Csilla Farkas Johannes Deelstra Per Stålnacke

Like dokumenter
By Bioforsk SEALINK Team

By Bioforsk SEALINK Team

By Bioforsk SEALINK Team

By Bioforsk SEALINK Team

By Bioforsk RECOCA Team Per Stålnacke Csilla Farkas Johannes Deelstra

Skalaproblematikk. Tar vi de riktige valg? Har vi forstått prosessene? Hvorfor bedres ikke vannkvalitet tross tiltak

Kan vi simulere avrenning fra jordbruks dominerte nedbørsfelter? Erfaringer ved bruk av Drainmod, SWAT, HBV, Coup og INCA i Skuterudfeltet

Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det

Péter Bakonyi VITUKI

Modellering av hydrologiske prosesser med høy oppløsning i tid og rom. Stein Beldring Norges vassdrags- og energidirektorat

Erfaringer fra JOVA-felt. Johannes Deelstra og Hans Olav Eggestad

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Generalization of age-structured models in theory and practice

NO X -chemistry modeling for coal/biomass CFD

Kritiske nivåer av P i jord og sedimenter relatert til risiko for eutrofiering - innvirkning av klima

SYNERGIES BETWEEN MEASURES FOR ADAPTATION, EMISSIONS TO AIR AND WATER QUALITY IN AGRICULTURE

Hva er baseflow Johannes Deelstra

RF Power Capacitors Class kV Discs with Moisture Protection

Exercise 1: Phase Splitter DC Operation

Environmental sensitivity. Assessment by MOIRA PLUS Lakes Øvre Heimdalsvatn (Norway) Bracciano (Italy)

RF Power Capacitors Class1. 5kV Discs

HONSEL process monitoring

NORWEGIAN UNIVERSITY OF LIFE SCIENCES. EXFLOOD EXFLOOD (Bioforsk, UMB, NVE, Minnesota, KTH, Insurance companies, 3 municipalities)

Flomnivåer er beregnet for forskjellige gjentaksintervaller og er presentert i tabellen nedenfor:

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE

Närsaltkoncentrationer och

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

The building blocks of a biogas strategy

Forecast Methodology September LightCounting Market Research Notes

CAMES. Technical. Skills. Overskrift 27pt i to eller flere linjer teksten vokser opad. Brødtekst 22pt skrives her. Andet niveau.

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Slope-Intercept Formula

Eiendomsverdi. The housing market Update September 2013

Klimascenarier og effekter for snøforhold i Norge i framtiden

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

CasNr: Tester. 96h LC50 6, h LC50 0, d NOEC 0, d NOEC 0,001 Onchorhynchus mykiss 1

Sampling frequency and uncertainty: Examples from Norwegian case studies

Produksjonsresponser og økonomi ved bruk av surfôr med svært høg kvalitet i kjøttproduksjon på storfe

Tor Haakon Bakken. SINTEF Energi og NTNU

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

Marsh Loss and Tidal Habitat Degradation

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

96h NOEC 1800 Scendesmus subspicatus 1. 96h LC Onchorhynchus mykiss 1. AMF basert på PNEC1 Laveste L(EC)50 0, ,021

72h LC h NOEC h LC d NOEC h LC d NOEC

Vegingeniørenes bruk av vær- og klimadata

The effects of change in climate and irrigation practice on the water resources in Kizilirmak River Basin, Turkey.

Recycling technology for fish in cold water vs model trout farms and cage farming

FAMILY MEMBERS EXPERIENCES WITH IN-HOSPITAL CARE AFTER SEVERE TRAUMATIC BRAIN INJURY

Energisystemets sårbarhet og muligheter knyttet til de forventede klimaendringene og behovet for tilpasning innen sektoren

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

CasNr: Tester. 96h NOEC 100 Selenastrum capricornutum 4. 21d NOEC h LC AMF basert på PNEC1 Laveste L(EC)

Miljøpåvirkning og legemiddelgodkjenning Hva sier regelverket? Steinar Madsen Statens legemiddelverk

Vann og vanningsmetoder utfordringer i matproduksjon

Sensorveiledning SPED1200 vår 2018

MÅLING OG VURDERING AV TEKSTUR I VEGOVERFLATER OG KOPLING TIL STØY

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

CasNr: Tester. 72h LC h NOEC 1, d NOEC h LC Onchorhynchus mykiss 2

Examples and experience from restorations along Tana river on the norwegian side. Knut Aune Hoseth Head of northern region

RF Power Capacitors Class1 5kV Discs

Mercury hemispheric modelling: EMEP experience

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

RF Power Capacitors Class kV Discs

COUNTRY REPORT- NORWAY

Miljøkonsekvenser av raske vannstandsendringer (effektkjøring)

Baltic Sea Region CCS Forum. Nordic energy cooperation perspectives

ISO CO 2 -rørtransportstandarden. Arne Dugstad, IFE Svend Tollak Munkejord, SINTEF

betydningen for tiltaksgjennomføring Johannes Deelstra

ADDENDUM SHAREHOLDERS AGREEMENT. by and between. Aker ASA ( Aker ) and. Investor Investments Holding AB ( Investor ) and. SAAB AB (publ.

