Eksamen i TMA4155 Kryptografi Intro Høst 2003 Løsningsskisse

Størrelse: px
Begynne med side:

Download "Eksamen i TMA4155 Kryptografi Intro Høst 2003 Løsningsskisse"

Transkript

1 Eksamen i TMA4155 Kryptografi Intro Høst 2003 Løsningsskisse 1 Et blokkchiffer med blokklengde l og nøkkellengde s består av to funksjoner Ẽ (krypteringsfunksjonen) og D (dekrypteringsfunksjonen) som hver tar inn en nøkkel k {0, 1} s og en blokk b {0, 1} l og gir ut en blokk b {0, 1} l. Vi krever av et blokkchiffer at D(k, E(k, b)) = b for alle b {0, 1} l og alle k {0, 1} s. ECB-modus kan brukes til å kryptere som i dette diagrammet: m 0 m 1 m 2 m 3 c 0 c 1 c 2 c 3 I CBC-modus er første blokk av chifferteksten en initiell vektor som velges tilfeldig for hver kryptering. Blokkene i chifferteksten kjedes sammen slik som vist i dette diagrammet: m 0 m 1 m 2 m 3 IV c 0 c 1 c 2 c 3 Hovedproblemet med ECB-modus er at det ikke introduseres noe tilfeldighet i chifferteksten. Krypterer du samme melding to ganger får du samme chiffertekst, og dette er et problem. Et annet alvorlig problem er at hver blokk i meldingen krypteres uavhengig av de andre blokkene. Hvis chifferteksten er IV, c 0, c 1, c 2,..., er første blokk av dekrypteringen lik m 0 = D(k, c 0 ) IV. Hvis angriperen endrer IV til IV, da blir første blokk av dekrypteringen D(k, c 0 ) (IV ) = m 0. En måte å stanse slike angrep på er å bruke en MAC (message authentication code). 1

2 2a En hashfunksjon h er en funksjon som tar vilkårlig lange bitstrenger og gir ut en bitstreng av en bestemt lengde. En kryptografisk hashfunksjon tilfredsstiller i tillegg: 1. Hashverdien x = h(m) må kunne beregnes raskt (arbeidet skal være O( m ), der m er lengden på bitstrengen m. 2. Det må være vanskelig å finne to bitstrenger (meldinger) m 0 og m 1 slik at h(m 0 ) = h(m 1 ) (kollisjoner). 3. Gitt en melding m 0 må være vanskelig å finne en annen melding m 1 slik at h(m 0 ) = h(m 1 ) (andre preimage). 4. Gitt en hash-verdi x må det være vanskelig å finne en melding m slik at h(m) = x (preimage). En hashfunksjon som tilfredsstiller de tre første kravene er kollisjonsmotstandsdyktig. En som tilfredsstiller krav 1, 3 og 4 kalles enveis. En kryptografisk hashfunksjon er både kollisjonsmotstandsdyktig og enveis. La D være dekrypteringsfunksjonen til blokkchifferet. La m 0 være en melding av vilkårlig lengde, og sett x = h(m 0 ). Sett m 1 = D(x; 0 l ) (merk at i denne oppgaven kommer blokken først, deretter nøkkelen). Det er klart at E(m 1 ; 0 l ) = x, og dermed er h(m 1 ) = x = h(m 0 ), og vi kan finne andre preimager. Hashfunksjonen er derfor ikke kollisjonsmotstandsdyktig. Et enklere angrep er å observere at meldingene 0 og 00 begge polstres til en full blokk, og dermed vil h(0) = h(00). 2b Vi setter inn og får y r r s y r (g k ) k 1 (m ar) y r g kk 1 (m ar) y r g m g ar g m (mod p). Her har vi brukt at y g a (mod p), kk 1 1 (mod p 1) og at Fermats lille teorem sier at g p 1 1 (mod p). Tilsvarende får vi at mens y r r s y r (y v g u ) rv 1 y r y rvv 1 g urv 1 g urv 1 g m g su g rv 1 u (mod p). (mod p), Altså vil falskneriet verifiseres. La h være en kryptografisk hashfunksjon. Hvis M er meldingen man vil signere, regner man ut m = h(m) og signerer m i stedet. Siden m blir mer eller mindre tilfeldig valgt i dette angrepet, må angriperen nå i tillegg finne en M slik at h(m) = m. Siden h må være en enveisfunksjon er dette vanskelig, altså fungerer ikke angrepet. 2

