By Bioforsk SEALINK Team

Like dokumenter
By Bioforsk SEALINK Team

Csilla Farkas Johannes Deelstra Per Stålnacke

By Bioforsk SEALINK Team

By Bioforsk SEALINK Team

By Bioforsk RECOCA Team Per Stålnacke Csilla Farkas Johannes Deelstra

Skalaproblematikk. Tar vi de riktige valg? Har vi forstått prosessene? Hvorfor bedres ikke vannkvalitet tross tiltak

Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det

Kan vi simulere avrenning fra jordbruks dominerte nedbørsfelter? Erfaringer ved bruk av Drainmod, SWAT, HBV, Coup og INCA i Skuterudfeltet

Péter Bakonyi VITUKI

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Modellering av hydrologiske prosesser med høy oppløsning i tid og rom. Stein Beldring Norges vassdrags- og energidirektorat

Erfaringer fra JOVA-felt. Johannes Deelstra og Hans Olav Eggestad

Generalization of age-structured models in theory and practice

HONSEL process monitoring

NO X -chemistry modeling for coal/biomass CFD

Slope-Intercept Formula

Exercise 1: Phase Splitter DC Operation

Tor Haakon Bakken. SINTEF Energi og NTNU

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Klimascenarier og effekter for snøforhold i Norge i framtiden

CasNr: Tester. 96h LC50 6, h LC50 0, d NOEC 0, d NOEC 0,001 Onchorhynchus mykiss 1

Miljøpåvirkning og legemiddelgodkjenning Hva sier regelverket? Steinar Madsen Statens legemiddelverk

SYNERGIES BETWEEN MEASURES FOR ADAPTATION, EMISSIONS TO AIR AND WATER QUALITY IN AGRICULTURE

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Kritiske nivåer av P i jord og sedimenter relatert til risiko for eutrofiering - innvirkning av klima

BPS TESTING REPORT. December, 2009

RF Power Capacitors Class kV Discs with Moisture Protection

The building blocks of a biogas strategy

CAMES. Technical. Skills. Overskrift 27pt i to eller flere linjer teksten vokser opad. Brødtekst 22pt skrives her. Andet niveau.

Flomnivåer er beregnet for forskjellige gjentaksintervaller og er presentert i tabellen nedenfor:

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

Environmental sensitivity. Assessment by MOIRA PLUS Lakes Øvre Heimdalsvatn (Norway) Bracciano (Italy)

Eiendomsverdi. The housing market Update September 2013

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

NORWEGIAN UNIVERSITY OF LIFE SCIENCES. EXFLOOD EXFLOOD (Bioforsk, UMB, NVE, Minnesota, KTH, Insurance companies, 3 municipalities)

Software applications developed for the maritime service at the Danish Meteorological Institute

Hva er baseflow Johannes Deelstra

Sampling frequency and uncertainty: Examples from Norwegian case studies

The effects of change in climate and irrigation practice on the water resources in Kizilirmak River Basin, Turkey.

PSi Apollo. Technical Presentation

RF Power Capacitors Class1. 5kV Discs

Närsaltkoncentrationer och

CasNr: Tester. 96h NOEC 100 Selenastrum capricornutum 4. 21d NOEC h LC AMF basert på PNEC1 Laveste L(EC)

MÅLING OG VURDERING AV TEKSTUR I VEGOVERFLATER OG KOPLING TIL STØY

Alternativer til teststrekk med høye laster

Passenger Terminal World Expo 2011 Copenhagen, Denmark. Steven B. Cornell Assoc. Vice President

96h NOEC 1800 Scendesmus subspicatus 1. 96h LC Onchorhynchus mykiss 1. AMF basert på PNEC1 Laveste L(EC)50 0, ,021

Produksjonsresponser og økonomi ved bruk av surfôr med svært høg kvalitet i kjøttproduksjon på storfe

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Emneevaluering GEOV272 V17

Energisystemets sårbarhet og muligheter knyttet til de forventede klimaendringene og behovet for tilpasning innen sektoren

SRP s 4th Nordic Awards Methodology 2018

Marsh Loss and Tidal Habitat Degradation

72h LC h NOEC h LC d NOEC h LC d NOEC

CasNr: Tester. 72h NOEC 6100 Anabaena flos-aquae. 48h LC d NOEC h LC

European Crime Prevention Network (EUCPN)

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning

Recycling technology for fish in cold water vs model trout farms and cage farming

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

Forecast Methodology September LightCounting Market Research Notes

Accuracy of Alternative Baseline Methods

96h NOEC 210 Selenastrum capricornutum 1. 96h LC50 36 Onchorhynchus mykiss 2. AMF basert på PNEC1 Laveste L(EC) ,6

CasNr: Tester. 72h LC h NOEC 1, d NOEC h LC Onchorhynchus mykiss 2

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Model Description. Portfolio Performance

SiS GO ELECTROLYTE POWDERS

Sensorveiledning SPED1200 vår 2018

ISO CO 2 -rørtransportstandarden. Arne Dugstad, IFE Svend Tollak Munkejord, SINTEF

Monitoring water sources.

