Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017
Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like stor verdi for tettheten Generelt: Gitt en stokastisk variabel X, uniform fordelt på intervallet a x b Tettheten f(x) er f(x) = 1/(b-a), a x b f(x) = 0 ellers, fordi arealet under f(x)-kurven må være lik 1. En kan vise at E(X) = (a + b)/2 Var(X) = (b a) 2 /12 Den uniforme fordelingen er et eksempel på en bestemt sannsynlighetsmodell
En sannsynlighetsmodell definerer hele sannsynlighetsfordelingen til en bestemt s.v. (eller den simultane fordelingen til flere s.v. er samtidig). Kan gis enten i form av en tabell (diskret s.v.) eller en formel (både diskret og kontinuerlig s.v.). Sannsynlighetsfordelingen i form av en tabell er ofte (men ikke alltid) empirisk (erfaringsmessig, databasert). Da gjelder den bare den ene situasjonen. Fordelinger i form av en formel er mer anvendelige, større bruksområde. 3
Eksempel (jfr. oppgave 4.3): antall seksere i tre kast s.v. X Tabell: x P(X=x) 0 (5/6) 3 = 125/216 1 3.(1/6).(5/6) 2 = 75/216 2 3.(1/6) 2.(5/6) = 15/216 3 (1/6) 3 = 1/216 Formel: P(X=x) = 3 x (sjekk selv) 1 6 x 5 6 3 x, x = 0,1,2,3 Formel kortere enn tabell, men uklart hva sannsynlighetene blir med 2, eller 4, eller 5, eller n kast. Sannsynlighetsmodell for antall seksere i n kast: P(X=x) = n 1 x 5 n x, x = 0, 1, 2,, n x 6 6 Mer generell, fordi antall kast n kan velges fritt 4
Enda mer generell: sannsynlighet p på suksess istedenfor 1/6. F. eks. myntkast, p=½ for kron/mynt Kaster n ganger. Hvor ofte kron? S.v. X P(X=x) = n x p x 1 p n x, n= 1, 2, 3, ; x = 0, 1, 2, n, 0 < p < 1 Denne modellen kalles for binomisk sannsynlighetsmodell. X har en binomisk fordeling. n og p er parametere, som er avhengige av situasjonen. X er en s.v. Leddet n x kalles for binomialkoeffisient. (i mange andre sammenhenger ser du n k ) 5
Definisjon binomisk modell En binomisk modell beskriver sannsynligheten for et bestemt antall vellykkete forsøk («suksess») i en såkalt binomisk forsøksrekke - Forsøket kan deles opp i n delforsøk - Hvert forsøk har bare to utfall: A og ikke-a - Sannsynligheten P(A) er den samme i alle delforsøkene: p - Delforsøkene er statistisk uavhengige av hverandre Hvis X er antall ganger at A inntreffer, er X binomisk fordelt P(X=x) = n p x x 1 p n x, n= 1, 2, 3, ; x = 0, 1, 2, n, 0 < p < 1, der n er antall delforsøk og p=p(a) Kortform: X ~ bin(n,p) tegnet ~ står for «har sannsynlighetsfordeling:» 6
To eksempler 1) Oppgave 4.11 Antall jenter X i en familie med 4 barn. p = 0,486 X ~ bin(4, 0,486) P(X=x) = 4 x 0,486 x 0,514 4 x, x = 0, 1, 2, 3, 4 2) Antall personer som stemmer Høyre blant 1000 tilfeldig valgte personer. p=0,268 fra Stortingsvalg 2013 P(X=x) = 1000 x 0,268 x 0,732 1000 x, x = 0, 1, 2,, 1000 Forutsetningene? 7
Egenskaper for binomisk fordelt s.v. Anta at X ~ bin(n,p) Regel 5.3 sier at E(X) = n.p, Var(X) = n.p.(1-p) Bevis på s. 488 X er antall jenter i en 4-barnsfamilie (p=0,486). Forventet antall jenter E(X) blir lik 4 x 0,486 = 1,944 jenter Varians til X blir 4 x 0,486 x 0,514 = 0,999 SD(X) = 1,000 jente Når n og p varierer får vi en hel rekke fordelinger. For noen av disse er P(X x) blitt tabellert: kumulativ binomisk fordeling. 8
Tabell over kumulativ binomisk fordeling (tabell E1, s. 534) NB Tabellen viser den kumulative fordelingen!! Eksempel 1 Kaster en mynt 10 ganger P(minst 4 ganger kron)? X s.v. antall ganger kron X ~ bin(10, ½). n=10, p=½ P(X 4) = 1 P(X 3) = 1 0,172 = 0,828 = 83% 9
Tabell over kumulativ binomisk fordeling (tabell E1, s. 534) NB Tabellen viser den kumulative fordelingen!! Eksempel 2 Kaster en mynt 10 ganger X s.v. antall ganger kron X ~ bin(10, ½). P(eksakt 4 ganger kron)? P(X=4) = P(X 4) P(X 3) = = 0,377 0,172 = 0,205 = 21% NB Vanlig triks for diskret s.v.: fra kumulert til punktsannsynlighet!! 10