3 3a Først ser vi at 59 er et primtall, og at 59 1 = 58 = Ut fra dette ser vi at 2 kan ha orden 2, 29 eller er en primitiv rot hvis 2 har orden 58. Vi regner så ut at (mod 59) og (mod 59). Altså må 2 ha orden 58. 3b Vi får at (mod 59), (mod 59) og (mod 59). Chifferteksten er altså (5, 24). Videre har vi at ( ) 8 45 (mod 59). Med Euklids algoritme 59 = = = = = = = = = = = 3 2 finner vi at 21 er en invers til 45 modulo 59, så meldingen som er kryptert er (mod 59). 3c La k være slik at 27 2 k (mod 59). Da har vi at k m (mod 59). Hintet forteller oss at k+1 (mod 59). Dermed vet vi at k+1 33, eller at 36 k (mod 59). Dermed er m (mod p). 4a Vi lager RSA-nøkler slik. Først finner vi to passende store primtall p og q (f.eks. ved hjelp av Miller-Rabin) og setter n = pq. Deretter velger vi et passende tall e som er relativt primisk til (p 1)(q 1), og finner så en invers d til e modulo (p 1)(q 1). Den offentlige nøkkelen er (n, e), den private nøkkelen er (n, d). Eksempel: Vi velger oss to passende primtall p = 17 og q = 23 (det er lett å sjekke at disse er primtall), og dermed n = 391. Da er (p 1)(q 1) = = 352. Vi kan velge e = 3 siden 3 16 = 2 4 og 3 22 = Dermed vet vi at gcd(3, 352) = 1. Vi finner at 352 = , altså er d = 235 en passende invers til e = 3. Den offentlige nøkkelen er (391, 3), den private nøkkelen er (391, 235). 4b Si at vi har to offentlige nøkler (n, e) og (n, e ), og at vi kjenner den private nøkkelen (n, d) for den første. Da vet vi at ed 1 (mod (p 1)(q 1)), some betyr at for en eller annen k er ed 1 = k(p 1)(q 1). Sett s = ed 1. 3

4 Nå vet vi at e er relativt primisk til (p 1)(q 1), så gcd(s, e ) = gcd(k, e ). Dermed har vi at s = s gcd(s, e ) = k(p 1)(q 1) gcd(k, e ) = k (p 1)(q 1). gcd(k, e ) Det er klart at s og e er relativt primiske, så vi kan finne en invers d til e modulo s. Da er e d 1 (mod s ), eller s (e d 1). Siden (p 1)(q 1) deler s må også (p 1)(q 1) dele (e d 1), altså har vi at e d 1 (mod (p 1)(q 1)). Det betyr at (n, d ) fungerer som en dekrypteringsnøkkel for (n, e ). Altså kan enhver som får utlevert (n, e) og (n, d) enkelt regne ut en dekrypteringsnøkkel for (n, e ). Systemet hindrer dermed ikke at ansatte kan lese meldinger sendt til andre ansatte. 5 En mulig algoritme er den rekursive algoritmen definert ved M(E, P, k) k < 0 k = 0 M(E, P, k) = P k = 1 Vi gjør først litt mellomregning: 2M(E, P, k/2) k = 2k og 2M(E, P, (k 1)/2) + P k = 2k + 1. x x Vi ser at 5P = 2(2P ) + P. Først dobler vi P og får λ ( )(2 9) (mod 11) og x (mod 11) og y 3 9(8 10) 9 6 (mod 11). Vi dobler så 2P = (10, 6) og får λ ( )(2 6) 1 6 (mod 11) og x (mod 11) og y 3 6(10 5) 6 2 (mod 11). Så legger vi sammen 4P = (5, 2) og P = (8, 9) og får λ (9 2)(8 5) (mod 11) 4

