Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Like dokumenter
Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag til øving

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

Øving 11. Oppgave 1. E t0 = 2. Her er

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.

Elektromagnetiske bølger

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

Løsningsforslag til øving 9

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

TFY4106 Fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 8.

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

Løsningsforslag til øving 5

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

UNIVERSITETET I OSLO

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008

Løsningsforslag til øving 4

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)

Enkel introduksjon til kvantemekanikken

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Løsningsforslag til øving 1

UNIVERSITETET I OSLO

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag til øving 8

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

Løsningsforslag til eksamen i FYS1000, 13/6 2016

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h

EKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29.

Onsdag og fredag

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling

Interferensmodell for punktformede kilder

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 13. desember 2000 kl Bokmål. K. Rottmann: Matematisk formelsamling

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

UNIVERSITETET I OSLO

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Løsningsforslag FY6019 Moderne fysikk kl fredag 12. juni 2015

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

Løsningsforslag Matematisk fysikk, 28. mai 2001

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at

Tirsdag r r

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl

Transkript:

NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a) Amplituden i avstand r fra en kule-bølge er y(r, t) = A r exp i(kr ωt + φ). (1) Den totale effekten som brer seg gjennom et kule-skall er bevart. Arealet av et kule-skall er 4πr. Intensiteten i avstand r fra høytaler nummer er derfor I (r) = P 4πr = y (r, t). () Vi velger dermed A = P /(4π). Vi setter inn P =1W og r = 100m og får I(r) = P 4πr =0.8 10 5 Wm. (3) Nedre hørselsgrense er I 0 =10 1 Wm. Lydstyrken i desibel er dermed β = 10 log I I 0 = 10 log 0.8 10 5 10 1 = 69dB. (4) b) Her er avstanden d mellom høytalerne mye mindre enn avstanden r. Avstands-forskjellen mellom høytaler 1 og høytaler og mellom høytaler og høytaler 3 er r = dsinθ. (5) Det resulterer i en relative fase-forskjell p.g.a. gang-avstanden som er α = k r. (6) Den resulterende amplituden fra de tre høytalerne blir dermed y(r, t) = y 1 (r, t)+y (r, t)+y 3 (r, t) (7) [ ] P3 = y (r, t) 1+ e i(φ 3 φ +α) P1 + e i(φ 1 φ α) (8) P P [ P 1 = 1+4e i(φ 3 φ +kd sin θ) + 1 ] 4π r 4 ei(φ 1 φ kd sin θ). (9)

Løsning TFY4170 Fysikk, 1. august 004 Side av7 Intensiteten er dermed gitt ved I = P 4πr 1+4ei(φ 3 φ +kd sin θ) + 1 4 ei(φ 1 φ kd sin θ) (10) I = P 4πr [ 73 16 + 8 cos (φ 3 φ + kd sin θ)+ 1 cos (φ 1 φ kd sin θ)+cos(φ 3 φ 1 +kd sin θ)]. (11) Vi setter nå fasene like hverandre. Intensiteten forenkles dermed til I = P 4πr [73 16 + 17 cos (kd sin θ) + cos (kd sin θ)] (1) I = 0.8 10 5 Wm [ 73 16 + 17 cos (kd sin θ) + cos (kd sin θ)]. (13) Vi finner dessuten kd = πf v d = π440 1.0 =8.1. 340 (14) Maksima/minima opptrer når I/( θ) = 0. Derivasjon gir et maksima for θ =0og θ = π og når [ sin (kd sin θ) 1+ 16 ] cos (kd sin θ) = 0 17 (15) det vil si når kd sin θ = nπ, (16) der n er et heltall. Insetting gir når n er et like hel-tall maksimums-intensiteten I =0.8 10 5 Wm [ 441 16 ]. (17) Maksimums-retningene er θ max = 0 grader, 50 grader, 130 grader, 180 grader, 30 grader og 310 grader. (18) Minimums-intensiteten finnes når n er et odde tall: I =0.8 10 5 Wm [ 377 16 ]. (19) De lokale minimums-retningene er θ min = 3 grader, 90 grader, 157 grader, 03 grader, 70 grader og 337 grader. (0) c) Intensiteten er størst i dette punktet når alle fasene er like, φ 1 = φ = φ 3. d) Intensiteten er gitt ved I = P 4πr [ 73 16 + 8 cos (φ 3 φ + kd sin θ)+ 1 cos (φ 1 φ kd sin θ)+cos(φ 3 φ 1 +kd sin θ)]. (1)

