GÅR TIL: DELTAKERE: TIL ORIENTERING: Tema Ansvar Tidspunkt



Like dokumenter
Tor Haakon Bakken. SINTEF Energi og NTNU

EcoManage. Forbedret metodikk for utvikling og forvaltning av energi- og vannressurser. Brukermøte november 2015

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning

Centre for environmental design of renewable energy CEDREN

6 December 2011 DG CLIMA. Stakeholder meeting on LDV CO 2 emissions - Scene setter

1 Atle Harby, CEDREN

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Rollen til norsk vannkraft i 2050 scenarioer for Norge som leverandør av balansekraft

Forskningsrådets seminar Noen erfaringer fra en søknadskriver. Tor Iversen Universitetet i Oslo

Risikofokus - også på de områdene du er ekspert

please register via stads-self-service within the registration period announced here: Student Hub

Baltic Sea Region CCS Forum. Nordic energy cooperation perspectives

Rollen til norsk fornybar kraftproduksjon i 2050 Scenarioer for Norge som leverandør av balansekraft eller stor leverandør av fornybar energi

EU Energi, SET-plan. Beate Kristiansen, Spesialrådgiver/EU NCP Energi

Centre for environmental design of renewable energy CEDREN. SINTEF Energy Research

EcoManage Improved development and management of energy and water resources

Innovasjonsvennlig anskaffelse

Issues and challenges in compilation of activity accounts

Generalization of age-structured models in theory and practice

Forskningsrådets rolle som rådgivende aktør - innspill til EUs neste rammeprogram, FP9 og ERA

Emneevaluering GEOV272 V17

Research on Low Carbon Emissions - Road Transport in Norway

Western Alaska CDQ Program. State of Alaska Department of Community & Economic Development

Nytt strømforbruk. Fra strøm til hydrogen, en ny lagringsmetode

En praktisk anvendelse av ITIL rammeverket

Multi-kriterie-analyse av kompenserende tiltak

The Research Council of Norway, grants and levels of research

Climate change and adaptation: Linking. stakeholder engagement- a case study from

Capturing the value of new technology How technology Qualification supports innovation

Midler til innovativ utdanning

«Nett for enhver pris»

Virginia Tech. John C. Duke, Jr. Engineering Science & Mechanics. John C. Duke, Jr.

Assessing second language skills - a challenge for teachers Case studies from three Norwegian primary schools

IEA PVPS. Trond Moengen. Global co-operation towards sustainable deployment of photovoltaic power systems

The TrAM-project Transport Advanced & Modular

Revision of hydropower licenses - prioritisation of rivers for environmental improvement Nordic WFD Conference Reykjavik 27.

Public roadmap for information management, governance and exchange SINTEF

The building blocks of a biogas strategy

INTPART. INTPART-Conference Survey 2018, Key Results. Torill Iversen Wanvik

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår

Centre for environmental design of renewable energy CEDREN

Framtidens energisystem i Norge og Europa og FoU-utfordringer det byr på

IRENA. IEA delegatsamling 4. februar Underdirektør Øivind Johansen. Olje- og energidepartementet regjeringen.no/oed

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

Nasjonalt fakultetsmøte Bergen april Prosjektleder Heidi Dybesland

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

FME-enes rolle i den norske energiforskningen. Avdelingsdirektør Rune Volla

Kjønnsperspektiv I MNT utdanning og forskning

SYNERGIES BETWEEN MEASURES FOR ADAPTATION, EMISSIONS TO AIR AND WATER QUALITY IN AGRICULTURE

Forslag til. KMB-prosjekt vedr. miljøvennlig nettregulering

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

Q2 Results July 17, Hans Stråberg President and CEO. Fredrik Rystedt CFO

Fjerning av offshore-konstruksjoner - Hva kan vi lære (JIP)? Anette Pedersen, Ingar Scherf, Gudfinnur Sigurdsson

COUNTRY REPORT- NORWAY

HONSEL process monitoring

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Feiltre, hendelsestre og RIF-modell

Europeiske FOU muligheter innen energiområdet

Nasjonalt kvalifikasjonsrammeverk og læringsmål i forskerutdanningen

E-Learning Design. Speaker Duy Hai Nguyen, HUE Online Lecture

Slope-Intercept Formula

Examples and experience from restorations along Tana river on the norwegian side. Knut Aune Hoseth Head of northern region

Horisont 2020 EUs forsknings- og innovasjonsprogram. Brussel, 6. oktober 2014 Yngve Foss, leder, Forskningsrådets Brusselkontor

Rapporterer norske selskaper integrert?