5 og x (mod 11) og y 3 6(5 1) 2 0 (mod 11). Vi får at 5P = (1, 0). Nå er det lett å se at 10P = 2(5P ) =, siden 0 0 (mod 11). La N være antall punkter på kurven. Vi vet nå at P har orden 10 (fordi P ikke har orden 2!), så 10 må dele N. Videre sier Hasses teorem at N Altså er 6 < N < 18. Siden 10 skal dele N er den eneste muligheten 10. Det er 10 punkter på kurven. 5

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Forelesning 2: Kryptografi

Forelesning 2: Kryptografi Universitetet i Oslo IN2120 Informasjonssikkerhet Høst 2018 Workshop-spørsmål med svarforslag Forelesning 2: Kryptografi Spørsmål 1 a. For hvilke informasjonstilstander (lagring, overføring, behandling)

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

ECC i akademia vs. industrien

ECC i akademia vs. industrien Conax AS 2007 RSA ECC Utbredelse Kampen mellom ECC og RSA har pågått lenge. I akademia går ECC av som vinner, mens i industrien er det fortsatt RSA som gjelder. RSA RSA ECC Utbredelse I 1977 publiserte

Detaljer

Forelesning 2: Kryptografi

Forelesning 2: Kryptografi Universitetet i Oslo IN2120 Informasjonssikkerhet Høst 2019 Workshop-oppgaver med løsningsforslag Forelesning 2: Kryptografi Oppgave 1 a. For hvilke informasjonstilstander (lagring, overføring, behandling)

Detaljer

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Kryptogra og elliptiske kurver

Kryptogra og elliptiske kurver Kryptogra og elliptiske kurver Eivind Eriksen Høgskolen i Oslo Gjesteforelesning, 7. november 2007 Eivind Eriksen (Høgskolen i Oslo) Kryptogra og elliptiske kurver 1 / 23 Plan: 1 Generelt om kryptogra

Detaljer

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen...

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen... Innhold 6 Kryptografi 3 6.1 Totienten.................................... 3 6.2 Eulers teorem.................................. 8 6.3 Et eksempel på et bevis hvor Eulers teorem benyttes............ 19

Detaljer

Innføring i blokkjedeteknologi. Slobodan Petrović, NTNU Gjøvik 14/

Innføring i blokkjedeteknologi. Slobodan Petrović, NTNU Gjøvik 14/ Innføring i blokkjedeteknologi Slobodan Petrović, NTNU Gjøvik 14/09-2018 Innhold Innledning Grunnkomponenter av en blokkjede (blockchain) Kryptografiske hash funksjoner (spredefunksjon, avtrykkfunksjon)

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Bevisbar sikkerhet. Kristian Gjøsteen. 2. mars 2005

Bevisbar sikkerhet. Kristian Gjøsteen. 2. mars 2005 Bevisbar sikkerhet Kristian Gjøsteen 2. mars 2005 Oversikt Hvorfor bevisbar sikkerhet? Hva er bevisbar sikkerhet? Eksempel Hvorfor bevisbar sikkerhet? Mål Vi ønsker å lage kryptosystemer hvis sikkerhet

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software)

Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software) 1 Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software) Mich ael Morten sen m ich aelm @ii.u ib.n o 10/ 10/ 05 INF329 Utviklin g av sikre ap p likasjon er 2 Elementær kryptografi

Detaljer

Oppgaver til kapittel 19 - Kryptering og steganografi

Oppgaver til kapittel 19 - Kryptering og steganografi Oppgaver til kapittel 19 - Kryptering og steganografi Oppgave 1 - Cæsars kode (plenum) I symmetrisk kryptering brukes samme nøkkel både for å kryptere og dekryptere. Avhengig av hvordan nøkkelen utformes

Detaljer

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre

Detaljer

PROSJEKT I KRYPTOLOGI IMT4051. Av: Ole Kasper Olsen Fredrik Skarderud Torkjel Søndrol Ole Martin Dahl

