Førsteordens lineære differensiallikninger

Størrelse: px
Begynne med side:

Download "Førsteordens lineære differensiallikninger"

Transkript

1 Førsteordens lineære differensiallininger Begrepet førsteordens lineære differensiallininger er ie sielig definert i Sinus R. Denne artielen omhandler det temaet. En førsteordens lineær differensiallining er en lining som an srives på formen y + f( ) y = g( ) der f og g er to funsjoner. Når vi sal løse en sli lining, finner vi først en funsjon F som er en antiderivert til f. Det er en funsjon F sli at F ( ) = f( ). Nå multipliserer vi med lihetstegnet i differensialliningen. Vi aller F( ) e på begge sidene av F( ) e en integrerende fator. Det gir y e + f( ) y e = g( ) e F( ) F( ) F( ) Hvis funsjonen f er en onstant funsjon sli at f() = a, an vi velge F() = a. Vi multipliserer da med e a sli vi lærer i apittel 8. i Sinus R. Denne metoden vi lærer her, er dermed i samsvar med metoden i apittel 8.. fordi ( ) Den venstre siden i liningen ovenfor er nå li ( y e F ) ( ) ( ) = + = + ( ) F( ) F( ) F( ) F( ) F( ) y e y e y e y e y e F = y e + y e f( ) = y e + f( ) y e Dermed an vi omforme liningen til F ( ) y e = g( ) e ( ) F( ) F( ) F( ) F( ) F( ) Det gir F( ) F( ) y e = g( ) e d Vi finner dermed løsningen ved å regne ut integralet på høyre side og deretter dividere med e F().

2 EKSEMPEL Løs differensialliningen y' + y = 4 Løsning: Her er f() =. Som antiderivert velger vi F() =. Vi multipliserer dermed med begge sidene av lihetstegnet. Det gir e på y ' e + ye = 4e ( ye ) = 4e ye = 4e d Vi finner integralet ved substitusjon og setter u =. Det gir u u 4e d = e d = e du = e + C = e + C der C er en vilårlig onstant. Innsatt ovenfor gir det ye = e + C e y = + Ce Hvile lineære differensiallininger an en R-elev i prasis løse? Hvis vi sal brue metoden ovenfor, må vi for det første unne bestemme F(). Videre må vi F( ) unne regne ut integralet g ( ) e d. Når larer elevene det? Hvis f() er en onstant a, blir F() = a og integralet blir a g ( ) e d Når larer elevene å løse dette? Hvis g() er en onstant, larer elevene å finne integralet direte. Hvis g() er et polynom av grad n, larer eleven å finne integralet ved å utføre delvis integrasjon n ganger. I prasis må no polynomet være av grad eller høyst. Det er deet på side 33 i Sinus R.

3 F( ) Noen ganger an vi løse integralet g ( ) e d direte ved substitusjon. Da må g ( ) = F ( ) = f( ) der er en onstant. Liningen i esempelet foran er av den typen. Men en sli lining er separabel. Den an omformes sli: y + f( ) y = g( ) y + f( ) y = f( ) y = f( ) y f( ) y = ( y) f( ) y = f( ) y Slie lininger an vi løse med metoden fra apittel 8.3 i Sinus R. Liningen i esempelet foran løser vi sli: y' + y = 4 y' = 4 y y = ( y) dy = y d dy = d y dy = y y C ln = + y = e + C' C' y e e = ± y = ± y = + Ce C' e e d ' Vi an også løse integralet F( ) g ( ) e d ved først å utføre en substitusjon og deretter en delvis integrasjon. Det er nærmest utenelig at elever får så sammensatte differensiallininger til esamen. Liningen y + y = 3

4 Her må elevene bestemme integralet 3 e d. Det må de først omforme til u ue du og deretter finne dette integralet ved delvis integrasjon. Slie lininger er ie deet av det som står i Sinus R. Vi ser på det som uatuelt esamensstoff. Det er ett tilfelle til der elevene an lare å bestemme F( ) = ln. Da er f( ) = og liningen er F( ) g ( ) e d. Det er når y + y = g( ) F( ) ln ln Da er e = e = ( e ) =. Den integrerende fatoren blir dermed, og integralet blir g ( ) d. Hvis g() er et polynom, finner de integralet direte. Hvis g er en annen type funsjon, an de noen ganger finne integralet ved å utføre delvis integrasjon ganger. Vi ser på et esempel der g() er et polynom. EKSEMPEL Løs differensialliningen y + y = 4+ 3 Løsning: Her er f( ) =. Vi velger F( ) = ln = ln = ln. Den integrerende fatoren er F( ) ln e = e = Vi multipliserer med på begge sidene lihetstegnet. Det gir y + y = ( y) = = (4 + 3 ) 3 y d 4 3 y C = + + C = + + y

