Forelesning 5 mandag den 1. september

Størrelse: px
Begynne med side:

Download "Forelesning 5 mandag den 1. september"

Transkript

1 Forelesning mandag den. september. Fibonnacitall forts. Proposisjon..6. La n være et naturlig tall. Da er u + u + + u n = u n+. Bevis. Først sjekker vi om proposisjonen er sann når n =. I dette tilfellet er utsagnet at u = u +. Siden u = og u + = u 3 = =, er dette sant. Anta nå at proposisjonen har blitt bevist når n er et gitt naturlig tall m. Således har det blitt bevist at u + u + + u m = u m+. Vi gjør følgende observasjoner. ) Fra antakelsen at følger det at u + u + + u m = u m+, u + u + + u m + u m+ = u m+ ) + u m+ = u m+ + u m+. ) Ut ifra definisjonen til sekvensen av Fibonaccitall er Fra ) ) deduserer vi at u m+3 = u m+ + u m+. u + u + + u m + u m+ = u m+3. Dermed er proposisjonen sann når n er det naturlige tallet m +. Ved induksjon konkluderer vi at proposisjonen er sann når n er et hvilket som helst naturlig tall.

2 Eksempel..7. Når n =, fastslår Proposisjon..6 at u + u = u, altså at + = 3. Eksempel..8. Når n = 3, fastslår Proposisjon..6 at u + u + u 3 = u, altså at + + =. Eksempel..9. Når n =, fastslår Proposisjon..6 at u + u + u 3 + u = u 6, altså at = 8. Eksempel..0. Når n = 9, fastslår Proposisjon..6 at u + u + + u 9 = u, altså at = 89. Merknad... Den viktigste delen av dette beviset er ligningen Det er her vi benytter antakelsen at u + u + + u m + u m+ = u m+ ) + u m+. u + u + + u m = u m+. Proposisjon... La n være et naturlig tall slik at n. Da er u n = u n+ u n + ) n. Bevis. Først sjekker vi om proposisjonen er sann når n =. I dette tilfellet er utsagnet at u = u + u + ). Siden u = =

3 . Fibonnacitall forts. og u + u + ) = u 3 u = = er dette sant. Anta nå at proposisjonen har blitt bevist når n et gitt naturlig tall m slik at m. Således har det blitt bevist at Vi gjør følgende observasjoner. =, u m = u m+ u m + ) m. ) Ut ifra definisjonen til sekvensen av Fibonaccitall er Derfor er u m+ = u m + u m. u m+ u m+ u m = u m+ u m + u m ) u m+ u m = u m+ u m + u m+ u m u m+ u m = u m u m+ u m+ ) + u m+ u m. ) Ut ifra definisjonen til sekvensen av Fibonaccitall er u m+ = u m+ + u m. Derfor er u m+ u m+ = u m. Vi deduserer at u m u m+ u m+ ) + u m+ u m = u m + u m+ u m. 3) Fra antakelsen at u m = u m+ u m + ) m, følger det at u m + u m+ u m = ) m = ) ) m = ) m+ = ) m. 3

4 Fra ) 3) deduserer vi at Derfor er u m+ u m+ u m = ) m. u m+ = u m+ u m + ) m. Dermed er proposisjonen sann når n er det naturlige tallet m +. Ved induksjon konkluderer vi at proposisjonen er sann når n er et hvilket som helst naturlig tall slik at n. Eksempel..3. Når n = 3, fastslår Proposisjon.. at = 3 +. Eksempel... Når n =, fastslår Proposisjon.. at 3 =. Eksempel... Når n = 9, fastslår Proposisjon.. at 3 = +. Merknad..6. Den viktigste delen av beviset for Proposisjon.. er Steg 3). Det er her vi benytter antakelsen at u m = u m+ u m + ) m.. Binets formel for Fibonaccitallene Merknad... Nå skal vi finne en formel for det n-te Fibonaccitallet. Proposisjon... La x være en løsning til ligningen x x = 0. La n være et naturlig tall slik at n. Da er x n = xu n + u n. Bevis. Først sjekker vi om proposisjonen er sann når n =. I dette tilfellet er utsagnet at x = xu + u. Siden u = og u =, er xu + u = x + = x +.