Tabellen viser P(X x) bare for n 10 og noen få verdier for p. For stor n brukes Excel jfr. side 176, eller en tilnærming (regel 5.20 senere). 11
Eksemplet viser at P(X 39) = 0,643 for en binomisk fordelt s.v. X~bin(90, 0,42) BINOM.FORDELING.N(antall_s;forsøk;sannsynlighet_s;kumulativ) Antall_s Antall forsøk med vellykket utfall. Forsøk Antall uavhengige forsøk. Sannsynlighet_s Sannsynligheten for å lykkes ved hvert forsøk. Kumulativ En logisk verdi som bestemmer funksjonens form. Hvis kumulativ er lik SANN, returnerer BINOM.FORDELING.N den kumulative fordelingsfunksjonen, eller sannsynligheten for at det maksimalt er antall_s vellykkede forsøk. Hvis kumulativ er USANN, returneres punktsannsynlighet, som er sannsynligheten for at det skal bli antall_s vellykkede forsøk. 12
Hypergeometrisk fordeling Forutsetning binomisk forsøk: samme sannsynlighet på «suksess» i hvert delforsøk Henger sammen med at delforsøkene er basert på trekning med tilbakelegging Mange delforsøk men trekning uten tilbakelegging? 13
Eksempel: Damenes 3 mil under Vinter-OL Salt Lake City 2002 N = 50 deltakere. Anta at M = 10 av disse var dopet. Det ble trukket n=6 deltakere for dopingtest. To av disse var positive: Olga Danilova og Larissa Lazutina. Hva er sannsynligheten for at vi skulle trekke to som var dopet? Antall trukne som er dopet er en s.v. X - Antall mulige utvalg 6 fra 50 er lik 50 6 kombinasjonsregelen - Antall «gunstige» utvalg: 2 som er dopet kan trekkes på 10 2 ulike måter, mens de øvrige 4 kan trekkes på 50 10 6 2 ulike måter Dermed blir sannsynligheten for at vi trekker 2 som har dopet seg lik P X=2 = 10 2 50 10 6 2 50 6 = 0,259 = 26% 14
På samme måte P X=1 = 10 1 50 10 6 1 50 6 =0,414 større enn P(X=2)!! Og P X=0 = 10 0 40 6 50 6 =0,242 Sannsynlighet for at ingen blir avslørt er hele 24%! For alle x: P X=x = 10 x 40 6 x 50 6, x=0,1,2,3,,6 Eksempel på en hypergeometrisk fordeling 15
Hypergeometrisk fordeling Populasjon på N enheter M av disse er merket, M N n blir trukket X er s.v.: antall enheter som er merket, blant de n som vi trakk P X=x = M x N M n x N n, x=1,2,3,,n, x M Andelen p = M/N er merket E(X) = n.p = n.m/n Også: Var(X) = n.p. 1 p. N n N 1 bevis på side 488 16
Eksempel: Kortstokk 52 kort, 13 av disse er spar. Du får utdelt 13 kort. Hvor stor er sjansen på eksakt 5 spar? N = 52, M = 13, n = 13 Antall spar du får er en s.v. X P X = 5 = 13 39 5 8 52 13 = 0,125 17
Dopingeksemplet n=6, M=10, N=50 p = M/N = 0,2 Vi fant P(X = 0) = 0,242 P(X = 1) = 0,414 P(X = 2) = 0,259 Hva om vi (feilaktig) hadde antatt en binomisk fordeling? X~ bin(6, 0,2) P(X=0) = 6 0 0,2 0 0,8 6 = 0,262 (hypergeometrisk 0,242) P(X=1) = 6 1 0,2 1 0,8 5 = 0,393 (hypergeometrisk 0,414) P(X=2) = 6 2 0,2 2 0,8 4 = 0,246 (hypergeometrisk 0,259) I praksis kan vi bruke binomisk fordeling istedenfor hypergeometrisk fordeling, så snart N > 10n. Her hadde vi N/n = 50/6 = 8,3 18
Hypergeometrisk vs. binomisk fordeling Samme forventning: E(X) = n.p Variansene er forskjellige Binomisk: Var(X) = n.p.(1-p) Hypergeometrisk: Var(X) = n.p. 1 p. N n, mindre enn binomisk N 1 Faktor N n N 1 = 1 n N 1 1 N går mot 1 for stor N og liten n/n Dopingeksemplet: Var(X) = 6 x 0,2 x 0,8 = 0,96 (binomisk) Var(X) = 0,96 x (50-6)/(50-1) = 0,86 (hypergeometrisk) ca 10% lavere 19
Merknad Løvås tar feil når han på side 177 skriver at sannsynligheten for at en merket enhet blir trukket ikke er den samme i hver enkelt trekning. Populasjon N M enheter er merket Trekker et tilfeldig utvalg av n enheter La P j være sannsynligheten at vi trekker en merket enhet i trekning j, j=1,2, n Første trekning: P 1 = M/N Andre trekning: P 2 = M 1 N 1.P 1 + M N 1. 1 P 1 = M N o.s.v. Jfr. også regel 3.28 s. 117, og Haralds notat som legges ut på semestersiden. 20
21
22
23