Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr:
|
|
- Jonas Rasmussen
- 8 år siden
- Visninger:
Transkript
1 Tema: Juleverksted Aktiviteter: 2 typer julekurv Stjerne Tidsbruk: 4 timer Utstyr: Glanspapir Saks Linjal Passer Blyant Anskaffelse av utstyr: Beskrivelse: 1) Julekurver Lag to eksempler på julekurver på forhånd. I) En kurv som består av to sirkler som er brettet og limt sammen til et hjerte. II) En kjeglekurv som er laget av en sirkelsektor. Klipp ut en sektor og lim sammen kantene. Vis frem kurvene. Hvordan er disse to kurvene laget? La elevene få forklare.
2 Aktuelle ord: - Sirkel - Sirkelsentrum - Sektor - Diameter - Radius La elevene lage liknende julekurver. Ikke legg for mange føringer, men la dem få eksperimentere og lage sine egne kurver. Gå rundt og ser hva de lager. Se hvordan de prøver seg frem, og veiled de som måtte trenge det. Vis fram produktene for resten av klassen, og elevene forklarer hvordan de har laget kurven sin. Matematikk i fokus: Geometriske former, konstruksjon. Slik lager du julekurv I) A) Tegn to sirkler og klipp dem ut. Tegn rundt noe som er sirkelforma eller bruk en passer. B) Lag en brett slik at du halverer sirklene. C) Legg de to halvsirklene inni hverandres som vist på bildet, og påfør lim på den ene flata.
3 D) Den ferdige kurven ser slik ut. Slik lager du julekurv II) a) Tegn og klipp ut en sirkel. b) Klipp ut en sirkelsektor. c) Rull sammen sirkelsektoren, og lim sammen kantene. d) Sett på hank på kurven.
4 2) Flette julekurv Vis frem et bilde av en fletta julekurv. Hva slag biter består denne av? Ta tak i det elevene sier. Selve mønsteret er jo satt sammen av små kvadrat. Klubblederen beskriver hvordan kurven skal lages. (Mal på kopieringsoriginal) Det er viktig å presisere at glanspapiret skal legges dobbelt. Lag en arbeidstegning med riktige mål på tavla. Elevene skal nå lage hver sin fletta julekurv. Hvis noen synes det er litt vanskelig å følge arbeidstegninga må de få litt hjelp. Etter hvert som de blir ferdige kan de lage nye kurver i andre størrelser, i andre farger og med ennå flere kvadrater i mønsteret. A) Klipp ut en papirstrimle på 9 cm x 30 cm. B) Brett strimla dobbelt slik at du halver lengden på den. Målene blir 9 cm x 15 cm. C) Bredden på papiret skal nå deles inn i 4 like deler. Hver del blir da 2,25 cm. Tegn 3 linjestykker som starter der papiret er bretta og går 9,5 cm opp mot halvsirkelen på toppen. Klipp langs disse 3 linjestykkene. NB! Det er viktig å snu arket riktig vei her, slik at halvsirklene er der arket er åpent. D) Tegn 3 linjestykker på 9, 5 cm. (Papirstrimla er 9 cm brei, og vi skal lage kvadrater. Det betyr at vi skulle laget linjestykker på 9,5 cm også for å få et stort kvadrat. Likevel lager vi linjestykker på 9,5 cm og klipper langs dem. Det er fordi vi trenger litt mer plass for å få til å flette strimlene.) Matematikk i fokus: Geometriske former, arbeidstegning og målestokk.
5 3) Stjerne Avslutt med å brette ei stjerne. Elevene må brette tagger til stjerna. Taggene limes sammen slik at det blir ei 8- tagga stjerne. A) Halver et A4-ark på langs. Linja er bare ei hjelpelinje. B) Brett ut igjen. Legg arket slik at kortsida peker inn mot magen din. Brett alle 4 hjørna inn mot halveringslinja. Flikene vi når har brettet inn danner 4 rettvinkla trekanter.
6 C) Hypotenus i de to trekantene som er lengst unna skal nå brettes inn mot hjelpelinja på midten. Dette er en av taggene på stjerna. Elevene må brette 8 slike tagger. D) Disse taggene limes sammen slik at de blir ei stjerne med åtte tagger. Noen vil kanskje brette 16 tagger, slik at stjerna blir like fin på begge sider. Fest et fiskesnøre i stjerna sånn at den kan henges opp. Stjerna kan limes sammen på to ulike måter. I) Taggene legges slik at de halvveis overlapper hverandre:
7 II) Taggene limes 4 i bunnen og 4 oppå: Matematikk i fokus: Geometriske former, diagonal, hjørner, halvering, sidekant, hypotenus, rettvinkla trekanter osv. 4) Oppsummering Hva har vi gjort i dag? Pass på så alle aktivitetene blir nevnt. Gi noen hint hvis elevene glemmer noen aktiviteter.
Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
DetaljerTema: Sannsynlighet og origami
Tema: Sannsynlighet og origami Aktiviteter: Møbiusbånd Håndtrykk Hotell uendelig Papirbretting Tidsbruk: 2 timer Utstyr: Papirstrimler Saks Papir og blyant Origamipapir, eller farga A4-ark Anskaffelse
DetaljerLærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.
Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm
DetaljerAktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning
Tema: Juleverksted Aktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning Tidsbruk: 4 timer Utstyr: Origamipapir A4- ark Speilspill,
DetaljerLGU51005 A, Matematikk
Skriftlig eksamen i LGU51005 A, Matematikk 1 5-10 15 studiepoeng ORDINÆR EKSAMEN 10. desember 2013. BOKMÅL Sensur faller innen torsdag 9. januar 2014. Resultatet blir tilgjengelig på studentweb første
DetaljerLag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
Detaljer5.4 Konstruksjon med passer og linjal
5.4 Konstruksjon med passer og linjal OPPGAVE 5.40 Analyse: Vi skal konstruere trekanten til høyre. Vi starter da med å konstruere en rettvinklet trekant med kateter lik 7 cm og 3 cm. Forlenger så hypotenusen
DetaljerOVERFLATE FRA A TIL Å
OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c
DetaljerAreal. Arbeidshefte for lærer
Arbeidshefte for lærer Areal Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene gjengir formelen for hvordan man finner arealet av et rektangel i stedet for
DetaljerFem geometriproblem frå arkitekturen
Dag Torvanger Fem geometriproblem frå arkitekturen Når vi leiter etter geometriske former rundt oss, er det oftast i arkitekturen vi finn dei. Prisme og sylinder er vel dei romfigurane som går igjen i
DetaljerGeometriske morsomheter 8. 10. trinn 90 minutter
Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske
DetaljerØvingshefte. Geometri
Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
DetaljerGeometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets
2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...
DetaljerGeometri. A1A/A1B, vår 2009
Geometri A1A/A1B, vår 2009 27. mars 2009 1. Grunnleggende begreper 2. Areal 3. Kongruens og formlikhet 4. Periferivinkler og Thales setning 5. Pytagoras setning 6. Romfigurer, overflate og volum 7. Undervisning
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
DetaljerØvingshefte. Geometri
Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)
DetaljerHvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren:
Oppgave ABCD og EFGH er like store kvadrater. AB EF og AD EH. Det fargelagte området har areal. Hvor stort er arealet til kvadratet ABCD? A B C ½ D 3/ E Det kommer an på hvordan man plasserer kvadratene
DetaljerLærerveiledning uke 2-7: Geometri. volum, overflate og massetetthet Kompetansemål Geometri Måling Læringsmål Trekantberegning Kart og målestokk
Lærerveiledning uke 2-7: Geometri. volum, overflate og massetetthet Geogebra - Anders film - Nappeinnlevring Kompetansemål Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets
DetaljerLærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?
Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store
DetaljerOPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD
OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD Oppgaver merket med * er vanskeligere enn de andre. OPPGAVE 1 a) Bevis at en firkant har en omskrevet sirkel hvis og bare hvis motstående vinkler er supplementære
DetaljerESERO AKTIVITET HVA ER EN KONSTELLASJON? Lærerveiledning og elevaktivitet. Klassetrinn 7-8
ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 80 min. Å: vite at stjernene i en konstellasjon er veldig langt fra hverandre vite at det du
DetaljerMangekanter og figurtall
Mangekanter og figurtall ra papirbretting til algebra og funksjoner eskrivelse Opplegget starter med bretting av noen regulære mangekanter og en analyse av dem Her er vinkelberegning, kongruente og formlike
DetaljerBedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)
Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere
DetaljerHovedområder og kompetansemål fra kunnskapsløftet:
Lærerveiledning: Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram der elevene får trening i å definere figurer ved hjelp av geometriske
DetaljerÅrsprøve i matematikk for 9. trinn Kannik skole
Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men
DetaljerLærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.
Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider
DetaljerFaktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt
DetaljerBærende konstruksjoner
Christina Jonassen Bærende konstruksjoner et tverrfaglig emne for 3. og 4. trinn. Dette trenger du: trillepinner (bestilles på www.mikroverkstedet.no) A4-ark (gjerne i forskjellige farger) eller avispapir
Detaljer3.4 Geometriske steder
3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere
DetaljerFasit. Grunnbok. Kapittel 4. Bokmål
Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1
DetaljerGrunnleggende geometri
Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det
DetaljerGeometriske morsomheter trinn 90 minutter
Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3
DetaljerMELD DERE PÅ NORGES MORSOMSTE RESIRKULERINGSKONKURRANSE! AKSJONALUMINIUM.NO
MELD DERE PÅ NORGES MORSOMSTE RESIRKULERINGSKONKURRANSE! AKSJONALUMINIUM.NO På kino 21. september VISSTE DU DETTE OM ALUMINIUM? BLI MED PÅ AKSJON ALUMINIUM! Vi inviterer alle klasser i hele Norge til å
DetaljerINNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
DetaljerGeogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:
Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit
DetaljerDesign med brøk algebra og pytagoras
Design med brøk algebra og pytagoras Susanne Stengrundet Matematikksenteret 1 DH matematikk 1PY Forutsetninger for et godt samarbeid med matematikkfaget: positv: Elevene "har hatt alt" negativ: Elevene
DetaljerEksamen REA3022 R1, Høsten 2010
Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x
DetaljerESERO AKTIVITET STORE OG SMÅ PLANETER. Lærerveiledning og elevaktivitet. Klassetrinn 5-6
ESERO AKTIVITET Klassetrinn 5-6 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 50 minutter Å: vite at de åtte planetene har forskjellige størrelser lære navnene på planetene
DetaljerGeometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale
DetaljerKul geometri - volum og overflate av kulen
Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/
DetaljerPunktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.
Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser
DetaljerØvingshefte. Geometri
Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 2 Geometri Seksjon 1 Oppgåve 1.1 Fargelegg a) 4 ruter
DetaljerGeometri. Mål. for opplæringen er at eleven skal kunne
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen
DetaljerMålestokk. Den blir mange ganger forstørret! Lurer på hva målestokken til globusen er... MÅL 11.1 11.4 11.2 11.5 11.3
11 Den blir mange ganger forstørret! Lurer på hva målestokken til globusen er... MÅL I dette kapittelet skal du lære å forstørre og forminske lage enkle kart bruke målestokk til å beregne avstander lage
DetaljerNøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen?