5 . Binets formel for Fibonaccitallene Ut ifra antakelsen at er x x = 0, x = x +. Dermed er utsagnet sant. Anta nå at proposisjonen har blitt bevist for et gitt heltall m slik at m. Således har det blitt bevist at x m = xu m + u m. Vi gjør følgende observasjoner. ) Fra antakelsen at x m = xu m + u m følger det, ved å gange begge sidene i denne ligningen med x, at x m+ = x u m + xu m. ) Siden x er en løsning til ligningen x x = 0, er x = x +. Fra ) ) deduserer vi at Nå gjør vi følgende observajoner. ) Vi har: x m+ = x + )u m + xu m. x + )u m + xu m = xu m + u m + xu m = xu m + xu m + u m = xu m + u m ) + u m. ) Ut ifra definisjonen til sekvensen av Fibonaccitall er u m+ = u m + u m. Fra ) ) deduserer vi at x + )u m + xu m = xu m+ + u m.

6 For å oppsummere beviset så langt, har vi fastslått at og at Vi deduserer at x m+ = x + )u m + xu m x + )u m + xu m = xu m+ + u m. x m+ = xu m+ + u m. Dermed er proposisjonen sann når n = m +. Ved induksjon konkluderer vi at proposisjonen er sann for alle naturlige tall n slik at n. Eksempel..3. La x være en løsning til ligningen Når n = 3, fastslår Proposisjon.. at x x = 0. x 3 = u 3 x + u = x +. Eksempel... La x være en løsning til ligningen Når n =, fastslår Proposisjon.. at x x = 0. x = u x + u = x + 3 Eksempel... La x være en løsning til ligningen Når n = 7, fastslår Proposisjon.. at x x = 0. x 7 = u 7 x + u 6 = 3x + 8 Eksempel..6. La x være en løsning til ligningen Når n = 9, fastslår Proposisjon.. at x x = 0. x 9 = u 9 x + u 8 = 3x +. 6

7 . Binets formel for Fibonaccitallene Lemma..7. Tallene + og er løsninger til ligningen x x = 0. Bevis. For å bevise at + er en løsning til ligningen regner vi som følger: x x = 0, + ) + ) ) + + = + = = + + = 0 = 0. For å bevise at er en løsning til ligningen regner vi som følger: x x = 0, ) ) ) = = + = + + = 0 = 0. Merknad..8. Tallet + kalles noen ganger det gyldne snitt. Proposisjon..9. La n være et naturlig tall. Da er ) n u n = + ) n ). 7

8 Bevis. Fra Proposisjon.. og Lemma..7 følger det at + ) n + ) = u n + u n, og at ) n ) = u n + u n. Ved å benytte oss av disse faktaene, regner vi som følger: + ) n ) n + ) = u n + u n Dermed har vi bevist at = = = + + ) u n u n ) ) u n u n ) u n ) + + = u n = u n. + ) n u n ) n = u n. Ved å dele begger sidene i denne ligningen med, deduserer vi at proposisjonen er sann. Eksempel..0. Når n =, fastslår Proposisjon..9 at = + ) ). Eksempel... Når n = 3, fastslår Proposisjon..9 at = + ) 3 ) 3. 8

9 . Binets formel for Fibonaccitallene Eksempel... Når n = 6, fastslår Proposisjon..9 at 8 = + ) 6 ) 6. Eksempel..3. Når n = 9, fastslår Proposisjon..9 at 3 = + ) 9 ) 9. Terminologi... Ligningen i Proposisjon..9 kalles Binets formel. Merknad... Flere fakta kan deduseres fra Proposisjon..9. Etter noen forberedelser skal se på et eksempel: Proposisjon..8. Lemma..6. Vi har: + ) ) =. Bevis. Vi regner som følger: + ) ) ) ) + = = + = =. Lemma..7. Vi har: + ) Bevis. Vi gjør følgende observasjoner. ) Ut ifra Eksempel..0 er = ) =. + ) ). 9

10 Ved å gange begge sidene av denne ligningen med, følger det at = + ) ). ) Vi har: = = + ) + ) + ) ) ) ) Fra ) ) deduserer vi at = + ) ). Proposisjon..8. La n være et naturlig tall. Da er u n+ u n = u n+. Bevis. For å gjøre beviset lettere å lese, la x være +, og la y være. Vi gjør følgende observasjoner. ) La m være et naturlig tall. Ut ifra Proposisjon..9 er u m = x m y m ). Derfor er u m = ) x m y m ) = xm y m ) x m y m ) = x m x m y m + y m) = x m xy) m + y m). 0

11 . Binets formel for Fibonaccitallene ) Ut ifra Lemma..6 er xy) m = ) m. Fra ) ) deduserer vi at u m = x m ) m + y m). Dermed er og er u n+ = u n = x n ) n + y n) x n+) ) n+ + y n+)). Vi deduserer at u n+ u n = x n+) ) n+ + y n+)) x n ) n + y n) = x n+) ) n ) + y n+) x n + ) n y n) = x n+) + y n+) x n y n ) n + ) n) = x n+) + y n+) x n y n) Dermed er u n+ u n = x n+) + y n+) x n y n). Nå gjør vi følgende observasjoner. ) Ut ifra Lemma..6 er Derfor er x y = xy) = ) =. x n+) + y n+) x n y n) = x n+) + y n+) x y x n x y y n) = x n+ + y n+ y x n+ x y n+) = x y ) x n+ y n+)

12 ) Ut ifra Lemma..7 er Derfor er 3) Ut ifra Proposisjon..9 er x y ) =. x y ) x n+ y n+) = x n+ y n+). u n+ = x n+ y n+). Vi deduserer fra ) 3) at x n+) + y n+) x n y n) = x n+. For å oppsummere beviset så langt, har vi fastslått at u n+ u n = x n+) + y n+) x n y n) og at Vi deduserer at x n+) + y n+) x n y n) = x n+. u n+ u n = u n+. Eksempel..9. Når n =, fastslår Proposisjon..8 at 3 = 8. Eksempel..0. Når n = 3, fastslår Proposisjon..8 at =. Eksempel... Når n =, fastslår Proposisjon..8 at 3 =.

13 Oppgaver O. Oppgaver i eksamens stil Oppgave O..0. La n være et naturlig tall. La u n+ være det n + )-te Fibonaccitallet. Bevis at u + u u n = u n. Oppgave O... La n være et naturlig tall. La u k være det k-te Fibonnacitallet, hvor k er et hvilket som helst naturlig tall. Bevis at Tips: Gjør følgende: ) La r være og la s være Bevis at n i= Fra Proposisjon..9, deduser at ) Bevis at + r) n + s) n = ) n u i = u n. i +. r n s n ) = rn s n r s. u n = rn s n r s. n i=0 ) n )r i i Tips: Benytt formelen i Proposisjon.9.30 to ganger: i) Ved å la x være og å la y være r. ii) Ved å la x være og å la y være s. n i=0 ) n )s i. i 3

14 3) Deduser fra ), ) og Proposisjon..9 at + r) n + s) n r s = n i= ) n u i. i ) Fra Lemma..7 vet vi at r = r + og at s = s +. Deduser at ) Deduser fra ) og ) at r n s n = + r) n + s) n. u n = + r)n + s) n. r s 6) Konkluder fra 3) og ) at n i= ) n u i = u n. i Oppgave O... Følgende definerer ved rekursjon sekvensen av Lucastall. ) Det første heltallet i sekvensen er. ) Det andre heltallet i sekvensen er 3. 3) La m være et naturlig tall slik at m. Anta at det i-te heltallet i sekvensen har blitt definert for alle de naturlige tallene i slik at i m. Betegn det m-te heltallet i sekvensen som v m, og betegn det m )-te heltallet i sekvensen som v m. Da definerer vi det m + )-te heltallet i sekvensen til å være v m + v m. Skriv de første ti heltallene i sekvensen. Oppgave O..3. La v n betegne det n-te heltallet i sekvensen av Lucastall. Bevis at v v n = v n+ 3. O. Oppgaver for å hjelpe med å forstå forelesningen Oppgave O... Hva fastslår Proposisjon..6 når n =? Oppgave O... Gjør det samme som i Merknad.. for Proposisjon..6. Med andre ord, beskriv hvordan algoritmen i Bemarking..3 ser ut for Proposisjon..6. Oppgave O..6. Hva fastslår Proposisjon.. når n =? Oppgave O..7. Gjør det samme som i Merknad.. for Proposisjon... Med andre ord, beskriv hvordan algoritmen i Bemarking..3 ser ut for Proposisjon...

15 O. Oppgaver for å hjelpe med å forstå forelesningen Oppgave O..8. Hva fastslår Proposisjon.. når n = 6? Oppgave O..9. Gjør det samme som i Merknad.. for Proposisjon... Med andre ord, beskriv hvordan algoritmen i Bemarking..3 ser ut for Proposisjon... Oppgave O..30. Hva fastslår Proposisjon..9 når n = 7? Oppgave O..3. Hva fastslår Proposisjon..8 når n = 7?

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

Forelesning 4 torsdag den 28. august

Forelesning 4 torsdag den 28. august Forelesning 4 torsdag den 28. august 1.10 Rekursjon Merknad 1.10.1. Hvert tall i sekvensen 1, 2, 4, 8, 16,... er to ganger det foregående. Hvordan kan vi beskrive sekvensen formelt? Vi kan ikke skrive

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Forelesning 10 torsdag den 18. september

Forelesning 10 torsdag den 18. september Forelesning 10 torsdag den 18. september 2.8 Relativt primiske heltall og Euklids lemma Merknad 2.8.1. Korollar 2.7.20 er et svært viktig teoretisk verktøy. I denne og neste del av kapittelet skal vi se

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Forelesning 11 mandag den 22. september

Forelesning 11 mandag den 22. september Forelesning 11 mandag den 22. september 2.9 Lineære diofantiske ligninger forts. Proposisjon 2.9.1. La a, b, c, x, y være heltall. Anta at La d være et naturlig tall slik at sfd(a, b) = d. Ut ifra definisjonen

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven Richard Williamson 3. oktober 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?..........................

Detaljer

Forelesning 20 mandag den 27. oktober

Forelesning 20 mandag den 27. oktober Forelesning 20 mandag den 27. oktober 5.10 Eksempler på hvordan regne ut Legendresymboler ved å benytte kvadratisk gjensidighet Eksempel 5.10.1. La oss se igjen på Proposisjon 5.6.2, hvor vi regnet ut

Detaljer

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen...

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen... Innhold 6 Kryptografi 3 6.1 Totienten.................................... 3 6.2 Eulers teorem.................................. 8 6.3 Et eksempel på et bevis hvor Eulers teorem benyttes............ 19

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

LO118D Forelesning 6 (DM)

LO118D Forelesning 6 (DM) LO118D Forelesning 6 (DM) Rekurrensrelasjoner 10.09.2007 1 Rekurrensrelasjoner Rekurrensrelasjoner En rekurrensrelasjon definerer det n-te elementet i en følge i forhold til de foregående elementene. Følgen

Detaljer

Oversikt over lineære kongruenser og lineære diofantiske ligninger

Oversikt over lineære kongruenser og lineære diofantiske ligninger Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne

Detaljer

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008 Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 008 3-1-9 prosedyre palindromsjekk (a 1, a,..., a n : streng) svar :=sann for i := 1 to n/ if a i a n+1 i then svar :=usann {svaret er sant hvis

Detaljer

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Oppgave 1 Om mengder. a) (10%) Sett opp en medlemsskapstabell (membership

Detaljer

TMA 4140 Diskret Matematikk, 1. forelesning

TMA 4140 Diskret Matematikk, 1. forelesning TMA 4140 Diskret Matematikk, 1. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) August 29, 2011 Haaken Annfelt Moe (NTNU) TMA 4140

Detaljer

Oversikt over kvadratiske kongruenser og Legendresymboler

Oversikt over kvadratiske kongruenser og Legendresymboler Oversikt over kvadratiske kongruenser og Legendresymboler Richard Williamson 3. desember 2014 Oppgave 1 Heltallet er et primtall. Er 11799 en kvadratisk rest modulo? Hvordan løse oppgaven? Oversett først

Detaljer

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Richard Williamson 3. desember 2014 Oppgave 1 La n være et naturlig tall. Bevis at det finnes et primtall p slik at p >

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

7 Ordnede ringer, hele tall, induksjon

7 Ordnede ringer, hele tall, induksjon Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med

Detaljer

Et detaljert induksjonsbevis

Et detaljert induksjonsbevis Et detaljert induksjonsbevis Knut Mørken 0. august 014 1 Innledning På forelesningen 0/8 gjennomgikk vi i detalj et induksjonsbevis for at formelen n i = 1 n(n + 1) (1) er riktig for alle naturlige tall

Detaljer

Karakteriseringen av like mengder. Mengder definert ved en egenskap.

Karakteriseringen av like mengder. Mengder definert ved en egenskap. Notat 2 for MAT1140 2 Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

Matematikk for IT, høsten 2015

Matematikk for IT, høsten 2015 Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 018 Seksjon 81 11 a) Oppgaven spør etter antall måter man kan gå opp n trappetrinn dersom man

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

Velkommen til MA Lineær algebra og geometri

Velkommen til MA Lineær algebra og geometri Velkommen til MA1201 - Lineær algebra og geometri Benedikte Grimeland Institutt for matematiske fag 13. august 2014 2 Plan for forelesningen 1. informasjon om praktiske aspekt, samt øvingsopplegg 2. påmelding

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet er

Detaljer

TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7

TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? TMA4140 Diskret matematikk Høst 011 Løsningsforslag Øving 7 7-1-10 a) Beløpet etter n 1 år ganges med 1.09 for å

Detaljer

Vi skal nå lære hvordan vi kan finne en formel for å bestemme det n te elementet i en tallfølge av 2. grad.

