Solenergi og solceller- teori
|
|
- Konrad Nilssen
- 9 år siden
- Visninger:
Transkript
1 Solenergi og solceller- teori Innholdsfortegnelse Solenergi er fornybart men hvorfor?... 1 Sola -Energikilde nummer én... 1 Solceller - Slik funker det... 3 Strøm, spenning og effekt ampere, volt og watt... 5 Serie- og parallellkobling... 6 Virkningsgrad - Noen panel er bedre enn andre... 7 På hjemmesiden vår finner du blant annet regneoppgaver og praktiske oppgaver knyttet til solcellepanel. Du kan også se hvordan du bygger din egen solcellelader eller solcellebil. Sola -Energikilde nummer én Sola er uten tvil vår største og viktigste energikilde. Den gir varme, lys og ikke minst energi. Energien fra sollyset er opphavet til nesten alle andre energikilder vi har her på jorda, både fornybare og ikke-fornybare. Fotosyntesen, en av naturens viktigste kjemiske prosesser, ville ikke fungert uten sollys. Uten fotosyntese, ville vi hatt et svært beskjedent planteliv, som igjen hadde satt en stopper for fossile brennstoff som kull, olje og gass. Sollys er også med på å varme opp luft, noe som fører til lokale høy- og lavtrykk som igjen skaper vind. Vinden er videre med på å lage bølger i havet. Sola er i tillegg til alt dette en fornybar energikilde, såfremt den fortsetter å brenne! Sola er en ganske alminnelig, tung stjerne. Så lenge den brenner vil det frigjøres fornybar energi som vi kan nyttiggjøre oss på jorda. Solenergi er fornybart men hvorfor? Du tenker sikkert at fornybare energikilder er energikilder med kontinuerlig tilførsel av ny energi. Det er riktig. Ser vi energikildene i et meget langt perspektiv er sola en av de få energikildene som ikke er fornybar. I et slikt perspektiv er derimot fossilt brensel (inkludert olje) fornybart. En dag vil sola gå tom for brennstoffet hydrogen, og slutte å brenne. Sola er minst 4,5 milliarder år gammel og vil lyse med omtrent samme styrke som i dag i ytterlige 5 milliarder år. Sola har altså svært lang levetid, og det er derfor den regnes som fornybar. Det er riktig at fornybar energi kommer fra energikilder med kontinuerlig tilførsel, men innenfor et vist tidsrom. Fornybare energikilder er definert som «energikilder som kan fornyes i løpet av 100 år». Side 1 av 7
2 Termodynamikkens første lov sier at energi hverken kan skapes eller forsvinne, kun endre form, samtidig sier vi at sola er opphavet til energikildene våre. Hvordan er dette mulig? Sola er en ganske alminnelig, tung stjerne, og som de fleste andre stjerner er den hovedsakelig bygd opp av hydrogen og helium. I sentrum av sola er det hele 15 millioner grader celsius og trykket er svært høyt. På sola produseres energi ved at hydrogenkjerner fusjonerer. Det betyr at de smelter sammen. Fire hydrogenkjerner (kjernen består av protoner og nøytroner) og to elektroner blir til en heliumkjerne. Vis vi studerer periodesystemet ser vi at hydrogen er grunnstoff nummer 1, og at atommassen til hydrogen er 1,008. Helium er grunnstoff nummer 2 og har atommassen 4,003. Når fire hydrogenkjerner smelter sammen skulle man kanskje anta at atommassen ble firedoblet, altså 4x1,008 = 4,032, men slik er det ikke. Heliumkjernen har en masse på 4,003 (se periodesystemet). De fire hydrogenkjernene og de to elektronene har til sammen mer masse enn den nye heliumkjenen. Det blir dermed masse til overs. Denne massen frigjøres som strålingsenergi som sendes ut i verdensrommet og blant annet treffer jorda. Energien har altså vært der hele tiden, lagret inne i hydrogenkjernene, men istedenfor å si at den skapes sier vi at den frigjøres. Denne beskrivelsen av fusjon på sola er veldig forenklet. Dersom du velger fysikk 1 som valgfag i videregående skole, vil du lære mer om dette emnet. Side 2 av 7
3 Vi mennesker har lært oss å utnytte energiproduktene (mat, fossilt brensel, vind, bølger osv) fra sollys. En kan likevel lure på om det ikke hadde vært bedre å benytte seg av sollyset direkte. Ved hjelp av solcellepanel og solfangere er dette blitt en realitet. Hvis 1 % av jordas ørkenområder hadde vært dekt av solcellepanel, ville det, i seg selv, vært nok til å produsere energi til hele jordens befolkning. Teknologien og kostnadene per panel setter dessverre en stopper for å gjennomføre noe slikt. Solceller - Slik funker det Solcellepanelet Omkring 95 % av alle solceller som blir produsert i dag lages av silisium. For å forstå hvordan et solcellepanel virker, må vi derfor først se litt nærmere på dette grunnstoffet. Silisium er grunnstoff nummer 14, og har 4 elektroner