GeWare: A data warehouse for gene expression analysis

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

Vegingeniørenes bruk av vær- og klimadata

Graphs similar to strongly regular graphs

Confidence-based Data Management for Personal Area Sensor Nets

Bruk av historiske data og nedskalerte klimamodeller i planlegging og drift av urbane vannsystemer for fremtiden

Svalin tie-in til Grane. Kost nytte vurdering, NFOGM Øyvind Nesse, Statoil

Hva slags AAR-krav i framtida? Begrunnelse for Felt/Lab Performance. COIN fagdag 20. mai 2008 Terje F. Rønning, Norcem AS

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Demografisk og økonomisk bærekraft av pensionsreformer i Norge, Sverige og Tyskland

TUNNEL LIGHTING. LED Lighting Technology

Pumpeturbiner og Tekniske Utfordringer

Kalibrering. Hvordan sikrer Norsonic sporbarhet av måleresultatene. Ole-Herman Bjor

Development of the Norwegian WFD classification system for eutrophication

Mercury hemispheric modelling: EMEP experience

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Klimaendringer og konsekvenser for småkraftverk Blir det mer eller mindre behov for magasiner?

Invitation to Tender FSP FLO-IKT /2013/001 MILS OS

FAMILY MEMBERS EXPERIENCES WITH IN-HOSPITAL CARE AFTER SEVERE TRAUMATIC BRAIN INJURY

Experiences with 2D resistivity measurements (ERT) at the surface. Inger-Lise Solberg

Utah s Reading First. Jan Dole, Michelle Hosp, John Hosp, Kristin Nelson, Aubree Zelnick UCIRA Conference November 3-4, 2006

buildingsmart Norge seminar Gardermoen 2. september 2010 IFD sett i sammenheng med BIM og varedata

Baltic Sea Region CCS Forum. Nordic energy cooperation perspectives

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

Risikofokus - også på de områdene du er ekspert

Effect of physical activity on learning?

UNIVERSITETET I OSLO

Transkript:

By Bioforsk SEALINK Team Annelene Pengerud Csilla Farkas Hans Olav Eggestad Johannes Deelstra Per Stålnacke SWAT Workshop 20 May, 2009 Bioforsk, Ås, Norway

In general To investigate the retention and distribution of water and inorganic N compounds in the aquatic and terrestrial environment To improve our understanding on surface, subsurface and in stream processes, characteristic for the Skuterud catchment with respect to various measures Performing scenario analyses to investigate the combined effect of different land use and climate change scenarios on runoff, erosion and in stream water quantity and quality Within the SEALINK Project Providing appropriate INCA parameter set for agricultural lands in Southern Norway for simulating surface, subsurface and in stream water, N and P transport, using the advantage of a well-studied catchment (further used as initial parameter set for arable lands of the Vansjø catchment) Performing scenario analyses to investigate the effect of various land use change scenarios on in stream water quantity and quality

Aquatic Environments Research Centre, Dep. of Geography, Univ. of Reading INCA and EURO-Limacs European Projects INCA-N model (flow, nitrate and ammonium) Brazil, Denmark, England, Finland, France, Netherlands, Norway, Spain, Sweden, Wales INCA-SED (sediment transport and erosion) INCA-P INCA-C Denmark, England, Finland, Norway England, Finland England, Finland Other version for heavy metal transport etc. Romania

INCA-N model: process-based semi-distributed dynamic model of the N-cycle in the plant/soil and in-stream systems INCA-N simulates at a daily time-step water flow and storage nitrogen export from different land-use types within a river system in-stream nitrate and ammonium concentrations Catchment hydrology: direct runoff soil zone groundwater zone N processes: N cycle in terrestrial part inorganic N losses from land to river nitrification and denitrification in river