Vi skal nå lære hvordan vi kan finne en formel for å bestemme det n te elementet i en tallfølge av 2. grad. Differensligninger Vi startet med en repetisjon om løsning av. ordens differensligninger.. ordens differensligning. a n = c 1 a n-1 + c a n-, der c 1 og c er konstanter. Vi ser her at neste ledd i følgen

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

Matematisk induksjon

Matematisk induksjon Matematisk induksjon 1 Innledning Dette er et nytt forsøk på å forklare induksjon. Strategien min i forelesning var å prøve å unngå å få det til å se ut som magi, ved å forklare prinsippet fort ved hjelp

Detaljer

MAT1030 Forelesning 17

MAT1030 Forelesning 17 MAT1030 Forelesning 17 Rekurrenslikninger Roger Antonsen - 18. mars 009 (Sist oppdatert: 009-03-18 19:3) Forelesning 17 Forrige gang ga vi en rekke eksempler på bruk av induksjonsbevis og rekursivt definerte

Detaljer

MA1301 Uke 1: In(tro)duksjon

MA1301 Uke 1: In(tro)duksjon MA1301 Uke 1: In(tro)duksjon Magnus Bakke Botnan 21. august 2012 Magnus Bakke Botnan () MA1301 Uke 1: In(tro)duksjon 21. august 2012 1 / 14 Introduksjon Praktisk Praktisk Faglærer Magnus B. Landstad: magnus.landstad@math.ntnu.no

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave

Detaljer

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017. Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 9. oktober 2013. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 30. april 2008 Oppsummering Mandag så vi på hvordan vi kan finne uttrykk og termer på infiks form,

Detaljer

MAT1030 Forelesning 19

MAT1030 Forelesning 19 MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis. Andreas Leopold Knutsen

Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis. Andreas Leopold Knutsen Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis Andreas Leopold Knutsen February 9, 2010 Eks. 1: Finn feilen Fibonaccitallene F 1, F 2, F 3,... er denert rekursivt ved: F 0 = 0, F 1 = 1, og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 8. oktober 2014. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

Øvingsforelesning 7. Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18. TMA4140 Diskret Matematikk

Øvingsforelesning 7. Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18. TMA4140 Diskret Matematikk Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18 Øvingsforelesning 7 TMA4140 Diskret Matematikk 15. og 17. oktober 2018 Dagen i dag Generaliserte permutasjoner

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

Kommentarer til Eksamen IM005 - V02

Kommentarer til Eksamen IM005 - V02 Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

Diskret matematikk tirsdag 15. september 2015

Diskret matematikk tirsdag 15. september 2015 Avsnitt 2.2 fra læreboka Mengdeoperasjoner Tema for forelesningen: Snittet av to mengder Disjunkte mengder Union av to mengder Eksklusiv union (symmetrisk differens) av to mengder Differensen mellom to

Detaljer

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller

Detaljer

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p)

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) . Oppgave. Bevis følgende logiske ekvivalens: ((p q) p) (p q). Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) 3. Avgjør om følgende utsagn er sant i universet

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 8 5.1 9 La l og m være to parallelle linjer. Vi skal vise at det finnes ei linje

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

v(t) = r (t) = (2, 2t) v(t) = t 2 T(t) = 1 v(t) v(t) = (1 + t 2 ), t 2 (1 + t 2 ) t = 2(1 + t 2 ) 3/2.

v(t) = r (t) = (2, 2t) v(t) = t 2 T(t) = 1 v(t) v(t) = (1 + t 2 ), t 2 (1 + t 2 ) t = 2(1 + t 2 ) 3/2. NTNU Institutt for matematiske fag TMA40 Matematikk, øving, vår 0 Løsningsforslag Notasjon og merknader Hvis boken skriver en vektor som ai + bj + ck hender det at jeg skriver den som a, b, c). Jeg benytter

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p.

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Primtall Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Hvordan avgjøre om et heltall a > 1 er et primtall? Regel: Hvis a > 1 ikke er et primtall, så må det finnes et primtall p a som

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11 Modellering og beregninger Eksamensdag: Mandag 1 Desember 218 Tid for eksamen: 9: 13: Oppgavesettet er på 5 sider

Detaljer

x A e x = x e = x. (2)

x A e x = x e = x. (2) Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,

Detaljer

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan Plenumsregning 12 Diverse oppgaver Roger Antonsen - 22. mai 2008 Plan Dette er siste plenumsregning. Vi regner stort sett eksamensoppgaver. Neste uke blir det repetisjon på mandag og onsdag. Send epost

Detaljer

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig. Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Grafteori Vi regner oppgavene på tavlen

Detaljer

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin:

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 200 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: s 0 s 1 gjennkjenner 0 1og s 0 gjennkjenner (0 1). Fra dette ser vi at

Detaljer