BPS TESTING REPORT. December, 2009

Software applications developed for the maritime service at the Danish Meteorological Institute

Terranimo a model for estimation of the risk for soil compaction.

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

ÅPNE OVERVANNSLØSNINGER. Hvorfor åpne overvannsløsninger? Johan Steffensen

Bruk av historiske data og nedskalerte klimamodeller i planlegging og drift av urbane vannsystemer for fremtiden

RF Power Capacitors Class kV Discs with Moisture Protection

Model Description. Portfolio Performance

Hvor finner vi flått på vårbeiter? - og betydning av gjengroing for flåttangrep på lam på vårbeite

European Crime Prevention Network (EUCPN)

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Graphs similar to strongly regular graphs

Naturdata Nordområdene

96h NOEC 210 Selenastrum capricornutum 1. 96h LC50 36 Onchorhynchus mykiss 2. AMF basert på PNEC1 Laveste L(EC) ,6

SiS GO ELECTROLYTE POWDERS

Multi-kriterie-analyse av kompenserende tiltak

Emneevaluering GEOV272 V17

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Accuracy of Alternative Baseline Methods

Passenger Terminal World Expo 2011 Copenhagen, Denmark. Steven B. Cornell Assoc. Vice President

SRP s 4th Nordic Awards Methodology 2018

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Splitting the differential Riccati equation

Q2 Results July 17, Hans Stråberg President and CEO. Fredrik Rystedt CFO

Demografisk og økonomisk bærekraft av pensionsreformer i Norge, Sverige og Tyskland

Salting of dry-cured ham

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

buildingsmart Norge seminar Gardermoen 2. september 2010 IFD sett i sammenheng med BIM og varedata

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Transkript:

Csilla Farkas Johannes Deelstra Per Stålnacke SWAT Workshop 20 May, 2009 Bioforsk, Ås, Norway

In general To investigate the retention and distribution of water and inorganic N compounds in the aquatic and terrestrial environment To improve our understanding on surface, subsurface and in stream processes, characteristic for the Skuterud catchment with respect to various measures Performing scenario analyses to investigate the combined effect of different land use and climate change scenarios on runoff, erosion and in stream water quantity and quality Within the SEALINK Project Providing appropriate INCA parameter set for agricultural lands in Southern Norway for simulating surface, subsurface and in stream water, N and P transport, using the advantage of a well-studied catchment (further used as initial parameter set for arable lands of the Vansjø catchment) Performing scenario analyses to investigate the effect of various land use change scenarios on in stream water quantity and quality

Aquatic Environments Research Centre, Dep. of Geography, Univ. of Reading INCA and EURO-Limacs European Projects INCA-N model (flow, nitrate and ammonium) Brazil, Denmark, England, Finland, France, Netherlands, Norway, Spain, Sweden, Wales INCA-SED (sediment transport and erosion) INCA-P INCA-C Denmark, England, Finland, Norway England, Finland England, Finland Other version for heavy metal transport etc. Romania

INCA-N model: process-based semi-distributed dynamic model of the N-cycle in the plant/soil and in-stream systems INCA-N simulates at a daily time-step water flow and storage nitrogen export from different land-use types within a river system in-stream nitrate and ammonium concentrations Catchment hydrology: direct runoff soil zone groundwater zone N processes: N cycle in terrestrial part inorganic N losses from land to river nitrification and denitrification in river

120 100 80 60 40 20 1 11 21 120 100 80 60 40 20 1 11 21 Driving variables in daily time-step soil moisture deficit hydraulically effective rainfall air temperature actual precipitation INCA - N Average annual riverine load of inorganic nitrogen N-balance elements for different land use types Model parameters sub-catchment reach in-stream land-phase general parameters Initial conditions Nitrogen transformation rates Hydrogeological parameters etc. Daily estimates of water discharge and NO 3 and NH 4 concentrations in river water