5 Konlusjon: De aller fleste lineære differensialliningene som er atuelle til esamen i R, an løses med metodene fra Sinus R. Et mulig unnta er lininger av typen y + y = g( ). Den løser vi ved å brue som integrerende fator. Vi legger ut et lite sriv tilpasset elever på nettsidene til Sinus R under delapitlet 8..

R Differensialligninger

R Differensialligninger R - 6.0.05 - Differensialligninger Løsningssisser Oppgave Løs differensialligningene y x y b) y y x c) y 8y 7y 0 Separabel: y y x y dy xdx y x C y x 4 C y C x 4 Da ligningen er ulineær, bør vi også se

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT00 Forelesning Mer ombinatori Roger Antonsen - 5. april 009 (Sist oppdatert: 009-0-5 00:05) Kapittel 9: Mer ombinatori Plan for dagen Mer om permutasjoner og ordnet utvalg ) Mer om ombinasjoner n velg

Detaljer

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008 orelesning Kombinatori Roger Antonsen - 7. april 8 Kombinatori Kombinatori er studiet av opptellinger, ombinasjoner og permutasjoner. Vi finner svar på spørsmål Hvor mange måter...? uten å telle. Vitig

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok: Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel.

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

Differensjalligninger av førsteorden

Differensjalligninger av førsteorden Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT orelesning Mer ombinatori Dag Normann -. april (Sist oppdatert: -4-4:5) Kapittel 9: Mer ombinatori Oppsummering orrige ue startet vi på apitlet om ombinatori. Vi så på hvordan vi an finne antall måter

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel Reursjon og indusjon MAT1030 Disret matemati Forelesning 15: Indusjon og reursjon, reurenslininger Dag Normann Matematis Institutt, Universitetet i Oslo 3 mars 008 Onsdag ga vi endel esempler på reursive

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateni og informasjonsvitensap Esamensoppgave i TDT40 Algoritmer og datastruturer Faglig ontat under esamen Magnus Lie Hetland Telefon 98 5 949 Esamensdato 5 august, 08 Esamenstid (fra

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon.

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon. De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Differensialligninger

Differensialligninger Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og

Detaljer

Oppgave 1. Oppgave 2. 3MX eksamen Privatister Løsningsskisse Ikke kontrollert og dobbeltsjekket! Kan være feil her...

Oppgave 1. Oppgave 2. 3MX eksamen Privatister Løsningsskisse Ikke kontrollert og dobbeltsjekket! Kan være feil her... MX esamen.5.5 - Privatister Løsningssisse Ie ontrollert og dobbeltsjeet! Kan være feil her... Oppgave a) sin cos,, sin cos sin,tan sin.588.588.588 L.588 b) f lncos f fu lnu,u cos, i vadrant f f u u u sin

Detaljer

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen Plan MAT1030 Disret matemati Plenumsregning 12: Diverse oppgaver Roger Antonsen Matematis Institutt, Universitetet i Oslo 22. mai 2008 Dette er siste plenumsregning. Vi regner stort sett esamensoppgaver.

Detaljer

Kapittel Praktiske eksempler på førsteordens differensialligninger

Kapittel Praktiske eksempler på førsteordens differensialligninger Kapittel 6.5 - Pratise esempler på førsteordens differensialligninger Versjon: 2.04.203 (En del tryfeil og direte feil er rettet.) De vanligste pratise esemplene på anvendelser av førsteordens differensialligninger

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

R2 eksamen våren 2017 løsningsforslag

R2 eksamen våren 2017 løsningsforslag R eksamen våren 07 løsningsforslag DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene a) f 3sin cos f 3cos sin 3cos sin b) g cos uv uv uv der u og v cos Vi bruker produktregelen for derivasjon

Detaljer

Eksamen R2 høst 2011, løsning

Eksamen R2 høst 2011, løsning Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har

Detaljer

Kapittel Flere teknikker

Kapittel Flere teknikker Innhold: Kapittel 6.7 - Flere teknikker H-P Ulven 22.04.09 Innledning Ligninger med potenser av y. ( Lærebok 6.7) Reduksjon av orden med variabelskiftet u y. (Lærebok 6.7) Innføring av u y 2 og u 2yy.