Omkrets For å finne omkretsen til en mangekant, må alle sidelengdene summeres. Omkrets måles i lengdeenheter. Elever forklarer ofte at omkrets er det er å måle hvor langt det er rundt en figur. Måleredskaper
DetaljerH. Aschehoug & Co www.lokus.no Side 1
1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss
DetaljerMatematisk juleverksted
GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del
DetaljerMATEMATIKKVERKSTAD Mona Røsseland. GLASSMALERI (bokmål) Utstyr: Rammer (A3) i farga papp, pappremser, silkepapir, saks og lim
MATEMATIKKVERKSTAD Mona Røsseland GLASSMALERI (bokmål) Utstyr: Rammer (A3) i farga papp, pappremser, silkepapir, saks og lim Slik går du frem: 1. Velg deg en ramme. 2. Du skal nå lage et vakkert bilde
DetaljerJULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
DetaljerKengurukonkurransen 2012
Kengurukonkurransen 2012 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) FASIT Fasit med korte kommentarer Mange matematiske problem kan løses på ulike måter. Følgende forslag gir ingen fullstendig
DetaljerTrekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter.
Trekanter GeoGebra er godt egnet til å tegne trekanter og eksperimentere med dem. Vi skal nå se på hvordan vi kan tegne trekanter når vi kjenner en eller flere sider eller vinkler. Vi skal også se på hvordan
DetaljerDYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:
DetaljerSamme matematikkoppgave på 2./3. trinn og 10. trinn?
Samme matematikkoppgave på 2./3. trinn og 10. trinn? Anne-Gunn Svorkmo 27. april 2015 4-May-15 Sammenhenger i matematikk Valg av oppgaver Fagfokus i oppgaven Oppbygging av elevers forståelse Oppgave 3
DetaljerElever utforsker symmetri
Svein H. Torkildsen Elever utforsker symmetri To pedagogiske utfordringer (Intuisjon og presisjon) Jeg har gjennom år registrert at elever behandler symmetri spesielt speiling med den største selvfølgelighet
DetaljerLøsning del 1 utrinn Vår 13
/5/06 Løsning del utrinn Vår - matematikk.net Løsning del utrinn Vår Contents DEL Ingen hjelpemiddler Oppgave 9 + 576 = 868 95 8 = 56 c) d) 06 : = 0 Oppgave 8 min = timer og 8 minutter. 8hg = 0,8 kg c)
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (0 poeng) a) Deriver funksjonene f = e 1) ( ) ) g( ) = 3 1 b) Vis at = 1 er en løsning av likningen 3 6 + 6= 0 Bruk polynomdivisjon til å finne de andre løsningene. c)
DetaljerGEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE
GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer
DetaljerDel 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler)
Del 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) 2 p Oppgave 1.1 Regn ut. a) 2,88 + 0,12 = c) 4,8 : 1,2 = b) 3,4 2,7 = d) 16
DetaljerGeometri R1. Test, 1 Geometri
Test, 1 Geometri Innhold 1.1 Formlikhet... 1 1.2 Pytagoras setning... 8 1.3 Setningen om periferivinkler og Thales setning... 15 1.4 Geometriske steder... 21 1.5 Skjæringssetninger i trekanter... 25 1.6
DetaljerUndervisningsopplegg i Design og redesign Papirprosjekt. Utsmykning av egen skole
Undervisningsopplegg i Design og redesign Papirprosjekt. Utsmykning av egen skole Utviklet av Polarsirkelen videregående skole Prosessbeskrivelse: Utstyr du trenger til alle oppgavene: Limstift tapetkniv
DetaljerOppgaver i matematikk, 9-åringer
Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DetaljerEn presisering av kompetansemålene
En presisering av kompetansemålene - med vekt på aktiviteter Mål for kompetanse, og innhold? M87: Innholdsplan, eks geometri 5.-7. trinn: Geometriske begreper: Punkt, linjestykke, rett linje, kurve, vinkel
DetaljerKapittel 7. Lengder og areal
Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
DetaljerVeiledning med bilder til NLD9007 Pannebånd & hårbånd
Veiledning med bilder til NLD9007 Pannebånd & hårbånd 1 PANNEBÅND 1. Brett stoffet dobbelt på bredden og legg mønsteret mot stoffbrett. Klipp ut en del til ytterstoff og en til fôr. 2. Legg ytterstoff
DetaljerKapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
DetaljerLAG DIN EGEN POPCORN-MASKIN
1 av 7 sider Oppgave LAG DIN EGEN POPCORN-MASKIN 5. 7. trinn 90 min. ca. 2 undervisningsøkter på 45 min SENTRALE BEGREPER: Faseovergang, kjemi, molekyl, atom, fast stoff, væske, gass ANBEFALT FORHÅNDSKUNNSKAP
Detaljer3Geometri. Mål. Grunnkurset K 3
Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,
Detaljerivar richard larsen/geometri, oppsummert/ Side 1 av 25
Side 1 av 25 INNHOLDSFORTEGNELSE INNHOLDSFORTEGNELSE... 2 DEFINISJON... 4 LÆREPLAN I MATEMATIKK FELLESFAG... 4 NOEN GUNNLEGGENDE GEOMETRISKE BEGREPER... 4 Punkt... 4 Linje... 4 Linjestykke... 4 Stråle...