Cell Model Land component Evaporation Precipitation Surface runoff to stream Hydraulically effective rainfall Soil surface Transport to stream = (1 b) * q sz Soil zone Percolation = b * q sz Transport to stream = q gz Groundwater zone In-stream cell

x 1, x 2 output flows of the two zones (m 3 / s) T 1, T 2 time zone constants (1/s) U 1 input hydraulically effective rainfall (m) U 8 base flow index t- time (s)

x3 and x4 - daily NO3-N concentrations (mg/l) in the soil zone and groundwater zone, respectively x5 and x6 - daily NH4-N concentrations (mg/l) in the soil zone and groundwater zone, respectively U8 - baseflow index C3, C6, C1, C2, C10, C7 and C8 - rate coefficients (per day) for respectively, plant uptake of nitrate, ammonia nitrification, nitrate denitrification, nitrate fixation, plant uptake of ammonia, ammonia mineralisation and ammonia immobilisation U3 and U4 - daily nitrate-nitrogen and ammonium-nitrogen loads entering the soil zone and constitute the additional dry and wet deposition and agricultural inputs (e.g. fertiliser addition)

River flow model I inflow (m 3 /s) Q - outflow (m 3 /s) S - Storage (m 3 ) t time (s) T travel time parameter (s) L reach length (m) v mean flow velocity (m/s) Equations for NO3-N and NH4-N in river reaches U 9 - upstream flow (m3/s) U 10 - upstream NO3-N (mg/l) U 11 - upstream NH4-N (mg/l) T 3 - reach time constant (or residence time) x 7 - estimated downstream flow rate (m3/s) x 8 and x 9 - the downstream (i.e. reach output) conc. of nitrate and ammonia, respectively C 17 and C 18 - temperature-dependent rate parameters for denitrification and nitrification, respectively V 3 and V 4 equivalent water volumes in soil and ground water zones (m3)

Total area 4.489 km 2 Low base flow and high flashiness index Subsurface drainage system Productive forest Winter processes

Calibration period: 1 January, 1994 31 December, 1999 To set up the parameters for all the land use types, except the wetland Validation period: 1 January, 2002 31 December, 2007 Setting up wetland parameters Land use types: Forest (31%) Grass (2%) Arable, No Autumn Tillage (18%) Arable, Autumn Tillage (41%) Wetland (0% between 1994-1999; to be parameterised for the period of 2002-2007) Urban (8%) Catchment structure No sub-catchments, one reach No effluent No abstraction

1. Catchment and reach information Catchment area, reach length 2. Data on fertiliser application NO3 fertilisation input files 3. Crop data Multiple growth period input files 4. Soil data From reference soil profiles, belonging to the agricultural area Soils of the forest area were represented by a chosen reference soil profile from an arable land Setting up parameters (soil water deficit maximum; total/available water)

1. Driving variables HBV model run output, provided by NVE Soil moisture deficit; effective rainfall; air temperature; precipitation 2. Reference data Discharge measurements (daily data) Nitrate concentration data (composite sampling; approx. every 14 days)

1. Flow R 2 and N-S has to be comparable with those, obtained from the HBV runs Peculiarities of a small catchment, with high agricultural impact and productive forest have to be considered Subsurface drainage system effect has to be considered 2. Nitrate concentration Composite sampling and model outputs comparability Efforts to re-calculate the simulated nitrate concentrations

1. Parameterisation Available data from the Skuterud catchment and reach Literature review Expert assumptions 2. Calibration procedure Stepwise calibration approach (flow; flow&nitrate) flow flow&nitrate Incorporation of sensitivity analyses results 3. Validation procedure 4. Scenario analyses

1. Main hydrological parameters, against which the model appeared to be very sensitive Flow parameters a and b (from the discharge velocity relationship) Base flow index Soil moisture deficit maximum Soil reactive zone time constant Ratio of total to available water in soil

Velocity v (m s -1 ) Velocity v (m s -1 ) The relationship: v aq b Manningen: 1 2 1 3 2 Q s A R s n Q s - Stream discharge (m 3 ) A - Wetted cross section (m 2 ) P - Wetted perimeter (m) R - Hydraulic radius = A/P (m) S - Slope of stream (m/m) n - Roughness parameter, varying between 0.025 0.075 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 n = 0.035 y = 1.163x 0.253 R² = 0.997 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Discharge Q (m 3 ) 1.6 n = 0.035 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Skuterud_real 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Discharge Q (m 3 )

a=1.163; b=0.253 a=0.042; b=0.67 - sim. - obs.

Velocity (v, m s -1 ) 2.0 v = a * Q ^b 1.5 1.0 0.5 n(0.025)_real n(0.045)_real n(0.075)_real n(0.025)_calib n(0.045)_calib n(0.075)_calib 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Discharge (Q, m 3 )

- sim. - obs.

Simulated: app. 31 kg N /ha /year for 1994-1998 Measured: 39 kg N/ ha /year for 1993-1999

Flow dynamics often failed in summer periods Proportion between N-balance elements answered our expectations, but the NO 3 dynamic was not good Contribution of drain tiles to flow pathways could not be properly described Ratio between the in-stream and in-land processes? catchment size Winter conditions Improved driving variables from new precipitation data NVE How to parameterise land use parameters further? Differentiation?

Thank you for attention!