, I). Flg med pa forskning og aktuelle temaer
DetaljerForelesning 19 torsdag den 23. oktober
Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til
DetaljerMAT1030 Forelesning 19
MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler
DetaljerMatematikk 15 V-2008
Matematikk 5 V-008 Løsningsforslag til øving 9 OPPGVE Husk at N = {alle naturlige tall} = {0,,,,... }, Z = {alle heltall} = {...,,, 0,,,,... }, R = {alle reelle tall} og = {alle komplekse tall} = { z :
DetaljerR for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
DetaljerDiskret matematikk tirsdag 15. september 2015
Avsnitt 2.2 fra læreboka Mengdeoperasjoner Tema for forelesningen: Snittet av to mengder Disjunkte mengder Union av to mengder Eksklusiv union (symmetrisk differens) av to mengder Differensen mellom to
DetaljerTillegg til kapittel 11: Mer om relasjoner
MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker
DetaljerGenerell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.
MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler
DetaljerForelesning 1 mandag den 18. august
Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige
DetaljerUnderveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark
Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer
DetaljerLøsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03
Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De
DetaljerMA1301 Tallteori Høsten 2014 Løsninger til Eksamen
MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................
DetaljerChapter 1 - Discrete Mathematics and Its Applications
Chapter 1 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Avsnitt 1.2 Oppgave 3 På norsk blir dette: Du kan velges til president i USA bare hvis du er minst 35 år, er født
DetaljerTMA4140 Diskret Matematikk Høst 2018
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c
DetaljerForelesning 2 torsdag den 21. august
Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 8. oktober 2014. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
Detaljer