DetaljerHeldagsprøve i R1-8.mai 2009 DEL 1
Oppgave 1 Heldagsprøve i R1-8.mai 2009 Løsningsskisser DEL 1 I et koordinatsystem med origo O 0,0 har vi gitt punktene A 1,3, B 3,2 og C t,5. 1. Bestem t slik at AB AC. 2. Bestem t slik at AB AC. 3. Bestem
DetaljerSnu rundt. Snu rundt og gjenta stegene 1-6.
1 av 5 Tetraederet Tetraederet har fire trekantede flater og er det minste platonske legemet. Det har 7 symmetriakser. Platon trodde det representerte elementet ild. Mange molekyler har atomene sine ordnet
DetaljerGeoGebraøvelser i geometri
GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...
DetaljerGeometri Vi på vindusrekka
Geometri Vi på vindusrekka Rektangel og kvadrat... 2 Trekant... 3 Sirkel... 6 Omkrets... 7 Omkrets av sirkel... 9 Pi... 11 Areal... 13 Punkt... 18 Linje... 19 Kurve... 20 Vinkel... 21 Normal... 22 Parallelle
Detaljer11 Nye geometriske figurer
11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi
DetaljerLæringsmål: Visualisere deling og sammensetting av 3d former, beskrive egenskaper til 3d former, måle volumet av 3d former.
Matematikkoppgaver og aktiviteter med OktaSpace LÆRERVEILEDNING 12-19 år Utrolige oktaeder modeller Læringsmål: Visualisere deling og sammensetting av 3d former, beskrive egenskaper til 3d former, måle
DetaljerFaktor terminprøve i matematikk for 9. trinn
Faktor terminprøve i matematikk for 9. trinn Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men del
DetaljerGeometri med GeoGebra Del 2
Geometri med GeoGebra Del 2 Å endre linjestil eller farge, og vise navn på objekt Vi kan endre farge og stil på hjelpelinjer for å framheve det objektet vi egentlig skal lage. Ved hjelp av ikonene på stilmenyen
DetaljerLøsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6
Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300
DetaljerJeg elsker å lage julepynt av ting jeg har liggende, og bruker ofte de litt stille dagene i romjulen til slikt kosearbeid.
Jeg elsker å lage julepynt av ting jeg har liggende, og bruker ofte de litt stille dagene i romjulen til slikt kosearbeid. Disse enkle juleuglene jugler- lager du kjapt av en stoffrest eller to. Du syr
DetaljerOppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn
Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U
Detaljer03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS
03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...
DetaljerKapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger
DetaljerBegynneropplæring i matematikk Geometri og måling
Begynneropplæring i matematikk Geometri og måling Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 26-Jan-07 Dagsoversikt Problemløsning som metode i å
DetaljerPapirprosjekt- utsmykning av egen skole BAKGRUNN
Utarbeidet av polarsirkelen videregående skole TITTEL Papirprosjekt Utsmykning av egen skole. BAKGRUNN Valgfagene i ungdomsskolen: Design og redesign. 8.- 10.trinn. MÅLSETTING Se kompetansemål, mål og
DetaljerMenylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.
GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,
DetaljerLeirbålskappe 1. Søgne sjø
Leirbålskappe 1. Søgne sjø Dette trenger du: - Stoff i fargen Marine blå (mørkeblått), denne bør inneholde 80% ull - Tråd til stoff (helst samme farge som stoffet) - Rynkebånd (helst samme farge som stoffet)
DetaljerFasit. Grunnbok. Kapittel 2. Bokmål
Fasit Grunnbok Kapittel 2 Bokmål Kapittel 1 Trekantberegning 2.1 a Likesidet trekant b Rettvinklet trekant c Likebeint trekant d Rettvinklet og likebeint trekant 2.2 a 9,4 cm b 5 cm c 4,5 cm 2.3 2.11 Korteste
DetaljerMatematikk i barnehage. Aktiviteter. Peer Andersen. Bjørn Lauritzen
Matematikk i barnehage Aktiviteter Peer Andersen og Bjørn Lauritzen Matematikk i barnehage Aktiviteter I dette heftet vil vi presentere ulike aktiviteter med et matematisk innhold som kan brukes i barnehagen.
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Deriver funksjonene gitt ved. Polynomet P er gitt ved
DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene gitt ved a) b) f x x x ( ) 3 6 4 g x x x 3 ( ) 5ln( ) c) h( x) x x Oppgave (5 poeng) Polynomet P er gitt ved 3 P( x) x 7x 4x k a) Vis at P er
DetaljerKurs. Kapittel 2. Bokmål
Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer
DetaljerSUPERSPINNER AV ALUMINIUM
1 av 5 sider Oppgave SUPERSPINNER AV ALUMINIUM 3. 4. trinn 90 min. ca. 2 undervisningsøkter på 45 min. Legg merke til at tidsbruken ikke er spesifisert i tabellen. SENTRALE BEGREPER: Sentrifugalkraft,
DetaljerGeoGebra på mellomtrinnet
GeoGebra på mellomtrinnet innføring + UTFORSKING + problemløsing Mattelyst Vågå, 16. sept. 2015 Anne-Gunn Svorkmo og Susanne Stengrundet I LK06 for matematikk fellesfag står det følgende om digitale ferdigheter:
DetaljerLAG DIN EGEN POPCORN-MASKIN
1 av 7 sider Oppgave LAG DIN EGEN POPCORN-MASKIN 3. 4. trinn 90 min. ca. 2 undervisningsøkter på 45 min SENTRALE BEGREPER: Faseovergang, kjemi, molekyl, atom, fast stoff, væske, gass ANBEFALT FORHÅNDSKUNNSKAP:
DetaljerBildet er fra Colorado i USA og viser et vanningssytem som har flere navn, blant annet circle pivot irrigation.
LÆRERENS D IGITALBOK 3 LDB Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler Kapittel 3 er geometrikapitlet. På 8. trinn har vi valgt å konsentrere oss om konstruk
Detaljer1P kapittel 3 Geometri Løsninger til innlæringsoppgavene
1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km
DetaljerKenguru - konkurransen
Kenguru - konkurransen > Et sprang inn i matematikken < Benjamin (6. 7. trinn) 006 Hefte for læreren Arrangert av: Nasjonalt senter for Matematikk i Opplæringen Velkommen til Kengurukonkurransen 006 Et
DetaljerTest, Geometri (1P) 2.1 Lengde og vinkler. 1) Hvor mange grader er en rett vinkel?
Test, Geometri (1P) 2.1 Lengde og vinkler 1) Hvor mange grader er en rett vinkel? 90 120 180 2) Hva menes med en spiss vinkel? En vinkel som er større enn 90 En vinkel som er større enn 180 En vinkel som
Detaljer