i det ytterste skallet. Silisium og alle andre stoffer ønsker å oppfylle oktettregelen, som vil si å ha 8 elektroner i det ytterste skallet. Silisium er et grunnstoff hvor atomene er bundet til hverandre i et krystallgitter. I gitteret deler naboatomer elektronene mellom seg, og på denne måten får alle atomene 8 elektroner i det ytterste skallet (de oppfyller oktettregelen). På finner du en animasjon som på en enkel måte gir en oversikt over hvordan solcellepanelet fungerer. Silisiumatom med 4 ytterelektron Silisiumgitter Et slikt krystall leder i utgangspunktet elektrisk strøm dårlig. Ved å dope silisium, det vil si tilsette små mengder av andre materialer, kan vi endre egenskapene til silisium slik at det blir svakt ledende. I ei solcelle er silisiumet som regel dopet med bor (atomnummer 5) og fosfor (atomnummer 15). Når vi doper silisium med bor, blir det "mangel" på elektroner (de fyller ikke opp alle ytterskallene). Bor har nemlig bare tre elektroner i ytterste skall, mens silisium som sagt har fire. Dette kalles for p-doping, positiv doping, fordi det blir ledige elektronposisjoner i gitteret. Disse ledige posisjonene kaller vi "hull". Det betyr ikke at materialet er "positivt ladet", p-dopet materiale er fortsatt elektrisk nøytralt. (Det har beholdt alle protoner og elektroner og er altså ikke et ion.) Side 3 av 7
4 Det motsatte skjer når vi tilsetter fosfor. Siden fosfor har fem elektroner i det ytterste skallet vil det bli overskudd på elektroner. Dette er n-doping, altså "negativ doping". Elektronene som blir til overs i gitteret lar seg lett flytte på. Også n-dopet silisium er elektrisk nøytralt. Ei solcelle er p-dopet med et tynt n-dopet lag nærmest overflaten som skal belyses. n-dopet (eks. silisium + fosfor) p-dopet (eks. silisium + bor) Snitt av solcelle Fordi n-siden av solcellen har overskudd av frie elektroner, og p-siden har for få, vil en del av elektronene flytte seg over fra n- til p-siden. Vi kan se for oss at overskuddselektronene i det n-dopede materialet blir tiltrukket av de ledige hullene i de p-dopede materialet. Etter hvert som elektronene forflytter seg over grensen til det p-dopede materialet vil den n-dopede delen bli positivt ladet, mens p-siden som får elektroner blir negativt ladet. Vi får en ladningsforskjell mellom n- og p-siden, n-siden blir svakt positiv og p-siden svakt negativ. n-dopet side -overskudd på elektroner p-dopet side -mangler elektroner Før elektronvandringen er begge sidene nøytrale. Når elektronene vandrer fra n-siden til p-siden, mister n-siden elektroner og blir derfor svakt positivt ladd. P-siden får elektroner og blir derfor negativt ladd. Utsnitt av solcelle Når de frie elektronene finner ledige plasser i hullene på p-siden vil det i et tynt sjikt mellom n- og p-siden være svært få frie ladninger, vi kaller dette sjiktet et "utarmingssjikt". Utarmingssjiktet fungerer isolerende. Fordi det er en ladningsforskjell over sjiktet og sjiktet har svært få frie ladningsbærere sier vi at det dannes en barriere mellom den n-dopete siden og den p-dopete siden. Til slutt vil denne barrieren hindre at flere elektroner forflytter seg mellom n- og p-siden, og det oppstår en balanse. Utarmingssjikt Barriere Utsnitt av solcelle Side 4 av 7
5 Energien fra et lysfoton har likevel mulighet til å slå løs elektroner i utarmingssjiktet. Spenningen (potensialforskjellen) over sjiktet gjør at elektronene som slås løs raskt beveger seg over mot n-siden. Hullet som oppstår når elektronet slås løs, fylles av elektroner fra p- siden. Da dannes det et nytt hull på p-siden som fylles av et annet elektron. På denne måten beveger hullet seg innover i p-siden. Hvis solcellepanelet er koblet opp i en sluttet krets, vil elektronet forflytte seg gjennom denne og tilbake til p-siden. Skjer dette gjentatte ganger, får vi generert en strøm. Utsnitt av solcelle Denne rekken med figurer illustrer hvordan hullet beveger seg innover i p-siden. "Kjedereaksjonen" starter når et lysfoton slår løst et foton i utarmingssjiktet. Det n-dopede sjiktet (oversiden av solcellen) er tynt i forhold til p-området, slik at lyset når inn i utarmingssjiktet. Negativ elektrode Utsnitt av solcelle koblet opp i en sluttet krets Etter elektronhoppene vist i illustrasjonen over blir det et overskudd av ladninger på n-plata (den negative elektroden på oversiden av solcellen) og et underskudd av ladninger på p- plata (den positive elektroden på undersiden av solcellen). Men på grunn av spenningsforskjellen (potensialforskjellen over utarmingssjiktet) kan ikke elektronene vandre tilbake igjen. Kobler vi solcellen opp i sluttet krets, som vist på figuren til venstre, vil elektronene forflytte seg gjennom kretsen og til hullene i p-plata (positive elektroden). Skjer dette gjentatte ganger får vi generert strøm. Positiv elektrode Side 5 av 7