PROSJEKT I KRYPTOLOGI IMT4051. Av: Ole Kasper Olsen Fredrik Skarderud Torkjel Søndrol Ole Martin Dahl PROSJEKT I KRYPTOLOGI IMT4051 Av: Ole Kasper Olsen Fredrik Skarderud Torkjel Søndrol Ole Martin Dahl Forord Vi har i denne oppgaven sett på kryptografiske hashfunksjoner. Vi starter rapporten med å se

Detaljer

Standardisering av krypto i offentlig sektor

Standardisering av krypto i offentlig sektor Direktoratet for forvaltning og IKT (Difi) Standardisering av krypto i offentlig sektor Vedlegg - Kryptografi og bruksområder Versjon 1.0 2011-07-22 Innhold 1 Teoretisk grunnlag 3 1.1 Kryptografi 3 1.2

Detaljer

INF1040 Oppgavesett 14: Kryptering og steganografi

INF1040 Oppgavesett 14: Kryptering og steganografi INF1040 Oppgavesett 14: Kryptering og steganografi (Kapittel 19) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv - og Prøv selv - oppgavene. Fasitoppgaver 1. Krypter følgende strenger ved

Detaljer

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER Euklids algoritme Euklid s setning 1, divisjonslemmaet, fra Bok 7 Gitt to ulike tall. Det minste trekkes så fra det største så mange ganger dette

Detaljer

Hashfunksjoner. for bruk i Digitale Signaturer. Hovedfagsoppgave JAN ANDERS SOLVIK

Hashfunksjoner. for bruk i Digitale Signaturer. Hovedfagsoppgave JAN ANDERS SOLVIK Hashfunksjoner for bruk i Digitale Signaturer Hovedfagsoppgave JAN ANDERS SOLVIK Institutt for Informatikk Det matematisk-naturvitenskaplige fakultet Universitetet i Bergen 20. Oktober 1995 Forord Jeg

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,

Detaljer

1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på?

1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på? Prøve i kryptografi Navn: Karakter: Poeng: /30 Lykke til! Hjelpemidler: Viskelær og skrivesaker Teknologi i praksis, fre. 23. september Del 1 Flervalgsoppgaver Sett ring rundt alternativ A, B, C eller

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c

Detaljer

1. Krypteringsteknikker

1. Krypteringsteknikker Krypteringsteknikker Olav Skundberg Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget 1. Krypteringsteknikker 1.1. Fire formål med sikker kommunikasjon Aller først, pålitelig

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519 Eksamen 2. desember 2014 Eksamenstid 4 timar IR201712 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1.......................................................................................

Detaljer

Steg 1: Regneoperasjoner på en klokke

Steg 1: Regneoperasjoner på en klokke Diffie-Hellman nøkkelutveksling Skrevet av: Martin Strand Kurs: Python Tema: Tekstbasert, Kryptografi Fag: Matematikk, Programmering Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon Du har tidligere

Detaljer

Noen aspekter ved implementasjon og ytelse for kryptosystemer basert på elliptiske kurver

Noen aspekter ved implementasjon og ytelse for kryptosystemer basert på elliptiske kurver Noen aspekter ved implementasjon og ytelse for kryptosystemer basert på elliptiske kurver av Terje Gjøsæter og Kjetil Haslum Hovedoppgave til mastergraden i informasjons- og kommunikasjonsteknologi Høgskolen

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................

Detaljer

Offentlig nøkkel kryptografi og RSA

Offentlig nøkkel kryptografi og RSA Offentlig nøkkel kryptografi og RSA Jens Otto Hatlevold Jan Magne Tjensvold Oktober 2006 Sammendrag Utgangspunktet for prosjektet er offentlig nøkkel kryptografi og hvordan denne teknikken benyttes i praksis.

Detaljer

Hashing. INF Algoritmer og datastrukturer HASHING. Hashtabeller

Hashing. INF Algoritmer og datastrukturer HASHING. Hashtabeller Hashing INF2220 - Algoritmer og datastrukturer HØSTEN 200 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning : Hashing Hashtabeller (kapittel.) Hash-funksjoner (kapittel.2) Kollisjonshåndtering

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT 1005 Diskret matematikk Dato: Torsdag 27. februar 2014 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget, 1. et., B.

