Høst 97 Utsatt eksamen
|
|
|
- Klara Karlsen
- 9 år siden
- Visninger:
Transkript
1 Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve: v( t) At 4 Bt hvor A. 4 B. a) Beregn partikkelen poijon etter. ekuner.. Figur neenfor vier et hjul e ek eiker. ana (felgen) har aen = 6. kg og iaeteren =. Eikene er jantykke tåltenger, hver e ae e =.8 kg. a) Vi at treghetoentet for hjulet o aken (i entru) er: I ( e ) ( ) b) Vi at treghetoentet o en ake i rana, parallell e entruaken er: I ( 4e ) ( ) Hjulet er i ro, en ette i rotajon o entruaken av et kontant kraftoent. Vinkelfarten blir ra/ etter tien 4.. c) Hvor tor er farten til et punkt på rana a (etter 4.)? ) Hvor tort er kraftoentet. e) Hvor langt ville hjulet bevege eg ero et rullet i ie 4.? f) Kraftoentet brukt i c), ) og e) fjerne. Hjulet ruller ne en bakke. Bakken anner vinkelen 6 e horiontalen. Hva er en tranlatorike farten til hjulet etter 4., når et tarter fra ro? Hvor langt har hjulet rullet neover bakken i løpet av ie 4.?
2 3. Figur neenfor vier neert en jevntykk og hoogen ylinerforet kive e ae M = 3. kg og raiu =. Skiven roterer frikjonfritt o in vertikale ylinerake e kontant vinkelhatighet 4. ra/. Ovenfor kiven er et tegnet en jevntykk og hoogen ring e raiu r = / o ikke roterer. a) Vi at treghetoentet til et ylinerforet legee er gitt ve uttrykket I M b) Finn kiven kinetike energi og angulære oent (pinn). ingen o har aen =. kg lippe rett ne på kiven lik at e to legeene blir konentrike. På grunn av frikjonkrefter vil ringen etter en ti få ae vinkelhatighet o kiven. c) Hva blir vinkelhatigheten til fellelegeet? Vi antar nå at e to legeene er fetet til hveranre. Fellelegeet plaere på et horiontalt unerlag o vit på figur 3 neenfor. En nor o vi regner o aelø, vikle o ringen. Vi rar i nora e en kraft K. En annen kraft F angriper i entru. Begge kreftene virker horiontalt. De to kreftene avpae lik at ylineren roterer e kontant vinkelhatighet. Legeet ae-enter blir liggene i ro. Frikjonfaktoren ot unerlaget er u =.. ) Finn frikjonkraften og angi en retning. e) Finn kreftene K og F. 4. Hvilket trekk å vi ha i en treng e lenge. og ae.6 kg for at tranverelle bølger e frekven 3. Hz kal ha bølgelenge.6 på trengen?
3 Løning:. v( t) At 3 Bt hvor A.4 4 B. v t vt ( t) t tt vt (.).4 (.) t 4 ( At Bt) t At Bt. (.).6. a) Hjulet betår av rana at 6 eiker. Treghetoent til en ring (her rana) er lik aen av ringen ultipliert e kvaratet av ringen raiu (ae uttrykk o for en punktpartikkel ien all ae befinner eg i ae avtan fra aken. I e( ) ( ) 6 ( e)( ) 346. kg 3 b) Benytter parallellaketeoreet hvor total-aen er lik aen til rana plu aen til 6 eiker og hvor akeforflytningen er lik hjulet raiu /. I I ( 6 e)( ) ( 4 e)( ) 9. 4kg c) Hatigheten til et punkt på rana er lik raiu ultipliert e vinkelhatigheten. vr r c) Benytter kraftoentloven o aeenteret. Vinkelakelerajonen betee fra rotajonligningen hvor vinkelhatigheten er lik vinkelakerajonen ultipliert e tien (vinkelakelerajonen er kontant og tartvinkelhatigheten er lik null). I I ( e )( ). 6N t t ) Vi beteer ført rotajonvinkelen i løpet av tien t når hjulet roterer o itt aeenter. Tilbakelagt buelenge for et punkt på rana er lik trekningen o hjulet ruller når hjulet ruller uten å gli. t t t t ra r 3 3
4 e) Dekoponerer tyngen i en koponent lang kråplanet og en koponent noralt på kråplanet. Velger oentake i hjulet kontaktpunkt e kråplanet. Kun tyngen parallellkoponent gir kraftoent o ette punktet ien e anre kreftene (tyngen noralkoponent og kraften fra kråplanet på hjulet får ingen ar). Beteer akeelerajonen til hjulet aeenter og benytter eretter veilovene ve kontant akelerajon. rg in 6 a v rg in 6 I 9. I r. 6 at. 6 at. 4