6 Strøm, spenning og effekt ampere, volt og watt Solcellepanelet generer elektrisk strøm. En elektrisk strøm er elektroner i bevegelse.. Når kretsen er sluttet beveger elektronene seg i kretsen. Jo flere elektroner som strømmer gjennom lederen, jo sterkere er strømmen. Måleenheten for elektrisk strøm er ampere (A) og symbolet som benyttes i formler er I. Elektrisk spenning er kraften elektronene blir dyttet med, eller trykket. Måleenheten for elektrisk spenning er volt (V) og symbolet som benyttes i formler er U. Vi kan sammenligne strømmen av elektroner i lederen med vanndråpene i en hageslange. Jo flere vanndråper som strømmer gjennom slangen, jo mer vann. Lavt trykk i vannslangen gir en svak stråle, mens et høyt trykk gir en sterk stråle. Flere elektroner i bevegelse gjennom lederen gir sterkere strøm. Øker vi trykket (spenningen) vil vannet strømme raskere og mer vann går gjennom slangen (mer strøm gjennom ledningen). De fleste elektriske apparater omdanner elektrisk energi til en annen energiform. En kokeplate omdanner elektrisk energi til varme (termisk energi). På elektriske apparater står det ofte hvor mange watt de "bruker". Watt (W) er energi pr. sekund. En kokeplate på 1500 W omdanner 1500 W elektrisk energi til 1500 W termisk energi (i løpet av et sekund). Watt er altså måleenheten for effekt, som er definert som arbeid (energi) utført per tidsenhet. Effekt er altså et mål på hvor fort energien overføres. Når vi kjenner spenningen og strømstyrken kan vi regne ut effekten. I formler benyttes symbolet P(fra engelsk Power) for effekt. Serie- og parallellkobling Et solcellepanel består av flere solceller som er seriekoblet. Seriekobling betyr at cellene er koblet etter hverandre. Dette gjøres ved å koble den negative polen på den første cellen til den positive polen på den neste cellen. Når cellene seriekobles øker spenningen. Dersom man dobler antall solceller i seriekobling, dobles også spenningen. Formelen P = U x I forteller oss at når spenningen (U) øker må også effekten (P) øke. Ved å koble sammen flere solcellepanel og øke arealet kan vi øke effekten ytterligere. Dette gjøres ved å parallellkoble panelene. Parallellkobling betyr at panelenes positive poler kobles sammen og at panelets negative poler kobles sammen. Ved parallellkobling påvirkes ikke spenningen, men sammenkoblingen gir økt strøm. Økt strøm gir økt også effekt, P = U x I. Side 6 av 7
7 Seriekobling - øker spenningen Parallellkobling - øker strømmen Disse solcellepanelene i skjærgården utenfor Stockholm består av seriekoblete solceller. Solcellepanelene er parallellkoblet. Slik oppnår man ønsket spenning og høy effekt. Virkningsgrad - Noen panel er bedre enn andre Noen solcellepanel fungerer bedre enn andre til tross for at de har samme areal. Vi sier at de har høyere virkningsgrad. Det betyr at de klarer å omdanne en høyere prosentandel av energien fra sola til elektrisk energi. Virkningsgraden er definert som forholdet mellom avgitt elektrisk effekt og mottatt lyseffekt. Dette er et enhetsløst tall (tall uten benevning) mellom 0 og 1, men oppgis ofte i prosent. Den generelle formelen for virkningsgrad er effekt ut/effekt inn. For solceller tilsvarer dette forholdet mellom soleffekt inn (solinnstråling) og elektrisk effekt ut (produsert strøm). Et silisiumpanel har normalt en virkningsgrad på prosent. Ved bruk av andre materialer har man klart å fremstille solcellepanel som har oppnådd en virkningsgrad på litt over 40 % i laboratorieforsøk, men slike panel er svært kostbare og ikke økonomisk lønnsomme. Side 7 av 7
Informasjon til lærer
Lærer, utfyllende informasjon Fornybare energikilder Det er egne elevark til for- og etterarbeidet. Her får du utfyllende informasjon om: Sentrale begreper som benyttes i programmet. Etterarbeid. Informasjon
Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14
Manual til laboratorieøvelse Solceller Foto: Túrelio, Wikimedia Commons Versjon 10.02.14 Teori Energi og arbeid Arbeid er et mål på bruk av krefter og har symbolet W. Energi er et mål på lagret arbeid
For å forstå hvordan halvledere fungerer, er det viktig først å ha forstått hva som gjør at noen stoffer leder strøm, mens andre ikke gjør det.