EKSAMENSOPPGAVE. Eksamen i: MAT 1005 Diskret matematikk Dato: Torsdag 27. februar 2014 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget, 1. et., B. EKSAMENSOPPGAVE Eksame i: MAT 1005 Diskret matematikk Dato: Torsdag 7. februar 014 Tid: Kl 09:00 13:00 Sted: Admiistrasjosbygget, 1. et., B.154 Tillatte hjelpemidler: Rottmas tabeller. Godkjete statistiske

Detaljer

Kryptologi. Læringsmål kryptering og steganografi. Kryptering av data EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH

Kryptologi. Læringsmål kryptering og steganografi. Kryptering av data EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Læringsmål kryptering og steganografi Kryptering og steganografi Forstå ulike krypteringsprinsipper. Kunne sentrale begreper. Kjenne til en del sentrale teknikker. EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

Eksamen MAT H Løsninger

Eksamen MAT H Løsninger Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F

Detaljer

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin:

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 200 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: s 0 s 1 gjennkjenner 0 1og s 0 gjennkjenner (0 1). Fra dette ser vi at

Detaljer

MAT Notat om RSA-kryptografi

MAT Notat om RSA-kryptografi MAT4000 - Notat om RSA-kryptografi Erik Bédos Vår 2008 Abstract Dette notatet er et tillegg til heftet i elementær tallteori. Det omhandler anvendelser av tallteorien i kryptografi, med spesiell vekt på

Detaljer

Oversikt over lineære kongruenser og lineære diofantiske ligninger

Oversikt over lineære kongruenser og lineære diofantiske ligninger Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne

Detaljer

Hash-funksjoner. Introduksjon. Steg 1: Strekkoder. Eksempel. Skrevet av: Martin Strand

Hash-funksjoner. Introduksjon. Steg 1: Strekkoder. Eksempel. Skrevet av: Martin Strand Hash-funksjoner Skrevet av: Martin Strand Kurs: Python Tema: Tekstbasert, Kryptografi Fag: Matematikk, Programmering Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon Tidligere har vi sett hvordan

Detaljer

Populærvitenskapelig foredrag Kryptering til hverdag og fest

Populærvitenskapelig foredrag Kryptering til hverdag og fest IN1020 - Introduksjon til datateknologi Populærvitenskapelig foredrag 18.10.2017 Kryptering til hverdag og fest Håkon Kvale Stensland & Andreas Petlund Plan for nettverksdelen av IN1020 18. oktober Populærvitenskapelig

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

INF1020 Algoritmer og datastrukturer

INF1020 Algoritmer og datastrukturer Dagens plan Hashing Hashtabeller Hash-funksjoner Kollisjonshåndtering Åpen hashing (kap. 5.3) Lukket hashing (kap. 5.4) Rehashing (kap. 5.5) Sortering ut fra en hashing-ide (side 66-68) Bøttesortering

Detaljer

Læringsmål kryptering og steganografi

Læringsmål kryptering og steganografi Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19 12. november 2008 Læringsmål kryptering og steganografi Forstå ulike

Detaljer

Kryptering og steganografi

Kryptering og steganografi Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19 14. november 2007 INF1040-kryptering-1 HUSK Neste uke: Ingen forelesning.

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

Tor-Eirik Bakke Lunde

Tor-Eirik Bakke Lunde Obligatorisk oppgave 2 INF-2310 < Sikkerhet i distribuerte systemer > 15. oktober 2003 Obs! Denne rapporten forutsetter kjennskap til medlagte JavaDoc informasjon. Tor-Eirik Bakke Lunde torebl@stud.cs.uit.no

Detaljer

FASIT/LF FOR EKSAMEN TMA4140, H07

FASIT/LF FOR EKSAMEN TMA4140, H07 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 FASIT/LF FOR EKSAMEN TMA440, H07 Oppgave (0%) Benytt matematisk induksjon til å vise at for alle heltall n. n i i!