Løsning TFY4170 Fysikk, 1. august 004 Side 3av7 Vi setter inn φ 1 =0=φ 3, θ = π/ og bruker P /(4πr )=3. 10 5 Wm får I = 3. 10 5 [ 305 16 + 17 cos (ωt)] I = [6.1+.7 cos ωt] 10 4 Wm () Oppgave. Elektromagnetiske bølger Maxwells ligninger for det elektriske feltet, E ( r, t ), og det magnetisk feltet, B ( r, t), i posisjonen r ved tiden t i tomt rom er E = 0, B = 0, E = B t, B = E µ 0 ε 0 t, der ε 0 er dielektrisitetskonstanten og µ 0 er den magnetiske permeabiliteten i vakuum. a) Vi operer med på den tredje av Maxwell s ligninger: ( E = ) B t. Vi bruker E = E E som ved hjelp av den første av Maxwell s ligninger, E = 0, blir E = E. Tilsvarende kan vi ved å bruke den fjerde Maxwell ligningen finne ( ) B t = t B = µ 0 ε 0 E t. Dermed finner vi E = ε0 µ 0 t E. Tilsvarende kan vi finne ved å operere med på den fjerde av Maxwell s ligninger: B = ε 0 µ 0 E t ( B B = ε0 µ 0 ) B t t

Løsning TFY4170 Fysikk, 1. august 004 Side 4av7 og ved hjelp av B = 0 har vi B = ε0 µ 0 t B som vi skulle vise. Bølgehastigheten kan finnes ved å se på en planbølge som forplanter seg i en retning, f.eks. x-retningen. Innsatt i bølgeligningen gir dette E = E 0 cos (kx ωt). k = ε 0 µ 0 ω, slik at bølgehastigheten er b) Det elektriske feltet er v = ω k = 1 ε0 µ 0. E ( r, t )= E 0 cos k r ωt + ϕ, der E 0 er amplituden, k er bølgevektoren, r er posisjonen, ω er vinkelfrekvensen, t er tiden og ϕ er en fasekonstant. 1. Forholdet mellom amplituden og bølgevektoren: Maxwell s første ligning ovenfor gir E = 0, k E 0 sin k r ωt + ϕ = 0. Dette betyr at bølgevektoren og amplituden må være ortogonale. Det elektriske feltet er transversalt forplantningsretningen: k E0 =0.. Forholdet mellom bølgevektoren og vinkelfrekvensen: En lignende beregning som ovenfor gir forholdet mellom bølgevektoren og vinkelfrekvensen: v = ω k = 1 ε0 µ 0. 3. Polariseringen til den elektromagnetiske bølgen har: Utslaget til det elektriske feltet er alltid langs E 0, slik at bølgen er lineær-polarisert.