120 100 80 60 40 20 1 11 21 120 100 80 60 40 20 1 11 21 Driving variables in daily time-step soil moisture deficit hydraulically effective rainfall air temperature actual precipitation INCA - N Average annual riverine load of inorganic nitrogen N-balance elements for different land use types Model parameters sub-catchment reach in-stream land-phase general parameters Initial conditions Nitrogen transformation rates Hydrogeological parameters etc. Daily estimates of water discharge and NO 3 and NH 4 concentrations in river water

Cell Model Land component Evaporation Precipitation Surface runoff to stream Hydraulically effective rainfall Soil surface Transport to stream = (1 b) * q sz Soil zone Percolation = b * q sz Transport to stream = q gz Groundwater zone In-stream cell

x 1, x 2 output flows of the two zones (m 3 / s) T 1, T 2 time zone constants (1/s) U 1 input hydraulically effective rainfall (m) U 8 base flow index t- time (s)

x3 and x4 - daily NO3-N concentrations (mg/l) in the soil zone and groundwater zone, respectively x5 and x6 - daily NH4-N concentrations (mg/l) in the soil zone and groundwater zone, respectively U8 - baseflow index C3, C6, C1, C2, C10, C7 and C8 - rate coefficients (per day) for respectively, plant uptake of nitrate, ammonia nitrification, nitrate denitrification, nitrate fixation, plant uptake of ammonia, ammonia mineralisation and ammonia immobilisation U3 and U4 - daily nitrate-nitrogen and ammonium-nitrogen loads entering the soil zone and constitute the additional dry and wet deposition and agricultural inputs (e.g. fertiliser addition)

River flow model I inflow (m 3 /s) Q - outflow (m 3 /s) S - Storage (m 3 ) t time (s) T travel time parameter (s) L reach length (m) v mean flow velocity (m/s) Equations for NO3-N and NH4-N in river reaches U 9 - upstream flow (m3/s) U 10 - upstream NO3-N (mg/l) U 11 - upstream NH4-N (mg/l) T 3 - reach time constant (or residence time) x 7 - estimated downstream flow rate (m3/s) x 8 and x 9 - the downstream (i.e. reach output) conc. of nitrate and ammonia, respectively C 17 and C 18 - temperature-dependent rate parameters for denitrification and nitrification, respectively V 3 and V 4 equivalent water volumes in soil and ground water zones (m3)

Total area 4.489 km 2 Low base flow and high flashiness index Subsurface drainage system Productive forest Winter processes

Calibration period: 1 January, 1994 31 December, 1999 To set up the parameters for all the land use types, except the wetland Validation period: 1 January, 2002 31 December, 2007 Setting up wetland parameters Land use types: Forest (31%) Grass (2%) Arable, No Autumn Tillage (18%) Arable, Autumn Tillage (41%) Wetland (0% between 1994-1999; to be parameterised for the period of 2002-2007) Urban (8%) Catchment structure No sub-catchments, one reach No effluent No abstraction

1. Catchment and reach information Catchment area, reach length 2. Data on fertiliser application NO3 fertilisation input files 3. Crop data Multiple growth period input files 4. Soil data From reference soil profiles, belonging to the agricultural area Soils of the forest area were represented by a chosen reference soil profile from an arable land Setting up parameters (soil water deficit maximum; total/available water)

1. Driving variables HBV model run output, provided by NVE Soil moisture deficit; effective rainfall; air temperature; precipitation 2. Reference data Discharge measurements (daily data) Nitrate concentration data (composite sampling; approx. every 14 days)

1. Flow R 2 and N-S has to be comparable with those, obtained from the HBV runs Peculiarities of a small catchment, with high agricultural impact and productive forest have to be considered Subsurface drainage system effect has to be considered 2. Nitrate concentration Composite sampling and model outputs comparability Efforts to re-calculate the simulated nitrate concentrations

1. Parameterisation Available data from the Skuterud catchment and reach Literature review Expert assumptions 2. Calibration procedure Stepwise calibration approach (flow; flow&nitrate) flow flow&nitrate Incorporation of sensitivity analyses results 3. Validation procedure 4. Scenario analyses

1. Main hydrological parameters, against which the model appeared to be very sensitive Flow parameters a and b (from the discharge velocity relationship) Base flow index Soil moisture deficit maximum Soil reactive zone time constant Ratio of total to available water in soil

Velocity v (m s -1 ) Velocity v (m s -1 ) The relationship: v aq b Manningen: 1 2 1 3 2 Q s A R s n Q s - Stream discharge (m 3 ) A - Wetted cross section (m 2 ) P - Wetted perimeter (m) R - Hydraulic radius = A/P (m) S - Slope of stream (m/m) n - Roughness parameter, varying between 0.025 0.075 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 n = 0.035 y = 1.163x 0.253 R² = 0.997 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Discharge Q (m 3 ) 1.6 n = 0.035 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Skuterud_real 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Discharge Q (m 3 )

a=1.163; b=0.253 a=0.042; b=0.67 - sim. - obs.