Detaljer

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018 Modulo hva er nå det for no? Øvingsforelesning 4 TMA4140 Diskret Matematikk 24. og 26. september 2018 Dagen i dag Repetere den euklidske algoritmen, kongruensregning og annet underveis H11.3a: Inverser

Detaljer

= 3 11 = = 6 4 = 1.

= 3 11 = = 6 4 = 1. MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at

Detaljer

OFFENTLIG-NØKKELKRYPTOGRAFI

OFFENTLIG-NØKKELKRYPTOGRAFI OFFENTLIG-NØKKELKRYPTOGRAFI S. O. SMALØ Abstract. I dette notatet, som skal inngå som pensum i etterog viderutdanningskurs i datasikkerhet, vil vi gi en kort innføring i oentlig-nøkkel-kryptogra med illustrasjoner

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

INF2220: Forelesning 3

INF2220: Forelesning 3 INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) ABSTRAKTE DATATYPER 2 Abstrakte datatyper En ADT består av: Et sett med objekter. Spesifikasjon

Detaljer

Tittel: Metode og enhet for randomisering av en hemmelig nøkkel for beskyttelse mot angrep fra supplerende kanaler

Tittel: Metode og enhet for randomisering av en hemmelig nøkkel for beskyttelse mot angrep fra supplerende kanaler V2199NO00 EP 2 99 26 B1 Tittel: Metode og enhet for randomisering av en hemmelig nøkkel for beskyttelse mot angrep fra supplerende kanaler 1 1 2 3 Beskrivelse [0001] Oppfinnelsen omfatter en metode og

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 =

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 = Eksamen. desember 205 Eksamenstid 4 timar IR2072 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve.......................................................................................

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :

Detaljer

Kommentarer til Eksamen IM005 - V02

Kommentarer til Eksamen IM005 - V02 Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple

Detaljer

Kryptering og steganografi

Kryptering og steganografi Hemmeligholdelse av budskap Kryptering og steganografi EJHJUBM SFRSFTFOUBTKPM FS FU LVMU GBH Vi kan ofte være interessert i å gjøre data uleselig for uvedkommende, eller å gjemme dem slik at uvedkommende

Detaljer

3.1. Formodninger om primtall.

3.1. Formodninger om primtall. 15 Mai 2000 Kap 3.1 Formodninger om primtall 1 3.1. Formodninger om primtall. (3.1.1) Mersenne, Godbach og primtallstvillinger. Vi skal her forklare noen av de mest kjente formodningene om primtall. (3.1.2)

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT220/MAUMAT44 - Algebra Fredag. juni 204, kl. 09-4 Tillatte hjelpemidler: Kalkulator i samsvar med fakultetets

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p)

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) . Oppgave. Bevis følgende logiske ekvivalens: ((p q) p) (p q). Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) 3. Avgjør om følgende utsagn er sant i universet

Detaljer

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)

Detaljer

Kryptering og steganografi

Kryptering og steganografi Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH INF1040-kryptering-1 Hemmeligholdelse av budskap Vi er ofte interessert i å gjøre data uleselig for uvedkommende, eller å gjemme dem slik

Detaljer

Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array

Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type (kapittel.) Hash-funksjoner (kapittel..)

Detaljer

EKSAMEN I TTM4137 INFORMASJONSSIKKERHET i MOBILNETT

EKSAMEN I TTM4137 INFORMASJONSSIKKERHET i MOBILNETT Bokmål Norges teknisk-naturvitenskapelige universitet Institutt for telematikk EKSAMEN I TTM4137 INFORMASJONSSIKKERHET i MOBILNETT Faglig kontakt under eksamen: Professor Stig F. Mjølsnes. (mobil 918 97

Detaljer

Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering

Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Hashtabeller Lars Vidar Magnusson 12.2.2014 Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Dictionaries Mange applikasjoner trenger dynamiske sett som bare har dictionary oparsjonene

Detaljer

Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196)

Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196) Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196) Sammendrag Oppgaven går ut på å implementere RSA-krypteringen. Deloppgaver for denne krypteringen er å implementere

Detaljer

Eksamen i emne TTM4135 Informasjonssikkerhet Løsningsforslag.