Detaljer

For at en funksjon i to variable skal ha en grenseverdi i punktet (a,b), dvs.

For at en funksjon i to variable skal ha en grenseverdi i punktet (a,b), dvs. Øving ue 3 Grenser og ontinuitet For at en funsjon i to variable sal ha en grenseverdi i puntet (a,b), dvs. lim Hx,yL Ha,bL f Hx, yl = L sal esistere, må denne unie verdien oppnåes uansett hvilen vei man

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

MA0003-9. forelesning

MA0003-9. forelesning 17. august 2009 Outline 1 Outline 1 Regneregler for deriverte La f og g være kontinuerlige funksjoner og c 0 cf (x) dx = c f (x) dx f (x) ± g(x) dx = f (x) dx ± g(x) dx f (cx) dx = 1 c f (u) du u=cx f

Detaljer

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann.

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann. Sisse til løsning Esamen i Reservoarteni 3. juni, 999 Oppgave a) Kapillartry er differansen i try mellom to faser på hver side av den infinitesimale overflaten som siller fasene. Det følger av en minimalisering

Detaljer

Vi skal nå sette opp bevegelseslikninger når friksjonskraften

Vi skal nå sette opp bevegelseslikninger når friksjonskraften ysi or ingeniører Klassis eani 3 Kreter Newtons loer Side 3 - Mer o beegelse ed isøs risjon Vi sal nå sette opp beegelseslininger når risjonsraten er gitt ed der er en onstant so ahenger a legeets størrelse

Detaljer

Kapittel Praktiske eksempler på førsteordens differensialligninger

Kapittel Praktiske eksempler på førsteordens differensialligninger Kapittel 6.5 - Pratise esempler på førsteordens differensialligninger De vanligste pratise esemplene på anvendelser av førsteordens differensialligninger Versjon: 7.02.7 Har lagt inn henvisninger til 206-utgaven

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

SIK2501 Prosessteknikk Konte-eksamen 6. august Løsningsforslag. = = p. Gassens volum er i utgangspunktet: F A. k A

SIK2501 Prosessteknikk Konte-eksamen 6. august Løsningsforslag. = = p. Gassens volum er i utgangspunktet: F A. k A SIK Prosessteni Konte-esamen 6. august 999 Løsningsforslag Ogae. (%) Gassens olum er i utgangsuntet: RT En raftbalanse gir at ( l l) For l l er Pa. F 8. J mol K 98 K.78 m Pa a) Konstant olum. Fjæra strees.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

1. Åpen sløyfefunksjon når den langsomme digitale regulatoren er en P-regulator.

1. Åpen sløyfefunksjon når den langsomme digitale regulatoren er en P-regulator. D:\Per\Fag\Styresys\SANNOV\11LØSØV5.wd Fag SO507E Styresystemer Løsning heimeøving 5 Sanntid HIST-AFT Mars2011 PHv Utleveres: Ogave 1 A) Analogisering og frevensanalyse. 1. Åen sløyfefunsjon når den langsomme

Detaljer

Fasit, Separable differensiallikninger.

Fasit, Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy

Detaljer

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver.

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver. Innlevering i BYFE Oppgavesett 4 Innleveringsfrist:??? klokka 4: Antall oppgaver: 5, deloppgaver Løsningsforslag Oppgave a) ln π e x cos e x ) dx Variabelbytte: u e x, du dx ex, dx e du. x Nye grenser:

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

Test, 4 Differensiallikninger

Test, 4 Differensiallikninger Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens

Detaljer

Forelesning 2: Førsteordens lineære differensiallikninger

Forelesning 2: Førsteordens lineære differensiallikninger Forelesning 2: Førsteorens lineære ifferensiallikninger Tron Stølen Gustavsen 16. januar, 2009 Innhol Lesning 1 2.1. Likninger me konstante koeffisienter 1 2.2. Generelle koeffisienter 4 Referanser 5 Lesning.