Kompendium Halvledere Stoffer som leder elektrisk strøm kalles ledere. Stoffer som ikke leder elektrisk strøm kalles isolatorer. Hva er da en halvleder? Litt av svaret ligger i navnet, en halvleder er
1561 Newton basedokument - Newton Engia Side 53
1561 Newton basedokument - Newton Engia Side 53 Etterarbeid Ingen oppgaver på denne aktiviteten Etterarbeid Emneprøve Maksimum poengsum: 1400 poeng Tema: Energi Oppgave 1: Kulebane Over ser du en tegning
Kap. 4 Trigger 9 SPENNING I LUFTA
Kap. 4 Trigger 9 SPENNING I LUFTA KJERNEBEGREPER Ladning Statisk elektrisitet Strøm Spenning Motstand Volt Ampere Ohm Åpen og lukket krets Seriekobling Parallellkobling Isolator Elektromagnet Induksjon
+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER
1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,
Solceller. Josefine Helene Selj
Solceller Josefine Helene Selj Silisium Solceller omdanner lys til strøm Bohrs atommodell Silisium er et grunnstoff med 14 protoner og 14 elektroner Elektronene går i bane rundt kjernen som består av protoner
Solceller i forsvaret VIRKEMÅTE OG BRUKSOMRÅDER
Solceller i forsvaret VIRKEMÅTE OG BRUKSOMRÅDER Farstad, Torstein Otterlei Ingeniørfaglig innføring SKSK 10. juni 2015 Innhold Innledning... 1 Forståelse... 2 Bruksområder... 3 Operasjoner i Norge... 3
Solceller. Manual til laboratorieøvelse for elever. Skolelaboratoriet for fornybar energi Universitetet for miljø- og biovitenskap
Manual til laboratorieøvelse for elever Solceller Skolelaboratoriet for fornybar energi Universitetet for miljø- og biovitenskap Foto: Túrelio, Wikimedia Commons Formå l Dagens ungdom står ovenfor en fremtid
- Vi har enda ikke greid å oppfinne en evighetsmaskin, som konstant genererer like mye energi som den bruker.
"Hvem har rett?" - Energi 1. Om energiforbruk - Vi har enda ikke greid å oppfinne en evighetsmaskin, som konstant genererer like mye energi som den bruker. - Sola produserer like mye energi som den forbruker,
Nano, mikro og makro. Frey Publishing
Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige
LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken
LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige
Energi. Vi klarer oss ikke uten
Energi Vi klarer oss ikke uten Perspektivet Dagens samfunn er helt avhengig av en kontinuerlig tilførsel av energi Knapphet på energi gir økte energipriser I-landene bestemmer kostnadene U-landenes økonomi
GETEK AS G E T E K e n e r g i f o r m i l j ø e t
GETEK AS Energi fra solen! Del II energi uten strømnett Asbjørn Wexsahl, Daglig leder GETEK AS Utgammel Litt om meg Utdanning etter videregående Befalsskole NTH- fysikk Stabsskole Praksis Ansvar for en
1268 Newton basedokument - Elektrisk energi fra fornybare og ikke-fornybare energikilder Side 33
1268 Newton basedokument - Elektrisk energi fra fornybare og ikke-fornybare energikilder Side 33 Emneprøve Tema: Energi Oppgave 1: Kulebane Over ser du en tegning av kulebanen på Newton-rommet. Kula som
Produksjonsartikkel Spenning (Volt) Strøm (Amper) Tilført energi Resultat
Strømmålinger dag a) Mål hvor stor spenning (V) og hvor mye strøm (A) som produseres med solcellepanelet til legosettet, solcellepanelet til hydrogenbilen og solcellepanelet til brennselcellesette. Før
3 1 Strømmålinger dag 1
3 Strømmålinger dag a) Mål hvor stor spenning (V) og hvor mye strøm (A) som produseres med: - solcellepanelet til LEGO settet, 2- solcellepanelet til hydrogenbilen 3- solcellepanelet til brenselcellesette.