Information search for the research protocol in IIC/IID

Nærings-PhD i Aker Solutions

SIU Retningslinjer for VET mobilitet

Ph.d-utdanningen. Harmonisering av krav i Norden

Examination paper for TDT4252 and DT8802 Information Systems Modelling Advanced Course

Vekstkonferansen: Vekst gjennom verdibaserte investeringer. Thina Margrethe Saltvedt, 09 April 2019

Utvikling av skills for å møte fremtidens behov. Janicke Rasmussen, PhD Dean Master Tel

NKS-programmet Status i B-delen

WÄRTSILÄ MARINE SOLUTION POWER CONVERSION INNOVATIVE LAV- OG NULLUTSLIPPSLØSNINGER OG UTFORDRINGER MED Å FÅ DISSE INN I MARKEDET.

The Future of Academic Libraries the Road Ahead. Roy Gundersen

Godkjenning av hydrogen som drivstoff på skip

GIS - BASED STORMWATER MASTER PLANNING: SIMPLIFYING STORMWATER PROGRAM MANAGEMENT. Gregory V. Murphy, PE, ARCSA AP Jonathan A. Villines, EIT, CFM

SRP s 4th Nordic Awards Methodology 2018

Internationalization in Praxis INTERPRAX

Quality in career guidance what, why and how? Some comments on the presentation from Deidre Hughes

Vannkraft Ren energi som verdens batteri

European Crime Prevention Network (EUCPN)

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Offshore Wind Turbine Support Structures. Erfaringer med å søke EU finansiering

The North-South Corridor - showing progress

Visjoner og ambisjoner for UiOs energisatsning. Rektor Ole Petter Ottersen

Trust in the Personal Data Economy. Nina Chung Mathiesen Digital Consulting

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

Behov for (elektrisk) energilagring

Solenergi og energisystemer Viken møte 16 januar 2019

Notat. Midtveisevalueringen av SFI - Tilbakemeldinger fra brukerpartnerne. Dato:

Green Corridors - EUs arbeid for bærekraftig godstransport

Søknadsskjema Strategiske Partnerskap. Anne Kloster Holst Seniorrådgiver SIU Oslo

By Bioforsk RECOCA Team Per Stålnacke Csilla Farkas Johannes Deelstra

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

ROS analyse for samfunnskritiske IKT systemer. Utfordringer og muligheter 24/11-05

TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE:

Software applications developed for the maritime service at the Danish Meteorological Institute

SAMMENDRAG.

SusWater prosjektet. NVE m.m. den 19. januar 2016

Transkript:

MØTEINNKALLING FORMÅL: CEDREN nye prosjektideer INVITERT AV: Arnt Ove Eggen, SINTEF Energi (mobil: 92618730) STED: SINTEF Energi AS, M2 DATO OG TID: 2011-06-23, 09.00 14.30 GÅR TIL: DELTAKERE: TIL ORIENTERING: CEDREN hovedkontakter Utvalgte brukergrupper CEDREN Komité for innovasjon og kommersialisering Utvalgte forskere Sak nr. Tema Ansvar Tidspunkt Åpning av møtet Harby 09.00 1. ConnectDESIGN følger opp en del problemstillinger fra EnviDORR med spesiell fokus på opp- og nedvandring av fisk i regulerte vassdrag Museth 09.10 2. HydroBalance problemstillinger omkring marked, potensiale, tekniske løsninger, næringsutvikling, miljøvirkninger, nett, rammebetingelser, politikk/styring og samfunnsaksept for utvikling av norsk vannkraft som balansekraft for vind, offshore vind og Europa Belsnes Harby 10.30 Lunsj 12.00 3. EcoManage Nye metoder for å vurdere miljøforhold og naturinngrep i forbindelse med fornybar energiproduksjon Bakken 12.30 4. Oppsummering Harby 14.00 Møteslutt 14.30

Side 2 CONNECTdesign Håndtering av habitatfragmentering i regulerte elver Tidligere forslag til diskusjon