5 3. a) Benytter efinijonen av treghetoent for et legee e kontinuerlig aeforeling. Innfører en hjelpevariabel (aetetthet ro) lik aen pr voluenhet. Et infiniteialt eleent e ae velge o et ylinerkall e raiu r. Dette ylinerkallet utrullet vil være en tynn rektangulær kive e lenge *PI*r (ylinerkallet okret), høye L (ylineren høye) og tykkele r. Maen er lik aetettheten (ro) ultipliert e voluet av ette ylinerkallet. Maetettheten (ro) fjerne igjen ve til lutt å ette enne lik aen av hele ylineren elt på voluet av hele ylineren. I r I L r rlr 3 r r L 4 M L L 4 M b) For en ren rotajon o en fat ake har vi: E k I 3. J kg L I. c) Velger yte lik kive plu ring. Det virker ingen ytre kraftoenter o felle rotajonake på ette yteet. I følge pinnaten er erfor angulært oent for ette yteet bevart, v angulært oent lik før og etter at ringen er plaert på kiven. For en ren rotajon er angulært oent lik treghetoent ultipliert e vinkelhatighet I I I I ( I I ) 3.69 ) Sien yteet (kive plu ring) roterer atiig o aeenteret er i ro, å å kiven pinne (gli) ot unerlaget. Vi kan erfor benytte loven o at frikjonkraften er lik frikjonkoeffiienten ultipliert e noralkraften. Noralkraften er i tørrele like tor o tyngen (M+)g ien aeenteret er i ro og erfor ikke har noen vertikal akelerajon. F ( M ) g 88. N otajonretning e urvier F ot høyre Frikjonkraften retning kan vi betee vha kraftoentloven o aeenteret. Kraftoentet o aeenteret er lik yteet treghetoent o aeenteret ultipliert e yteet vinkelakelerajon (kraftoentloven). Sien vinkelhatigheten kal være kontant, å vinkelakelerajonen være lik null. Derfor å ogå kraftoentet være lik null. Kun kraften K og frikjonkraften lager oent o ae-enteret (F, tyngen og noralkraften går gjenno aeenteret og får erfor ingen ar). Mht aeenteret vil K bira til rotajon i retning e klokka. Frikjonkraften å erfor bira til rotajon i retning ot klokka for at et totale kraftoentet o aeenteret kal bli lik null. Frikjonkraften å erfor ha retning ot høyre.
6 e) Benytter Newton. lov horiontalt o aeenteret. Sien aeenteret er i ro (og erfor ingen akelerajon horiontalt), å uen av kreftene horiontalt være lik null. Viere benytte kraftoent (efinijon) og kraftoentloven o aeenteret. Sien yteet roterer e kontant vinkelhatighet (og erfor ikke har noen vinkelakelerajon), å kraftoentet o aeenteret i følge kraftoentloven være lik null. K F F ( M ) a K F F K rk F I I F K F F K F K x F K F 8.8N 7.N ( M ) F K F 7.N 8.8N.8N Newton. lov horiontalt Kraftoent o aeenteret (ef) Kraftoentlov o aeenteret 4.. F v 6. kg F v ( f ) ( Hz). 4N L. 6
FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNVETETET AGDE Gritad E A E N O G A V E : FAG: FY05 Fyikk ÆE: er Henrik Hogtad lae(r: Dato: 8.05.0 Ekaentid, ra-til: 09.00.00 Ekaenoppgaven betår av ølgende Antall ider: 5 (inkl. oride Antall oppgaver:
Kap 10 Dynamikk av rotasjons-bevegelse
Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene
FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
FAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I GDER Gritad E K S M E N S O G V E : FG: FYS Fyikk/Kjei ÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, ra-til: 9. 4. Ekaenoppgaven betår av ølgende ntall
Fysikkolympiaden Norsk finale 2013
Nork fyikklærerforening Fyikkolympiaen Nork finale. uttakingrune Freag. mar kl. 9. til. Hjelpemiler: Tabell/formelamling, lommeregner og utelt formelark Oppgaveettet betår av 6 oppgaver på ier Lykke til!
FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gritad E K A M E N O G A V E : FAG: FY5 Fyikk ÆRER: er Henrik Hogtad Klaer: Dato: 9.5.9 Ekaentid, ra-til: 9. 4. Ekaenoppgaen betår a ølgende Antall ider: 5 inkl. oride Antall oppgaer:
TFY4106 Eksamen 9 aug Løsningsforslag
TFY416 Ekamen 9 aug 14. Løningforlag Oppgave 1 a) Når m 1 og m er i ro er trekkraften i tauet om holder m 1 lik tyngdekraften: F1 m1 F betemme ut fra at det totale dreiemomentet om aken av trinen er null
FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall
FYS 105 Fysikk Ordinær eksamen vår 2005
FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon
Beregning av massesenter.
Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Beregning av assesenter Definisjoner i ri C Figuren til venstre viser et lite utsnitt av en sk av så partikler, er i er assen til en partikkel
s Den hydrauliske diameter er gitt ved d h = 4 hvor A er rørets tverrsnitt og O er den delen ) 2 d 2
Strøninglære. Reynol tall. I 88 oaget Reynol at et finne to tyer trøning, nelig lainær trøning og turbulent trøning. Oergangen ello ie to tyene kjee e en i kritik atiget. Reynol utiklet et ienjonløt tall,
Løsningsforslag Fysikk 1 (FO300A)
øningforlag Fi (FO00A) vår 00 utatt eaen 9. augut, tier Oppgave (%) Ei ule av etall ed te horiontalt (vannrett) ut fra en atapult. (Kula beveveger eg altå horiontalt i uttningøebliet.) Uttningpuntet O
Eksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)
ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:
Fysikk-OL Norsk finale 2004
Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver
FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består
Hydraulisk system. Tanken har rette vegger. Vannspeilarealet A[m 2 ] er da konstant og uavhengig nivået x[m]. Generell balanseligning:
Hyraulik yte. / / Tanken har rette eer. Vanneilarealet er a kontant o uaheni niået. Generell balanelinin: kkuulert olu r tienhet i tank Inntrønin Uttrønin t V V t t V t Syte 0: t t t 0 0 Niåenrin: Tranferfunkjon:
FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall
Repetisjonsoppgaver kapittel 4 løsningsforslag
epetisjonsoppgaver kapittel 4 løsningsforslag nergi Oppgave a) Arbeidet gjort av kraften har forelen: s cos Her er s strekningen kraften virker over, og vinkelen ello kraftverktoren og strekningen. b)
Betinget bevegelse og friksjon
Betinget beegele og rikjon 16.0.017 ingen gruble-gruppe inntil iere FYS-MEK 1110 16.0.017 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor:
Betinget bevegelse og friksjon
Betinget beegele og rikjon 18.0.015 FYS-MEK 1110 18.0.015 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor: ( t) art lang eien: (
FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 6 inkl.
FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.
FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall
Løsningsforslag for øvningsoppgaver: Kapittel 1
Løningforlag for øvningoppgaver: Kapittel 1 Jon Walter Lundberg 07.01.2015 1.02 Symbol Navn Verdi v yokto 10 24 z zepto 10 21 a atto 10 18 f femto 10 15 p piko 10 12 n nano 10 9 µ mikro 10 6 m mili 10
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for unervisning FYSIKK-KONKURRANSE 00 00 Anre rune: 7/ 00 Skriv øverst: Navn, føselsato, hjeearesse og eventuell e-postaresse, skolens navn og
FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:
1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?
FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt
FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus
UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier
Løsningsforslag til eksamen i FYS1000, 19/8 2016
Løsningsforslag til eksamen i FY1000, 19/8 016 Oppgave 1 a) C D A B b) I inusert A + B I ien strømmen går mot høyre vil magnetfeltet peke ut av planet inne i strømsløyfa. Hvis vi velger positiv retning
FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
Stivt legemers dynamikk
Stvt legeers dnakk 7.04.05 Resultater fra veseksaen på seestersden. Eneste krav for å ta slutteksaen: 7 av 0 oblger. Gruppete dag: Gruppe 5 (Ø394) slås saen ed gruppe 7 på Ø443 FYS-MEK 0 7.04.05 kraftoent:
TALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette
Stivt legemers dynamikk
Stvt legeers dynakk 9.4. FYS-EK 9.4. Repetsjon Newtons andre lov for flerpartkkelsysteer: F ext hvor: r R d R (assesenter) dt separasjon: bevegelse tl assesenter bevegelse relatv tl assesenter K V N v
Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1.
Hø 95 Te-ekaen. E legee ed ae =.4 kg pårke a en kraf F g ed: F = - F = k = 5.N = 4. N/ k =.N/ llegg rker ngdekrafen nega -renng. a Bee reulankrafekoren. b Ved den = er legee ro orgo. Fnn pojon og haghe
Arbeid og kinetisk energi
Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :
Betinget bevegelse og friksjon
Betinget beegele og rikjon 1.0.014 nete uke: ingen orelening (17. og 19.) ingen ata erkte (19. og 1.) gruppetimer om anlig Manag, 17.. innleering oblig 3 Manag, 4.. ingen innleering jane or repetijon FYS-MEK
Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -
;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00
Høst 95 Ordinær eksamen
Høt 95 Odinæ eken. En ptikkel ed e =.5 kg e i o i oigo ed tiden t =.. Ptikkelen utette (f tiden t =. ) fo en kft F ho koponentene F og F e gitt ed: F = t F = t Kontntene og e gitt ed: = 5. N/ =. N/ ngdekften
Løsningsforslag Fysikk 2 V2016
Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04
FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold
UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Magehe Wold Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: llae hjelpedle
FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland
UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS8 Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall
Høgskolen i Agder Avdeling for EKSAMEN
Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,
FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:
n_angle_min.htm
Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til
ESERO AKTIVITET BYGGING AV TRYKKLUFTRAKETT. Elevaktivitet. 6 år og oppover. Utviklet av
ESERO AKTIVITET 6 år og oppover Utviklet av Elevaktivitet Overikt Tid Læremål Nødvendige materialer timer Gi deltagerne mulighet til å bruke teori fra et foredrag i raketteknikk og ette det i praki. Teip
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark
Fysikk 2 Eksamen våren Løsningsforslag
Fyikk - Løningforlag Ogae 1 a) B Partikkel X må ære oiti for at det elektrike feltet kal eke radielt bort fra denne artikkelen. Partikkel Y må ære negati for at det elektrike feltet kal eke radielt mot
Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.
Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen
FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS8 Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall oppgae:
Kortfattet løsningsforslag for FYS juni 2007
Kortfattet løsningsforslag for FYS213 6. juni 27 Oppgave 1 E a) Magnetfeltamplituen er B = = E ε µ c 1 1 1 1 Intensiteten er I = ε ce = ε E = E 2 2 εµ 2 2 2 2 µ b) Bølgefunksjonen for E-feltet er: E( zt,
Våren Ordinær eksamen
Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a
Kap 01 Enheter, fysiske størrelser og vektorer
Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)
FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
6. Rotasjon. Løsning på blandede oppgaver.
6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde
FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 5 nkl. fode nall oppgae: nall edlegg: llae hjelpedle e: Kalkulao
FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERITETET I AGDER Giad E K A M E N O P P G A V E : FAG: FY Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 5 inkl. foide Anall oppgae: 4
Løsningsforslag til øving 14
Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov
E K S A M E N. Emnekode: MAS220. Emnenavn: Servoteknikk. Dato: 15. desember Varighet: Antall sider inkl.