Jordas energikilder. Tidevann. Solenergi Fossile. Vind Gass Vann Olje Bølger År
6: Energi i dag og i framtida Figur side 170 Jordas energikilder Saltkraft Ikke-fornybare energikilder Fornybare energikilder Kjernespalting Uran Kull Tidevann Jordvarme Solenergi Fossile energikilder
Solcellen. Nicolai Kristen Solheim
Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut
KOSMOS. 5: Elektroner på vandring Figur side Modell av et heliumatom. Elektron. Nøytron. p + Proton. Protoner
5: Elektroner på vandring Figur side 132 Elektron e p Nøytron n e Proton Modell av et heliumatom. Protoner Nøytroner Elektroner Nukleoner Elementærladning Elementærpartikler er små partikler i sentrum
Fra alkymi til kjemi. 2.1 Grunnstoffene blir oppdaget
Fra alkymi til kjemi 2.1 Grunnstoffene blir oppdaget 2.1 Grunnstoffene blir oppdaget GRUNNSTOFF hva er det? År 300 1800: Alkymi læren om å lage gull av andre stoffer Ingen klarte dette. Hvorfor? Teori
ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.
ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 19. august 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).
59.1 Beskrivelse Bildet under viser hvordan modellen tar seg ut slik den står i utstillingen.
59 TERMOGENERATOREN (Rev 2.0, 08.04.99) 59.1 Beskrivelse Bildet under viser hvordan modellen tar seg ut slik den står i utstillingen. 59.2 Oppgaver Legg hånden din på den lille, kvite platen. Hva skjer?
NTNU Skolelaboratoriet Elevverksted Solceller Side 1 av 9. Laboppgave. Elevverksted Solceller. Navn elever
NTNU Skolelaboratoriet Elevverksted Solceller Side 1 av 9 Laboppgave Elevverksted Solceller Navn elever Solcellen Solcellen som brukes i dette forsøket er laget av silisium som har en maksimal virkningsgrad
WORKSHOP BRUK AV SENSORTEKNOLOGI
WORKSHOP BRUK AV SENSORTEKNOLOGI SENSOROPPSETT 2. Mikrokontroller leser spenning i krets. 1. Sensor forandrer strøm/spenning I krets 3. Spenningsverdi oversettes til tallverdi 4. Forming av tallverdi for
Løsningsforslag til EKSAMEN
Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 30. April 03 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.
Løsningsforslag til prøve i fysikk
Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt
FLERVALGSOPPGAVER I NATURFAG - FYSIKK
FLERVALGSOPPGAVER I NATURFAG - FYSIKK Naturfag fysikk 1 Hvor mye strøm går det i en leder når man belaster lysnettet som har en spenning på 220 V med en effekt på 2 200 W? A) 100 A B) 10 A C) 1,0 A D)
Forelesning nr.8 INF 1411 Elektroniske systemer. Dioder Praktiske anvendelser
Forelesning nr.8 INF 1411 Elektroniske systemer Dioder Praktiske anvendelser Dagens temaer Dioder Halvlederfysikk Ulike typer halvledere og ladningsbærere Diodekarakteristikker Likerettere og strømforsyninger
FAGPLANER Breidablikk ungdomsskole
FAGPLANER Breidablikk ungdomsskole FAG: Naturfag 8. trinn Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Demonstrere
1 Grunnkurs solceller (brekkasjeceller) Nils Kr. Rossing, Skolelaboratoriet ved NTNU
1 Grunnkurs solceller (brekkasjeceller) Nils Kr. Rossing, Skolelaboratoriet ved NTNU Før vi begynner å bygge modeller med solceller, må vi vite litt om solcellenes elektriske og mekaniske egenskaper. I
Solcellen har to ledninger, koblet til og + - pol på baksiden. Cellen produserer likestrøm, dersom solinnstrålingen er tilstrekkelig.
Instruksjon Målinger med solcelle For å utføre aktiviteten trengs en solcelle, eller flere sammenkoblete. Videre et multimeter, en eller flere strømbrukere, og tre ledninger. Vi har brukt en lavspenningsmotor
1 Leksjon 8 - Kjerneenergi på Jorda, i Sola og i stjernene
Innhold 1 LEKSJON 8 - KJERNEENERGI PÅ JORDA, I SOLA OG I STJERNENE... 1 1.1 KJERNEENERGI PÅ JORDA... 2 1.2 SOLENS UTVIKLING DE NESTE 8 MILLIARDER ÅR... 4 1.3 ENERGIPRODUKSJONEN I GAMLE SUPERKJEMPER...
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
Forelesning nr.8 INF 1411 Elektroniske systemer. Dioder
Forelesning nr.8 INF 1411 Elektroniske systemer Dioder Dagens temaer Dioder Halvlederfysikk Ulike typer halvledere og ladningsbærere Diodekarakteristikker Likerettere og strømforsyninger Spesialdioder
Atomets oppbygging og periodesystemet
Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.
1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en
Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
Forelesning nr.8 INF 1411 Elektroniske systemer
Forelesning nr.8 INF 1411 Elektroniske systemer Dioder Praktiske anvendelser 1 Dagens temaer Dioder Halvlederfysikk Diodekarakteristikker Ulike typer halvledere og ladningsbærere Likerettere Spesialdioder
Basis dokument. 1 Solcelle teori. Jon Skarpeteig. 23. oktober 2009
Basis dokument Jon Skarpeteig 23. oktober 2009 1 Solcelle teori De este solceller er krystallinske, det betyr at strukturen er ordnet, eller periodisk. I praksis vil krystallene inneholde feil av forskjellige
Løsningsforslag til ukeoppgave 15
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 15 Oppgave 18.11 Se. s. 544 Oppgave 18.12 a) Klorofyll a absorberer fiolett og rødt lys: i figuren ser vi at absorpsjonstoppene er ved 425 nm
Oppgaver til kapittel 4 Elektroteknikk
Oppgaver til kapittel 4 Elektroteknikk Oppgavene til dette kapittelet er lag med tanke på grunnleggende forståelse av elektroteknikken. Av erfaring bør eleven få anledning til å regne elektroteknikkoppgaver
FAGPLANER Breidablikk ungdomsskole. FAG: Naturfag TRINN: 9. Tema/opplegg (eksempler, forslag), ikke obligatorisk
FAGPLANER Breidablikk ungdomsskole FAG: Naturfag TRINN: 9. Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Kunne bruke
Kan du se meg blinke? 6. 9. trinn 90 minutter
Lærerveiledning Passer for: Varighet: Kan du se meg blinke? 6. 9. trinn 90 minutter Kan du se meg blinke? er et skoleprogram der elevene får lage hver sin blinkende dioderefleks som de skal designe selv.
KOSMOS. Energi for framtiden: 8 Solfangere og solceller Figur side 161. Solfangeranlegg. Forbruker. Solfanger Lager. Pumpe/vifte
Energi for framtiden: 8 Solfangere og solceller Figur side 161 Solfanger Lager Forbruker Pumpe/vifte Solfangeranlegg Energi for framtiden: 8 Solfangere og solceller Figur side 162 Varmt vann Beskyttelsesplate
Sammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
Håndbok om. undersøkelser. Liv Oddrun Voll Gard Ove Sørvik Suzanna Loper
Håndbok om Elektrisitet Kjemiske undersøkelser Liv Oddrun Voll Gard Ove Sørvik Suzanna Loper Innhold Elektrisitet i det daglige... 4 Ei lyspære lyser fordi det går strøm gjennom den... 6 Strømmen må gå
AST1010 En kosmisk reise Forelesning 13: Sola
AST1010 En kosmisk reise Forelesning 13: Sola I dag Hva består Sola av? Hvor får den energien fra? Hvordan er Sola bygd opp? + solflekker, utbrudd, solvind og andre rariteter 1 Hva består Sola av? Hydrogen
Atommodeller i et historisk perspektiv
Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal
2. La det bli lys Ditt første Arduino program
2. La det bli lys Ditt første Arduino program Det første vi skal gjøre nå, er å få den Orange "L"-lampen til å blinke. På denne måten sørger vi for at vi kan snakke med Arduinoen, og at vi får lastet opp
elementpartikler protoner(+) nøytroner elektroner(-)
All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall
Laboratorieoppgave 2: Solcelle som produsent av elektrisk effekt til en belastning.
NTNU i Gjøvik Elektro Laboratorieoppgave 2: Solcelle som produsent av elektrisk effekt til en belastning. Hensikt med oppgaven: Å måle elektrisk effekt produsert fra solcelle med ulik innstråling av lys.
Framtiden er elektrisk
Framtiden er elektrisk Alt kan drives av elektrisitet. Når en bil, et tog, en vaskemaskin eller en industriprosess drives av elektrisk kraft blir det ingen utslipp av klimagasser forutsatt at strømmen
Hvorfor studere kjemi?
Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner
Hva er bærekraftig utvikling?
Hva er bærekraftig utvikling? Det finnes en plan for fremtiden, for planeten og for alle som bor her. Planen er bærekraftig utvikling. Bærekraftig utvikling er å gjøre verden til et bedre sted for alle
Ved er en av de eldste formene for bioenergi. Ved hogges fortsatt i skogen og blir brent for å gi varme rundt om i verden.
Fordeler med solenergi Solenergien i seg selv er gratis. Sola skinner alltid, så tilførselen av solenergi vil alltid være til stede og fornybar. Å bruke solenergi medfører ingen forurensning. Solenergi
Bærekraftig energi. Navn: Klasse: Dato:
Horten natursenter 2019 Feltkurs VG1 Naturfag Bærekraftig energi Navn: Klasse: Dato: Kompetansemål Naturfag: Forskerspiren Planlegge og gjennomføre ulike typer undersøkelser med identifisering av variabler,
Hva er alle ting laget av?
Hva er alle ting laget av? Mange har lenge lurt på hva alle ting er laget av. I hele menneskets historie har man lurt på dette. Noen filosofer og forskere i gamle antikken trodde at alt var laget av vann.
( ) Masse-energiekvivalens
Masse-energiekvivalens NAROM I klassisk mekanikk er det en forutsetning at massen ikke endrer seg i fysiske prosesser. Når vi varmer opp 1 kg vann i en lukket beholder så forutsetter vi at det er fortsatt
Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Naturfag År: 2012-2013 Trinn og gruppe: 7.trinn Lærer: Per Magne Kjøde Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Uke 34-36
Innhold. Viktig informasjon om Kraft og Spenning. Skoleprogrammets innhold. Lærerveiledning Kraft og Spenning (9.-10. Trinn)
Lærerveiledning Kraft og Spenning (9.-10. Trinn) Innhold Viktig informasjon om Kraft og Spenning... 1 Forarbeid... 3 Temaløype... 6 Etterarbeid... 10 Viktig informasjon om Kraft og Spenning Vi ønsker at
Forelesning nr.8 IN 1080 Elektroniske systemer. Dioder og felteffekt-transistorer
Forelesning nr.8 IN 1080 Elektroniske systemer Dioder og felteffekt-transistorer Dagens temaer Impedanstilpasning Dioder Likerettere og strømforsyninger Spesialdioder Dagens temaer er hentet fra kapittel
Rutland Regulator. RWS200 Instruksjonsmanual (Part No. CA-11/20 12v CA-11/21 24 v)
Rutland Regulator RWS200 Instruksjonsmanual (Part No. CA-11/20 12v CA-11/21 24 v) Dokument nr. SM-314 Utgivelse A Utarbeidet av as Maritim 2002 Side 1 av 5 Advarsel Vennligst les denne manualen før du
Prosjekt i Elektrisitet og magnetisme (FY1303) Solceller. Kristian Hagen Torbjørn Lilleheier
Prosjekt i Elektrisitet og magnetisme (FY133) Solceller Av Kristian Hagen Torbjørn Lilleheier Innholdsfortegnelse Sammendrag...3 Innledning...4 Bakgrunnsteori...5 Halvledere...5 Dopede halvledere...7 Pn-overgang...9
Skissen som er vist nedenfor viser hvordan to ulike atomer kan binde seg sammen. Atom A har 7 elektroner i sitt ytterste elektronskall, og atom B har
Skissen som er vist nedenfor viser hvordan to ulike atomer kan binde seg sammen. Atom A har 7 elektroner i sitt ytterste elektronskall, og atom B har 2 elektroner i sitt ytterste elektronskall. Atom A
Energi for framtiden på vei mot en fornybar hverdag
Energi for framtiden på vei mot en fornybar hverdag Tellus 10 10.trinn 2011 NAVN: 1 Hvorfor er det så viktig at nettopp DU lærer om dette? Det er viktig fordi.. 2 Energikilder bare noen varer evig s. 207-209
Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
Ord, uttrykk og litt fysikk
Ord, uttrykk og litt fysikk Spenning Elektrisk spenning er forskjell i elektrisk ladning mellom to punkter. Spenningen ( U ) måles i Volt ( V ) En solcelle kan omdanne sollys til elektrisk spenning og
LEGO Energimåler. Komme i gang
LEGO Energimåler Komme i gang Energimåleren består av to deler: LEGO Energidisplay og LEGO Energiboks. Energiboksen passer i bunnen av Energidisplayet. Du installerer Energiboksen ved å la den gli på plass
FYSnett Grunnleggende fysikk 17 Elektrisitet LØST OPPGAVE
LØST OPPGAVE 17.151 17.151 En lett ball med et ytre belegg av metall henger i en lett tråd. Vi nærmer oss ballen med en ladd glasstav. Hva vil vi observere? Forklar det vi ser. Hva ser vi hvis vi lar den
5:2 Tre strålingstyper
58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov
Forelesning nr.1 INF 1411 Elektroniske systemer Kursoversikt Strøm, spenning, ladning og Ohms lov Dagens temaer Organisering av kurset Læringsmål Bakgrunn Strøm, og motivasjon for kurs i analog elektronikk
Matematikk 1P-Y. Teknikk og industriell produksjon
Matematikk 1P-Y Teknikk og industriell produksjon «Å kunne regne i teknikk og industriell produksjon innebærer å foreta innstillinger på maskiner og å utføre beregning av trykk og temperatur og blandingsforhold
UNIVERSITETET I OSLO
UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
Sammenhengen mellom strøm og spenning
Sammenhengen mellom strøm og spenning Naturfag 1 30. oktober 2009 Camilla Holsmo Karianne Kvernvik Allmennlærerutdanningen Innhold 1.0 Innledning... 2 2.0 Teori... 3 2.1 Faglige begreper... 3 2.2 Teoriforståelse...