Velocity (v, m s -1 ) 2.0 v = a * Q ^b 1.5 1.0 0.5 n(0.025)_real n(0.045)_real n(0.075)_real n(0.025)_calib n(0.045)_calib n(0.075)_calib 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Discharge (Q, m 3 )

- sim. - obs.

Simulated: app. 31 kg N /ha /year for 1994-1998 Measured: 39 kg N/ ha /year for 1993-1999

Flow dynamics often failed in summer periods Proportion between N-balance elements answered our expectations, but the NO 3 dynamic was not good Contribution of drain tiles to flow pathways could not be properly described Ratio between the in-stream and in-land processes? catchment size Winter conditions Improved driving variables from new precipitation data NVE How to parameterise land use parameters further? Differentiation?

Thank you for attention!

Base flow index: 0.19 Soil moisture deficit maximum: forest: 320; grass: 300; no till: 280; till: 250; urban: 100 Ratio of total to available water in soil Soil profile Soil layer Water content at saturation Plant-available water Ratio of total to plant-available water (-) Average ratio Location or land use 100 004 (SKU 001) 100 005 (SKU 002) 100 006 (SKU 003) C2 (Pestrisk) (cm) (v%) (v%) (-) (-) 0-26 49.6 21.6 2.30 26-34 39.4 15.1 2.61 37-71 40.9 12.7 3.22 71-40.8 11.5 3.55 0-23 53.6 24.9 2.15 33-54 43.1 14.4 2.99 54-43.2 10 4.32 0-33 46.2 18.1 2.55 33-50 45.2 15.1 2.99 50-85 39.6 7.9 5.01 85-33.1 5.9 5.61 21-26 45.7 21.8 2.10 30-35 34.2 16.8 2.04 50-55 34.3 14.1 2.43 70-75 37 13.5 2.74 2.92 3.16 4.04 2.33 Cereal Cereal Cereal BUT under forest also Direct drilling, farm

Parameter name Specific heat capacity due to freeze/thought Maximum temperature difference Degree day factor for snowmelt Thermal conductivity of soil Thermal properties Forest Ref Grass Ref Arable Ref Urban Ref. min 4 1 4 1 4 1 4 1 max 15 1 15 1 15 1 15 1 initial 7.1 4 8 1 4 1 8 1 min 2 2, 4 2 2, 4 2 2,4 2 2,4 max 4.5 5 4.5 5 4.5 5 4.5 5 initial 2 3 4.5 4.5 min 1.6 1 1.6 1 1.6 1 1.6 1 max 4.9 1 4.9 1 4.9 1 4.9 1 initial 2 4 3 4 3 4 3 4 min 0.4 1 0.4 1 0.4 1 0.4 1 min 0.8 1 0.8 1 0.8 1 0.8 1 Initial 0.6 0.6 0.7 0.7 1. Rankinen et al., 2004a 2. Rankinen et al., 2004b 3. Ranzini et al., 2007 4. Savijoki input file 5. Tamar input file

Soil water denitrification rate Nitrogen fixation rate Plant uptake rate nitrate Maximum nitrogen uptake rate Ammonium nitrification rate Ammonium mineralisation rate Ammonium immobilisation rate Plant uptake rate / ammonium Forest Ref. code Grass Ref. code Arable Ref. code Urban m day -1 min 0.001 4,6 0.001 4,5 0.001 4,5 0 4 kg ha -1 day -1 max 0.008 1,3,5 0.008 6 0.01 6 0.001 5,6 initial 0.008 0.004 0.005 0 min 0.001 1,3 0 1,3 0 1,3 0 2,6 max 0.002 2,6 0.002 6 0.002 2,6 initial 0.001 0.002 0 0 m day -1 min 0 2 0.02 4 0.01 4 0.007 4 kg ha -1 max 0.1(3.5) 5(3) 0.25 3 0.08 3,6 0.08 5,6 initial 0.05 0.1 0.05 0.01 day -1 min 95 6 250 3 120 3 70 5,6 min 70 4,5 45 4 40 6 0 4 Initial 75 70 95 Ref. code m day -1 min 0.001 3 0.05 4 0.01 4 0 4,5,6 kg ha -1 day -1 max 0.8 5,6 0.8 1,6 0.9 3 initial 0.05 0.5 0.8 0 min 0.16 6 0.1 6 0.08 6 0 4,5,6 max 0.8 5 1.2 1,3 0.9 3 initial 0.4 0.6 0.5 0 m day -1 min 0.01 4 0.02 4 0.02 4 0 4 max 0.7 3 0.1 6 0.1 6 0.1 5,6 initial 0.1 0.06 0.07 0.05 m day -1 min 0.002 4 0.002 4 0.001 4 0.002 4 min 0.12(4.5) 3(6) 0.1 6 0.08 6 0.08 5,6 Initial 0.1 0.08 0.006 0.004 1. Granlund et al., 2004; 2. Manuscript_1; 3. Savijoki input file 4. Wade et tal., 2002; 5. Whitehead et al., 1998; 6. Tamar input file; 7. SOILN_NO

starting "0" param. File Skuterud flow a Skuterud flow b Skuterud base flow index Skuterud groundwater residence time Forest soil reactive zone time constant NoAutumT soil reactive zone time constant AutumT soil reactive zone time constant Reach Reach Catchment Catchment Land Use Land Use Land Use R2 R2 K-S_04022009_Hydr 0.392 0.224 0.188 0.138 0.306 0.133 0.409 K-S_30012009_H&N 0.131 0.145 0.079 0.041 0.037 0.064 0.115 Using calculated a, b as initial; changing base flow flow nitrate 1.163 0.253 0.05 5 2 1 1 0.623 0.3 0.648 0.5 0.653 0.5 0.653 0.9 0.7 0.653 0.9 0.653 0.5 0.653 0.1 0.657 0.219 3 0.653 0.05 0.668 0.7 0.661 Fixed flow parameters "a" and "b" 0.042 0.67 0.30 5 2 1 1 0.684 0.19 0.691 0.162 0.8 0.25 5 2 0.675 0.157 2 1.5 1 0.690 0.233 0.05 0.687 0.216 0.03 0.683 0.268 0.85 0.689 0.297 Fixed flow parameters "a" and "b" and fixed base flow index 0.042 0.67 0.17 5 2 1 1 0.692 0.161 5 2 3 3 0.646 0.206 5 2 2 2 0.672 0.183 5 0.5 2 2 0.687 0.196 5 0.5 0.5 0.5 0.637 0.167 5 1 2 2 0.687 0.192 5 2 1 1 0.690 0.165 5 2 3 3 0.658 0.208 0.042 0.67 0.17 5 2 1 1 0.692 0.161 10 0.691 0.164 20 0.691 0.172 35 0.692 0.181 50 0.692 0.187 30 0.692 0.179

Selected models - Eutrophication Hydrology models Because of the importance of process and models selected due to their difference in complexity: SCS HBV Water quality models Because of the varying need of high resolution in hydrology environment CE-QUAL-W2 Catchment models Because of the importance of diffuse and point sources and the models ability to perform scenario calculations TRK SWAT INCA Source apportionment and scenario tools Because of the importance of presentation and user friendly tests of scenarios of change WATSHMAN

Models comparison Models SCS HBV CE- QUAL- W2 Modest data requirements TRK SWAT INCA WATSHMAN Y Y N Y N Y Y High time resolution N Y Y Y Y Y Y High spatial resolution Processbased conceptual model Calibration data required Y Y Y Y Y Y Y N Y Y Y Y Y N N Y Y Y Y Y N Scenario possibilities N Y Y Y Y Y Y Complete catchment model N N N Y Y Y Y

Models comparison - continue Models SCS HBV CE- QUAL- W2 Distributed Y Y (semi) Y (fully) TRK SWAT INCA WATSHMAN Y (semi) Y (semi) Y (semi +) Time consuming N Y Y Y Y Y N Single interface N Y Y N Y Y Y Exchangeable submodels Applied for national assessments Applied in Northern Europe N Y - Y N* - Y - Y - Y - - N Y Y Y Y Y Y Y Non-Expert user Y N N N N N Y Freeware Y Y Y Y Y Y Y Y (semi) * some process submodels can be chosen in a scrollist and some can be exchanged - have not been verified