Eksamen i emne TTM4135 Informasjonssikkerhet Løsningsforslag. ksamen i emne TTM4135 Informasjonssikkerhet 2006-05-22. Løsningsforslag. Oppgave 1 1.1. (6 p.) Feltene i AH er som følger: - neste hode (8 bit): Identifiserer type hode som følger umiddelbart etter dette

Detaljer

Oversikt over kvadratiske kongruenser og Legendresymboler

Oversikt over kvadratiske kongruenser og Legendresymboler Oversikt over kvadratiske kongruenser og Legendresymboler Richard Williamson 3. desember 2014 Oppgave 1 Heltallet er et primtall. Er 11799 en kvadratisk rest modulo? Hvordan løse oppgaven? Oversett først

Detaljer

Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array

Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type Hash-funksjoner hashcode Kollisjonshåndtering

Detaljer

Et ekstremt ufullstendig oppslagsverk for TMA4185 Kodeteori

Et ekstremt ufullstendig oppslagsverk for TMA4185 Kodeteori Et ekstremt ufullstendig oppslagsverk for TMA4185 Kodeteori Ruben Spaans May 21, 2008 1 Pensum Pensumliste: ˆ Kapittel 1: Hele, unntatt 110 ˆ Kapittel 2: 21, 24 (singleton upper bound og MDS), 27 (Gilbert

Detaljer

Relativt primiske tall

Relativt primiske tall Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 3: Maps og Hashing Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 3 1 / 25 Maps

Detaljer

LF, KONTINUASJONSEKSAMEN TMA

LF, KONTINUASJONSEKSAMEN TMA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Haaken A. Moe 92650655 Bokmål LF, KONTINUASJONSEKSAMEN TMA4140 2008 Oppgave 1 (10%)

Detaljer

Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006

Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006 i kryptering 9. Mars 2006 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

INF2220: Forelesning 3. Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5)

INF2220: Forelesning 3. Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) Map og hashing Ett minutt for deg selv: Hva vet du om maps/dictionarys og hashing fra tidligere?

Detaljer

INF2220: Forelesning 3

INF2220: Forelesning 3 INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) REPETISJON: ALGORITMER OG STOR O 2 REPETISJON RØD-SVARTE TRÆR 7 Rød-svarte trær Et rød-svart

Detaljer

... HASHING. Hashing. Hashtabeller. hash(x)

... HASHING. Hashing. Hashtabeller. hash(x) HASHING Hashing Hashtabeller (kapittel.) Hash-funksjoner (kapittel.) Kollisjonshåndtering Åpen hashing (kapittel.) Lukket hashing (kapittel.) Anta at en bilforhandler har ulike modeller han ønsker å lagre

Detaljer

VEDLEGG 7 SIKKERHET 1. KRAV TIL SIKRING AV DATAFILER VED OVERFØRING TIL/FRA BANKEN

VEDLEGG 7 SIKKERHET 1. KRAV TIL SIKRING AV DATAFILER VED OVERFØRING TIL/FRA BANKEN VEDLEGG 7 SIKKERHET 1. KRAV TIL SIKRING AV DATAFILER VED OVERFØRING TIL/FRA BANKEN 1.1 Sikkerhetskravene bygger på at det til enhver tid skal være et 1 til 1-forhold mellom det som er registrert i Virksomhetens

Detaljer

Kryptografi, del 2. Aslak Bakke Buan, Ole Enge

Kryptografi, del 2. Aslak Bakke Buan, Ole Enge Aslak Bakke Buan, Ole Enge Kryptografi, del 2 Offentlig-nøkkel kryptografi Anta du vil handle på internett og blir bedt om å oppgi kredittkortnummeret ditt. Du stoler kanskje på at nettstedet du vil handle

Detaljer

Koder. Kristian Ranestad. 8. Mars 2005

Koder. Kristian Ranestad. 8. Mars 2005 i kryptering 8. Mars 2005 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