BINGO - Kapittel 6. Når et stoff går fra. Når et stoff går fra fast stoff til væske (smelte) To eller flere atomer som henger sammen (molekyl)
BINGO - Kapittel 6 Bingo-oppgaven anbefales som repetisjon etter at kapittel 6 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,
Kapittel 21 Kjernekjemi
Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie
Terralun. - smart skolevarme. Fremtidens energiløsning for skolene. Lisa Henden Groth. Asplan Viak 22. Septemebr 2010
Terralun - smart skolevarme Fremtidens energiløsning for skolene Lisa Henden Groth Asplan Viak 22. Septemebr 2010 Agenda Bakgrunn Terralun-konsept beskrivelse og illustrasjon Solenergi Borehullsbasert
Innhold. Mangfold i naturen Celler Arv Jorda Økologi Naturvern Hvordan utnytter urfolk naturen?
Innhold Mangfold i naturen Celler Arv Jorda Økologi Naturvern Hvordan utnytter urfolk naturen? Kropp og helse Seksualitet Svangerskap og fødsel Immunforsvaret Hormoner Hjernen og nervesystemet Lev sunt
FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET
FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET Hjelpemidler: Periodesystem Atomer 1 Hvilket metall er mest reaktivt? A) sølv B) bly C) jern D) cesium Atomer 2 Hvilket grunnstoff høyest 1. ioniseringsenergi?
AST1010 En kosmisk reise. Forelesning 13: Sola
AST1010 En kosmisk reise Forelesning 13: Sola I dag Hva består Sola av? Hvor får den energien fra? Hvordan er Sola bygd opp? + solflekker, utbrudd, solvind og andre rariteter Hva består Sola av? Hydrogen
Norsk OVERSETTELSE. Version 1.0, 27-jan-2004. 91 083 Profi E-TEC www.teknotorget.no Side 1
Norsk OVERSETTELSE Version 1.0, 27-jan-2004 91 083 Profi E-TEC www.teknotorget.no Side 1 INNLEDNING Vi takker for at du har valgt å kjøpe Profi Eco Power fra fischertechnik og håper du får mye glede av
AST1010 En kosmisk reise Forelesning 12: Sola
AST1010 En kosmisk reise Forelesning 12: Sola I dag Hva består Sola av? Hvor får den energien fra? Hvordan er Sola bygd opp? + solflekker, utbrudd, solvind og andre rariteter Hva består Sola av? Hydrogen
Repetisjon. Atomer er naturens minste byggesteiner. Periodesystemet ordner grunnstoffene i 18 grupper. Edelgasstruktur og åtteregelen
423 Atomer er naturens minste byggesteiner Atom: Atomet er den minste delen av et grunnstoff som fortsatt har de kjemiske egenskapene til grunnstoffet. Atomet består av en positivt ladd atomkjerne. Rundt
Historien om universets tilblivelse
Historien om universets tilblivelse i den første skoleuka fortalte vi historien om universets tilblivelse og for elevene i gruppe 1. Her er historien Verden ble skapt for lenge, lenge siden. Og det var
Elektriske kretser. Innledning
Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig
Norges Energi Fremtid!
Norges Energi Fremtid! Norgespartiet vil arbeide videre med Hydrogendrift som en prioritert nasjonal satsing. I tillegg til «On Demand» prosjektet går vi her ut med informasjon om hvordan en omfattende
AST1010 En kosmisk reise. Forelesning 19: Kosmologi
AST1010 En kosmisk reise Forelesning 19: Kosmologi Hubble og Big Bang Bondi, Gold, Hoyle og Steady State Gamow, Alpher, Herman og bakgrunnsstrålingen Oppdagelsen av bakgrunnsstrålingen Universets historie
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I NATURFAG 9. TRINN SKOLEÅR 2014-2015. Periode 1: 34-38. Tema: kjemi.
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I NATURFAG 9. TRINN SKOLEÅR 2014-2015 Periode 1: 34-38 Tema: kjemi Planlegge og gjennomføre undersøkelser for å teste holdbarheten til egne hypoteser og
5:2 Tre strålingstyper
168 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
Hydrogen & Brenselcelle biler Viktig for en miljøvennlig fremtid!
Forskningskamp 2013 Lambertseter VGS Av: Reshma Rauf, Mahnoor Tahir, Sonia Maliha Syed & Sunniva Åsheim Eliassen Hydrogen & Brenselcelle biler Viktig for en miljøvennlig fremtid! 1 Innledning Det første
AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling
AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs
LØSNINGSFORSLAG, KAPITTEL 2
ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje
Kondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
Laboratorieøvelse i Elektrisitet, MNFFY103 Institutt for Fysikk, NTNU
Laboratorieøvelse i Elektrisitet, MNFFY103 Institutt for Fysikk, NTNU ELEKTROLYSE AV VANN Oppgave 1: Bestem strøm-spennings- og effekt -spennings karakteristikken for et solcellepanel. Bruk Excel til å