Detaljer

Matematikk S2 kapittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen

Matematikk S2 kapittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen Matemati S2 apittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen 508 a Utfall: 1 og 2, 1 og 3, 1 og 4, 2 og 3, 2 og 4, 3 og 4. De ses utfallene er lie sannsynlige, så de har hver sannsynlighet 1

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

Løsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004

Løsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004 NTNU Side 1 av 6 Institutt for fysi Faultet for naturvitensap og tenologi Løsningsforslag til esaen i TFY405 Kvanteeani 1. august 004 Dette løsningsforslaget er på 6 sider. Oppgave 1. To-diensjonal eletron-gass

Detaljer

I. Sentrale sammenhenger fra kapittel 3 i boken til Erling Steigum (pensum på 2. året bortsett fra balansert vekst)

I. Sentrale sammenhenger fra kapittel 3 i boken til Erling Steigum (pensum på 2. året bortsett fra balansert vekst) Øonomis vest Terje Snnestvedt, august 2015 I. Sentrale sammenhenger fra apittel 3 i boen til Erling Steigum (pensum på 2. året bortsett fra balansert vest) Maro rodutfuns'onen Maroprodutfunsj on er gitt

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

Løsningsforslag, eksamen MA1101/MA

Løsningsforslag, eksamen MA1101/MA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Løsningsforslag, eksamen MA0/MA60 07.2.09 Oppgave La f() = e 4 2 2 8. a) Finn alle ekstremalpunktene til funksjonen

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

Heldagsprøve R

Heldagsprøve R Heldagsprøve R - 7.04. Løsningsskisser Versjon 03.05. Del - Uten hjelpemidler Oppgave a) Deriver funksjonene: ) fx x ln x ) gx 3 cos4x 3) hx ax ln x ) Produktregel: f x x ln x x x x ln x x x ln x ) Kjerneregel:

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 7 Kapittel 7.3: Rasjonale funksjoner og delbrøkoppspaltning 7.3:3 Bruk polynomdivisjon for

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

Den kritiske lasten for at den skal begynne å bøye ut kalles knekklasten. Den avhenger av stavens elastiske egenskap og er gitt ved: 2 = (0.

Den kritiske lasten for at den skal begynne å bøye ut kalles knekklasten. Den avhenger av stavens elastiske egenskap og er gitt ved: 2 = (0. HIN Industriteni RA 5.11.03 Side 1 av 7 Kneing Staver Kneing er en elastis eller plastis ustabilitet som forårsaes av trspenninger. For å forstå fenomenet er det vanlig å starte med det enleste tilfelle,

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

Løsningsforslag til eksamen i TELE2001-A Reguleringsteknikk

Løsningsforslag til eksamen i TELE2001-A Reguleringsteknikk Løsningsforslag til esamen i TELE1-A Reguleringsteni 3.6.15 Ogave 1 a) Reguleringsventil: Vi ser av resonsen i figur at dette er en første-ordens rosess med tidsforsinelse. s Ke Da har vi: hv s Vi må finne

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1 STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Forelesninger i MET2214 Matematikk valgfag ved Handelshyskolen BI

Forelesninger i MET2214 Matematikk valgfag ved Handelshyskolen BI Forelesninger i MET4 Matematikk valgfag ved Handelshyskolen BI Forelesning : Integrasjon. Separable differensiallikninger. Trond Stølen Gustavsen. januar, Innhold Anbefalt lesning.. Kort repetisjon av

Detaljer

Eksemplet bygger på en ide fra Thor Bernt Melø ved Institutt for fysikk ved NTNU og Tom Lindstrøms bok Kalkulus.

Eksemplet bygger på en ide fra Thor Bernt Melø ved Institutt for fysikk ved NTNU og Tom Lindstrøms bok Kalkulus. LÆRERARK...om å tømme en beolder for vann Esemplet bygger på en ide fra Tor Bernt Melø ved Institutt for fysi ved NTNU og Tom Lindstrøms bo Kalulus. Problemstilling: Vi ar et sylindris beger med et sirulært

Detaljer

UDIRs eksempeloppgave høsten 2008

UDIRs eksempeloppgave høsten 2008 UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e

Detaljer

Lineære differensiallikninger.

Lineære differensiallikninger. Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN

Høgskolen i Agder Avdeling for realfag EKSAMEN Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emneode: ID30005 Emne: Industriell I Dato: 5.2.204 Esamenstid: l. 0900 til l. 300 Hjelpemidler: re A4-ar (ses sider) med egne notater. "ie-ommuniserende" alulator. Faglærer: Robert Roppestad Esamensoppgaven:

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer