LO118D Forelesning 6 (DM)

Størrelse: px
Begynne med side:

Download "LO118D Forelesning 6 (DM)"

Transkript

1 LO118D Forelesning 6 (DM) Rekurrensrelasjoner

2 1 Rekurrensrelasjoner

3 Rekurrensrelasjoner En rekurrensrelasjon definerer det n-te elementet i en følge i forhold til de foregående elementene. Følgen startes ved å ta utgangspunkt i en eller flere initialbetingelser.

4 Rekurrensrelasjoner Definisjon En rekurrensrelasjon for følgen a 0, a 1,... er en ligning som relaterer a n til noen av sine forgjengere a 1, a 2,..., a n 1. Initialbetingelsene til følgen a 0, a 1,... er eksplisitte verdier gitt for en endelig mengde av følgens medlemmer.

5 Rekurrensrelasjoner Rekurrensrelasjoner, rekursive algoritmer og matematisk induksjoner er nært beslektet. En rekurrensrelasjon bruker tidligere verdier i en følge til å finne nåværende verdi. Rekursive algoritmer bruker mindre instanser av nåværende input til å prosessere nåværende input. Det induktive steget i matematisk induksjon antar at tidligere instanser av utsagnet er sant for å bevise det nåværende utsagnet.

6 Fibonacci-tallene Følgen av Fibonacci-tall er gitt av rekurrensrelasjonen: f n = f n 1 + f n 2, n 3 med initialbetingelsene: f 1 = 1, f 2 = 1

7 Oppsamlet rente Finn en rekurrensrelasjon for oppspart beløp A n etter n år.

8 Størrelse på potensmengde Vi husker at størrelsen på potensmengden er P(X ) = 2 n. Uttrykk dette med en rekurrensrelasjon.

9 Addisjonsprinsippet Anta at X i,..., X t er mengder og at den i-ende mengden X i har n i elementer. Hvis {X 1,..., X t } er en parvis disjunkt familie, så er antallet elementer som kan plukkes ut fra X 1 eller X 2 eller... eller X t n 1 + n n t

10 Mønster i strenger Vi definerer S n som antallet n-bit strenger som ikke inneholder mønsteret 111. Finn en rekurrensrelasjon for S n.

11 Multiplikasjonsprinsippet Hvis en aktivitet kan utføres i t etterfølgende steg og steg 1 kan utføres på n 1 måter, steg 2 utføres på n 2 måter,..., steg t utføres på n t måter, da er det totale antallet forskjellige aktiviteter n 1 n 2... n t.

12 Catalan-tallene Gitt at vi har et n n-rutenett. Vi starter i nederste venstre hjørne og går til øverste høyre hjørne, med restriksjonen at vi kun kan gå til høyre eller oppover. Antallet ruter, kalt gode ruter, kaller vi C n. Følgen av alle C n kaller vi Catalan-tallene. Vi kan uttrykke C n ved en rekurrensrelasjon.

13 Tårnene i Hanoi En berømt pusleoppgave er kalt Tårnene i Hanoi. Vi har tre tårn, der det første består av n skiver med gradvis mindre radius. Skivene skal flyttes enkeltvis fra det første tårnet til det tredje tårnet via det andre tårnet, men vi kan aldri ha en større skive over en mindre skive. Vi kan lage en rekurrensrelasjon for antall flytt som trengs.

14 Tårnene i Hanoi

15 Steg 1

16 Steg 2

17 Steg 3

18 Steg 4

19 Steg 5

20 Steg 6

21 Steg 7

22 Steg 8

23 Steg 9

24 Steg 10

25 Steg 11

26 Steg 12

27 Steg 13

28 Steg 14

29 Steg 15

30 Optimal løsning på tårnene i Hanoi Vi kan bevise med matematisk induksjon at rekurrensrelasjonen vår gir en optimal løsning.

31 Økonomisk spindelweb Vi kan anta en økonomisk modell der tilbud og etterspørsel er gitt ved lineære ligninger. Tilbud er gitt ved p = a bq der p er pris, q er kvantitet og a og b er positive parametre. Etterspørsel er gitt ved p = kq der p og q er samme som over, k er en positiv parameter.

32 Økonomisk spindelvev Vi antar at det er litt reaksjonstid mellom hvordan tilbud og etterspørsel utvikler seg. Det tar for eksempel tid å produsere varer. Vi deler tiden i diskrete intervaller, n = 0, 1,.... Basert på dette kan vi lage en rekurrensrelasjon mellom tilbud og etterspørsel.

33 Ackermanns funksjon Vi kan utvide definisjonen av rekurrensrelasjoner til å inkludere funksjoner over n-tupler av positive heltall. Ackermanns funksjon er et eksempel på det. Den er definert slik A(m, 0) = A(m 1, 1), m = 1, 2,... A(m, n) = A(m 1, A(m, n 1)), m = 1, 2,... n = 1, 2,... med initialbetingelsene A(0, n) = n + 1, n = 1, 2,...

34 Hvis vi har god tid Noen flere eksempler med matematisk induksjon: Vis ved hjelp av matematisk induksjon at n = 2 n+1 1 for ikke-negative heltall n. Vis ved hjelp av matematisk induksjon at n = n(n + 1)/2 for positive heltall n.

35 Neste gang Løsning av rekurrensrelasjoner

Forelesning 4 torsdag den 28. august

Forelesning 4 torsdag den 28. august Forelesning 4 torsdag den 28. august 1.10 Rekursjon Merknad 1.10.1. Hvert tall i sekvensen 1, 2, 4, 8, 16,... er to ganger det foregående. Hvordan kan vi beskrive sekvensen formelt? Vi kan ikke skrive

Detaljer

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

Forelesning 5 mandag den 1. september

Forelesning 5 mandag den 1. september Forelesning mandag den. september. Fibonnacitall forts. Proposisjon..6. La n være et naturlig tall. Da er u + u + + u n = u n+. Bevis. Først sjekker vi om proposisjonen er sann når n =. I dette tilfellet

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Oppgave 1 Om mengder. a) (10%) Sett opp en medlemsskapstabell (membership

Detaljer

LO118D Forelesning 3 (DM)

LO118D Forelesning 3 (DM) LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 018 Seksjon 81 11 a) Oppgaven spør etter antall måter man kan gå opp n trappetrinn dersom man

Detaljer

TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7

TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? TMA4140 Diskret matematikk Høst 011 Løsningsforslag Øving 7 7-1-10 a) Beløpet etter n 1 år ganges med 1.09 for å

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

LF, KONTINUASJONSEKSAMEN TMA

LF, KONTINUASJONSEKSAMEN TMA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Haaken A. Moe 92650655 Bokmål LF, KONTINUASJONSEKSAMEN TMA4140 2008 Oppgave 1 (10%)

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008 Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 008 3-1-9 prosedyre palindromsjekk (a 1, a,..., a n : streng) svar :=sann for i := 1 to n/ if a i a n+1 i then svar :=usann {svaret er sant hvis

Detaljer

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p)

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) . Oppgave. Bevis følgende logiske ekvivalens: ((p q) p) (p q). Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) 3. Avgjør om følgende utsagn er sant i universet

Detaljer

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis. Andreas Leopold Knutsen

Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis. Andreas Leopold Knutsen Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis Andreas Leopold Knutsen February 9, 2010 Eks. 1: Finn feilen Fibonaccitallene F 1, F 2, F 3,... er denert rekursivt ved: F 0 = 0, F 1 = 1, og

Detaljer

Forelesning 11 mandag den 22. september

Forelesning 11 mandag den 22. september Forelesning 11 mandag den 22. september 2.9 Lineære diofantiske ligninger forts. Proposisjon 2.9.1. La a, b, c, x, y være heltall. Anta at La d være et naturlig tall slik at sfd(a, b) = d. Ut ifra definisjonen

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven Richard Williamson 3. oktober 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?..........................

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Grafteori Vi regner oppgavene på tavlen

Detaljer

LO118D Forelesning 12 (DM)

LO118D Forelesning 12 (DM) LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Utførelse av programmer, metoder og synlighet av variabler i JSP

Utførelse av programmer, metoder og synlighet av variabler i JSP Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

24. AUGUST Diskret matematikk. onsdag 23. august 2017

24. AUGUST Diskret matematikk. onsdag 23. august 2017 24. AUGUST 2017 Diskret matematikk onsdag 23. august 2017 1 Hva er matematikk? Matematikk er, likhet med norsk, engelsk og Java, et språk om man kan uttrykke noe i, f.eks. sammenhenger og sannheter. Symbolene

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

MAT1030 Forelesning 17

MAT1030 Forelesning 17 MAT1030 Forelesning 17 Rekurrenslikninger Roger Antonsen - 18. mars 009 (Sist oppdatert: 009-03-18 19:3) Forelesning 17 Forrige gang ga vi en rekke eksempler på bruk av induksjonsbevis og rekursivt definerte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

OPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08

OPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08 OPPGAVESETT MAT111-H17 UKE 34 Settet inneholder oppgaver fra stoffet omhandlet på forelesning uke 34, og består av seminaroppgaver, gruppeoppgaver og og obligatoriske oppgaver. Avsnittene og appendiksene

Detaljer

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz Test, Algebra Innhold. Tallfølger.... Tallrekker.... Uendelige geometriske rekker... 7. Induksjonsbevis... 0 Grete Larsen. Tallfølger ) En rekursiv formel uttrykker et ledd i en tallfølge ved hjelp av

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

MA1301 Uke 1: In(tro)duksjon

MA1301 Uke 1: In(tro)duksjon MA1301 Uke 1: In(tro)duksjon Magnus Bakke Botnan 21. august 2012 Magnus Bakke Botnan () MA1301 Uke 1: In(tro)duksjon 21. august 2012 1 / 14 Introduksjon Praktisk Praktisk Faglærer Magnus B. Landstad: magnus.landstad@math.ntnu.no

Detaljer

Vi skal nå lære hvordan vi kan finne en formel for å bestemme det n te elementet i en tallfølge av 2. grad.

Vi skal nå lære hvordan vi kan finne en formel for å bestemme det n te elementet i en tallfølge av 2. grad. Differensligninger Vi startet med en repetisjon om løsning av. ordens differensligninger.. ordens differensligning. a n = c 1 a n-1 + c a n-, der c 1 og c er konstanter. Vi ser her at neste ledd i følgen

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

KAPITTEL 3 Litt logikk og noen andre småting

KAPITTEL 3 Litt logikk og noen andre småting KAPITTEL 3 Litt logikk og noen andre småting Logikk er sentralt både i matematikk og programmering, og en innføring i de enkleste delene av logikken er hovedtema i dette kapitlet I tillegg ser vi litt

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

Øvingsforelesning 7. Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18. TMA4140 Diskret Matematikk

Øvingsforelesning 7. Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18. TMA4140 Diskret Matematikk Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18 Øvingsforelesning 7 TMA4140 Diskret Matematikk 15. og 17. oktober 2018 Dagen i dag Generaliserte permutasjoner

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 27. januar 2010 (Sist oppdatert: 2010-01-27 12:47) Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2.

S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2. /14/016 S1 014 høst LØSNING matematikk.net S1 014 høst LØSNING Contents DEL EN Oppgave 1 x 10 = x(x 5) x + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7± x = x = 5 lg( ) + = 5 x lg( ) = x = 10 lg( x ) 10 x =

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

Differensjalligninger av førsteorden

Differensjalligninger av førsteorden Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2016

Løsningsforslag til eksamenen i MAT103, våren 2016 Løsningsforslag til eksamenen i MAT103, våren 2016 Oppgave 1 (vekt 10%) a) Sjekk om følgende tall er delelig med 9: 654, 45231, 1236546 Løsning: Et tall er delelig med 9 hvis og bare hvis tverrsummen er

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

Løsningsforslag - Parallellitet og repetisjon

Løsningsforslag - Parallellitet og repetisjon Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon Løsningsforslag

Detaljer

Forelesning 31: Repetisjon

Forelesning 31: Repetisjon MAT1030 Diskret Matematikk Forelesning 31: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 31: Repetisjon 18. mai 2010 (Sist oppdatert: 2010-05-18 14:11) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 32: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 21. mai 2008 Streik? Det er muligheter for streik i offentlig sektor fra midnatt, natt til fredag.

Detaljer

Veiledning for å behandle søknader refusjon av sukkeravgift på Min Side

Veiledning for å behandle søknader refusjon av sukkeravgift på Min Side Veiledning for å behandle søknader refusjon av sukkeravgift på Min Side Dette er en steg for steg bruksanvisning i hvordan du behandler søknader om refusjon av sukkeravgiften på Min Side. Du trenger brukernavn

Detaljer

MAT1030 Forelesning 18

MAT1030 Forelesning 18 MAT1030 Forelesning 18 Generell rekursjon og induksjon Roger Antonsen - 24. mars 2009 (Sist oppdatert: 2009-03-24 17:17) Rest fra sist Rest fra sist En litt håpløs måte å sende en kryptert binær sekvens

Detaljer

Matematikk for IT, høsten 2015

Matematikk for IT, høsten 2015 Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,

Detaljer

Rest fra sist. MAT1030 Diskret Matematikk. Rest fra sist. Rest fra sist. Eksempel (Fortsatt) Eksempel. Forelesning 18: Generell rekursjon og induksjon

Rest fra sist. MAT1030 Diskret Matematikk. Rest fra sist. Rest fra sist. Eksempel (Fortsatt) Eksempel. Forelesning 18: Generell rekursjon og induksjon MAT1030 Diskret Matematikk Forelesning 18: Generell rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. mars 2009 (Sist oppdatert: 2009-03-24 17:18) MAT1030 Diskret

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

Et detaljert induksjonsbevis

Et detaljert induksjonsbevis Et detaljert induksjonsbevis Knut Mørken 0. august 014 1 Innledning På forelesningen 0/8 gjennomgikk vi i detalj et induksjonsbevis for at formelen n i = 1 n(n + 1) (1) er riktig for alle naturlige tall

Detaljer

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)} Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,

Detaljer

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 15: og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo Repetisjon 11. mars 2009 (Sist oppdatert: 2009-03-10 20:38) MAT1030 Diskret Matematikk

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Definisjon. I et binært tre har hver node enten 0, 1 eller 2 barn

Definisjon. I et binært tre har hver node enten 0, 1 eller 2 barn Binære trær Definisjon I et binært tre har hver node enten 0, 1 eller 2 barn Rekursiv definisjon: Et binært tre er enten tomt, eller: Består av en rotnode og to binære trær som kalles venstre subtre og

Detaljer

Mengder, relasjoner og funksjoner

Mengder, relasjoner og funksjoner MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030

Detaljer

Høstemelding #9 2015

Høstemelding #9 2015 Page 1 of 4 - Periode: Uke 40 (27.09-04.10) Høstemelding #9 2015 Periode: Uke 40 (27.09-04.10) Praktisk: - Kjør forsiktig langs hele Vatneliveien og rundt gården. Barn leker! - Økologiske egg fra Sølve

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel Velkommen til plenumsregning for MAT1030 MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Torsdager 10:15 12:00 Gjennomgang

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

TOPOLOGI. Dan Laksov

TOPOLOGI. Dan Laksov Forum för matematiklärare TOPOLOGI Dan Laksov Institutionen för Matematik, 2009 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Topologi Dan Laksov Notater for Forum för Matematiklärare. Høst

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Litt mer om eksponensialfordelingen

Litt mer om eksponensialfordelingen Litt mer om eksponensialfordelingen og Poissonprosesser. Dekkes av 5.6, 6.6, 6.7 og det som står under. Eksponensialfordelingen Så langt har vi lært at det finnes to parametriseringer av eksponensialfordelingen

Detaljer

ITF20006 Algoritmer og datastrukturer Oppgavesett 7

ITF20006 Algoritmer og datastrukturer Oppgavesett 7 ITF Algoritmer og datastrukturer Oppgavesett 7 Av Thomas Gabrielsen Eksamen Oppgave. ) Det tar konstant tid å hente et gitt element fra en tabell uavhengig av dens størrelse, noe som med O-notasjon kan

Detaljer

Høstemelding #12 2015

Høstemelding #12 2015 Page 1 of 4 - Periode: Uke 42 (11.10-18.10) Høstemelding #12 2015 Periode: Uke 42 (11.10-18.10) Praktisk: - Kjør forsiktig langs hele Vatneliveien og rundt gården. Barn leker! - Økologiske egg fra Sølve

Detaljer