Løsning TFY4170 Fysikk, 1. august 004 Side 5av7 c) Det magnetiske feltet beskrives ved B ( r, t) = B 0 cos kb r ω B t + ϕ B. Maxwell s tredje ligning ovenfor gir E = B t k E 0 sin k r ωt + ϕ = ω BB0 sin kb r ω B t + ϕ B. Vi ser dermed at vi kan uttrykke ω B = ω, ϕ B = ϕ, kb = k, B 0 = 1 ω k E 0. Oppgave 3. Materialfysikk a) Med degenerasjon menes at flere forskjellige sett med kvante-tall gir den samme energien. Fermioner kan ikke befinner seg i samme kvante-tilstand. Egenenergien er gitt ved E n1,n,n 3 = E 0 ( n 1 + n + n 3), (3) Energi-nivåene og degenerasjons-graden for mange-partikkel-systemet blir Tilstand Energi (E 0 ) Degenerasjon 111 3 1 11 4 1 11 6 1 7 1 9 1 10 1 113 11 1 Ved null temperatur er de laveste energi-nivåene fylt. Vi ser dermed at vi fyller de fire nederste energi-nivåene med 6 partikler. Total-energien blir E = E 0 (1 3+1 4+ 6+ 7) = 33E 0. (4) Bosoner kan være i samme kvantetilstand. Ved null temperatur vil da alle partiklene befinne seg i den samme laveste energi-tilstanden, E 1,1,1 =3E 0. Total-energien er da 6 E 1,1,1 =18E 0.

Løsning TFY4170 Fysikk, 1. august 004 Side 6av7 b) Ett elektron er beskrevet ved den stasjonære tilstanden ( π ) 1/4 ( a ψ(x) = exp a (x b)) (5) der a og b er to konstanter. Forventningsverdien til posisjonen er gitt ved x = dxψ (x)xψ(x). Vi ser at bølgefunksjonen er sentrert rundt x = b og velger derfor en ny integrasjonsvariabel x = u + b: x = duψ (u + b)(u + b) ψ(u + b). Siden bølgefunksjonen er normert og sentret rundt origo i koordinatsystemet bestem av u finner vi x = b. Tilsvarende kan vi nå finne for forventningsverdien til impulsen: p = dxψ d (x) ψ(x) i dx = dxψ d (u + b) ψ(u + b) i du = 0 siden ψ(u + b) er symmetrisk rundt u = 0, slik at dψ(u + b)/du er antisymmetrisk rundt u =0. c) Frie elektroner i metaller blir beskrevet som elektroner i en tre-dimensjonal kube med lengde L og elektron-tetthet N. Hva menes med Fermi-energien til systemet? Uttrykk Fermi-energien ved elektronets masse og elektron-tettheten. Fermi-energien er maksimal-energien til en partikkel ved det absolutte null-punkt for et mange-fermion system. For en tre-dimensjonal partikkel i boks-system er energi-nivåene gitt ved E nx,n y,n z = ( π ) (n m L x + n y + ) n z, hvor n x, n y og n z er positive diskrete heltall. Det er to spinn-tilstander. Antall parikler innenfor en radius n F med positive heltall (1/8 av en hel kule) er dermed N = 1 8 4π 3 n3 F = π 3 n3 F Fermi-energien er dermed gitt ved E F = ( π ) n m L F, = ( ( π 3N m L) π ).

Løsning TFY4170 Fysikk, 1. august 004 Side 7av7 Vi vet også at antall partikler er N = n e L 3, der n e er elektron-tettheten. Dermed blir E F = m (3n eπ ) /3. (6) d) Normale metaller Et normalt metall er en god leder av elektrisk strøm. I en leder ligger Fermi-energien i et område der tettheten av tilstander er stor og dermed blir ledningsevnen god fordi det er mange elektroner som kan forflytte seg. Halvleder En halvleder er en mellomting mellom en leder og en isolator der Fermienergien ligger i et gap mellom et fylt og et ikke fylt energi-bånd, men gapet er ikke like stort som for en isolator og halvlederen kan lede strøm ved høyere temperaturer eller hvis halvlederen dopes med urenheter. Ferromagnet En ferromagnet er et ledende metall som har et makroskopisk magnetisk moment. Det makroskopiske magnetiske moment skyldes at flere tilstander med spinn i en bestemt retning er okkupert enn tilstander med spinn i den motsatte retningen. Superleder En superleder har null motstand ved lave temperaturer og den har en Meissner effekt som betyr at et eksternt magnetfelt ikke kan trenge inn i superlederen.