E K S A M E N Enekode: MAS0 Enenavn: Servoteknikk Dato: 5. deeber 06 Varighet: 09.00-4.00 Antall ider inkl. foride: 4 Tillatte hjelpeidler: To kalkulator Merknader: KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET
EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl
Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen
FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:
FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERITETET I AGDER Griad E K A M E N O G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : er Henrik Hogad Grehe ehrann Klaer: Dao:.5.4 Ekaenid, ra-il: 9. 4. Ekaenoppgaen beår a ølgende Anall ider: 6 inkl. oride
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
LM6M- Matematikk -Ekamen 9.mai HØGSKOLEN I SØR-TRØNELG veling for teknologi Kaniatnr: Ekamenato: Varighet/ekamenti: Emnekoe: Manag 9.mai 9-4 LM6M Emnenavn: Matematikk Klae(r): EL Stuiepoeng: Faglærer(e):
Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008
Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene
Repetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet
FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : er Henrik Hogad Grehe Lehrann Klaer: Dao:.5.4 Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider: 6
Obligatorisk oppgave i fysikk våren 2002
Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger
Statikk. Kraftmoment. F = 0, forblir ikke stolsetet i ro. Det begynner å rotere. Stive legemer
Statikk Etter Newtons. lov vil et legeme som er i ro, forbli i ro hvis summen av kreftene på legemet er lik null. Det er i hvert fall tilfellet for et punktformet legeme. Men for et legeme med utstrekning
FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel.
Løsningsforslag FYS / FY / FYS Elektromagnetisme, torsag 8. esember Ve sensurering vil alle elspørsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenummer), men vi forbeholer oss retten til
løsningsforslag - skrueforbindelser
lønngforlag - krueforbneler OGVE guren er e kruetnge o tltrekke e kftnøkkel. Tltrekkngoentet er N, og u kan regne at % a ette oentet tapt på grunn a frkon ello kruen og arbetykket. rkonkoeffenten gengen
Øving 2: Krefter. Newtons lover. Dreiemoment.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst
Kap 5 Anvendelser av Newtons lover
Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket
Løsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
1b) Schwarzschil-metrikken er iagonal, og vi har at g tt = 1, c = r, c ; g rr =, r r r r, =,1, r, ; g =,r ; g '' =,r sin : (9) At raielle baner eksist
Eksamen i klassisk feltteori, fag 74 50, 8. esember 1998 Lsninger 1a) Vi antar at x +, x x =0; (1) og at c = g x x. Sa gjr vi en koorinattransformasjon x 7 ex,ogskal vise at ex + e, ex ex =0; () er c =
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],
Kap Newtons lover. Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap4+5.ppt Sir Isaac Newton ( ) Før hans tid:
TFY4145/FY1001 Mekanik fyikk Størreler og enheter (Kap 1) Kinematikk i en, to og tre dimenjoner (Kap. +3) Poijon, hatighet, akelerajon. Sirkelbevegele. Dynamikk (krefter): Newton lover (Kap. 4) Anvendele
EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
Arbeid og kinetisk energi
Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/
FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Jan Burgold Hans Grelland
UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Jan Bugold Han elland Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: 5 nall edlegg: llae
Vår 2004 Ordinær eksamen
år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)
EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksaen i: FYS-1001 Mekanikk Dato: 1.12.2016 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpeidler: Fire A4-sider (to dobbeltsidige ark)
*6.6. Kraftmomentsetningen. Kan betraktes som "Newtons 2. lov for rotasjon".
6 otasjon Side 6-6 otasjon I dette kapitlet skal vi se på rotasjon av stive legemer Vi skal først definere noen grunnleggende størrelser, der du først og fremst må bli fortrolig med treghetsmoment Deretter
Løsningsforslag til hjemmeøving nr.6 Fag SO122E Kraftelektronikk
Avd. for teknologi Program for elektro- og datateknikk Løningforlag til hjemmeøving nr.6 Fag SOE Kraftelektronikk (D:\ARFI\D\OVIG\KRELIKK\Ov6\Kraftelektronikk øv6 løning.doc) Oppgave a) Skiér blokkkjemaene
r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