Forslag til løsninger, TMA4150 Algebra, 29. mai 2018 Side 1 av 5

Forslag til løsninger, TMA4150 Algebra, 29. mai 2018 Side 1 av 5 Forslag til løsninger, TMA4150 Algebra, 29. mai 2018 Side 1 av 5 Oppgave 1 isomorfi, nemlig 24 = 2 3 3, så det finnes tre abelske grupper av orden 24 opp til Z 2 Z 2 Z 2 Z 3 ; Z 2 Z 4 Z 3 ; Z 8 Z 3. O

Detaljer

Forelesning 20 mandag den 27. oktober

Forelesning 20 mandag den 27. oktober Forelesning 20 mandag den 27. oktober 5.10 Eksempler på hvordan regne ut Legendresymboler ved å benytte kvadratisk gjensidighet Eksempel 5.10.1. La oss se igjen på Proposisjon 5.6.2, hvor vi regnet ut

Detaljer

Eksamen i MNFMA205/SIF5021, 19. mai 1999-Løsningsforslag a b Oppgave 2. (a) Vi skal vise at H = 0 a b under matrisemultiplikasjon. Vi har at det.

Eksamen i MNFMA205/SIF5021, 19. mai 1999-Løsningsforslag a b Oppgave 2. (a) Vi skal vise at H = 0 a b under matrisemultiplikasjon. Vi har at det. Eksamen i MNFMA205/SIF5021 19. mai 1999-Løsningsforslag { } Oppgave 2. a Vi skal vise at H 0 a C er en gruppe under matrisemultiplikasjon. Vi har at det aā + a 2 + 2 > 0 da enten a 0 eller 0. Dette fører

Detaljer

LO118D Forelesning 4 (DM)

LO118D Forelesning 4 (DM) LO118D Forelesning 4 (DM) Mer funksjoner + følger 28.08.2007 1 Funksjoner 2 Følger og strenger Funksjoner En funksjon f fra X til Y sies å være en-til-en (injektiv) hvis det for hver y Y er maksimalt én

Detaljer

Vår referanse: A03 - G:17/173 Revisjon: 01 NASJONAL SIKKERHETSMYNDIGHET. Sikker informasjon i tiden etter en kvantedatamaskin KVANTERESISTENT KRYPTO

Vår referanse: A03 - G:17/173 Revisjon: 01 NASJONAL SIKKERHETSMYNDIGHET. Sikker informasjon i tiden etter en kvantedatamaskin KVANTERESISTENT KRYPTO Vår referanse: A03 - G:17/173 Revisjon: 01 NASJONAL SIKKERHETSMYNDIGHET Sikker informasjon i tiden etter en kvantedatamaskin KVANTERESISTENT KRYPTO INNHOLD 1. Introduksjon................................................................4

Detaljer

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

Forelesning 3: Nøkkelhåndtering og PKI

Forelesning 3: Nøkkelhåndtering og PKI Universitetet i Oslo IN2120 Informasjonssikkerhet Høst 2018 Workshop-spørsmål med svarforslag Forelesning 3: Nøkkelhåndtering og PKI Spørsmål 1 a. Hvorfor er god håndtering av kryptografiske nøkler essensiell

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Steg 1: Rest etter divisjon

Steg 1: Rest etter divisjon Primtall og effektivitet Skrevet av: Martin Strand Kurs: Python Tema: Tekstbasert, Kryptografi Fag: Matematikk, Programmering Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon I matematikktimene

Detaljer

Turingmaskiner.

Turingmaskiner. Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen

Detaljer

Teknologien: Fra digitale signaturer til offentlig-nøkkel infrastruktur

Teknologien: Fra digitale signaturer til offentlig-nøkkel infrastruktur Teknologien: Fra digitale signaturer til offentlig-nøkkel infrastruktur Jon Ølnes (NR) Jon.Olnes@nr.no Seminar om elektronisk kommunikasjon med digitale signaturer Statskonsult, 4/4 2000 Innhold Hva kan

Detaljer