Side 3 Begrunnelse Etablering av kraftverksdammer og andre installasjoner i elver kan ha økologiske konsekvenser på lokal og regional skala, både gjennom hydrologiske endringer og ved at demninger kan redusere eller fjerne konnektiviteten (forbindelsen) mellom vitale habitater i vassdraget. Mange organismer er avhengig av vandringer mellom ulike habitater for å kunne fullføre livssyklus. Dette prosjektet adresserer problemstillinger knyttet til habitatfragmentering og tap av konnektivitet i regulerte elver med hovedvekt på viktige fiskearter, og relevansen er i hovedsak knyttet til følgende: Klare politiske mål om økt produksjon av fornybar vannkraft (f.eks. EUs Fornybardirektiv) Ambisiøse miljømål for vannforekomster og elver (gjennom implementering av EUs Vannrammedirektiv (Vannforskriften)) Åpning for revisjon av konsesjonsvilkår ved mer enn 300 kraftverk innen 2022 Konkrete planer om etablering av nye kraftverk og oppgradering av eksisterende installasjoner. Det er en betydelig utfordring å tilfredsstille samfunnets behov for fornybar vannkraft (f. eks. EUs Fornybardirektiv) og samtidig å bevare biologisk mangfold og økologisk funksjonalitet i elver (f.eks. EUs Vannrammedirektiv). For å kunne finne de gode løsningene og avveiningene mellom kraftproduksjon og bevaring av viktige biologiske ressurser kreves god kunnskap både om de faktiske konsekvensene av inngrepene og om effektive tiltak. Mange av de større elvene i Norge er påvirket av vannkraftutbygging og elvestrekninger er/kan bli klassifisert å ha moderat økologisk status eller å være sterk modifiserte vannforekomster. Det er et mål i vannforskriften at tiltak skal gjennomføres slik at den førstnevnte kategorien skal nå minst god økologisk status og at sistnevnte skal nå godt økologisk potensial. Restaurering og bevaring av konnektivitet for fisk og invertebrater er eksplisitt nevnt som sentrale funksjoner for å nå vanndirektivets mål om bedret økologisk status (f.eks. Zitek et al. 2008) Konsept Prosjektet bygger på hierarkisk tilnærming for å håndtere utfordringer med habitatfragmentering i regulerte elver (skisse 1). Først må man forstå om og i hvilken grad fragmentering av habitater faktisk er et problem for langsiktig levedyktighet av viktige fiskebestander, for økosystemenes funksjon og for bruk av områdene til fiske og annet friluftsliv. Både artssammensetning, skala for fragmenteringen og habitatsammensetning i fragmentene forventes å være viktig. Der tap av konnektivitet er av avgjørende betydning for levedyktighet og funksjon må hovedfokus være å reetablere konnektivitet gjennom tiltak for å sikre toveis passasje av barrierene, og gjennom å sikre at drivkreftene for vandring er til stede eller kan reetableres. Der tap av konnektivitet er mindre viktig, levedyktighet og funksjon er sikret (men på et redusert nivå) og/eller der det er svært vanskelig å reetablere konnektivitet er fokus på å designe fysiske tiltak og vannføringsforhold som kan bidra til å redusere de negative effektene. Her er det viktig at mengde og romlig fordeling av essensielle habitatkvaliteter (til gyting, oppvekst og overvintring) er til stede eller reetableres innen de fragmenterte elveavsnittene, samt at flaskehalser for fiskeproduksjon er identifisert og effekten redusert gjennom tiltak. Konsekvenser av tap av konnektivitet, tiltak for reetablering av konnektivitet og tiltak i fragmenterte elveavsnitt studeres i tre arbeidspakker (WP 1-3). Kunnskapen som framskaffes i disse samles i en helhetlig tiltakspakke (WP 4) for habitatfragmenterte elver (basert på det samme hierarkiet). Med helhetlig menes tiltak som tar hensyn til vassdragene som helhet, og som inkluderer både konnektivitet på langs, konnektivitet mellom hovedvassdrag, sidevassdrag og omliggende terrestriske habitat. Prosjektet viderefører grunntanken i andre CEDREN-prosjekter (f.eks. EnviDORR) der målet er å finne gode løsninger som avveier forholdet mellom kraftproduksjon og miljøhensyn. Det er i de fleste av de fragmenterte vassdragene allerede gjennomført avbøtende tiltak (typisk trapper og fiskeutsettinger). Erfaringer så langt har vist mange av disse tiltakene har begrenset biologisk effekt og det er nødvendig med en evaluering av tiltakene som grunnlag for den nye tiltakspakken.

Side 4 Konsekvenser av tap av konnektivitet Avgjørende Viktig - ikke avgjørende Mindre viktig WP 1 Reetablering av konnektivitet WP 2 Tiltak i fragmenterteelveavsnitt WP 3 Helhetlig tiltakspakke for habitatfragmenterte elver Evaluering av tradisjonelle avbøtende tiltak WP 4 WP 5 Skisse 1. Flytdiagram for en hierarkisk håndtering av utfordringer med habitatfragmentering i regulerte elver og tilhørende arbeidspakker (WP) for hvert nivå. Blå piler angir hvordan nivåene henger sammen, mens grønne piler angir flyt av kunnskap fram til hovedmålsettingen med prosjektet (WP 4). Arbeidspakker (WPs) WP1: Konsekvenser av tap av konnektivitet. Mål: Skaffe det faglige grunnlaget for å kunne klassifisere når og under hvilke forhold tap av konnektivitet er: avgjørende for økosystemfunksjon og fiskeproduksjon, viktig, men ikke avgjørende og mindre viktig Metodisk tilnærming: Komparative studier av fragmentert vs. ikke fragmenterte elveavsnitt mht. artsammensetning, populasjonsstørrelser, produksjon/biomasse, genetisk variasjon og bruk/friluftsliv. Bygger i høy grad på eksisterende dataserier (data om fiskeoppgang i utvalgte trapper, telemetri i forbindelse med konsekvensutredninger av nye kraftprosjekter) fra sentrale vassdrag på Østlandet supplert med nye datasett og variable. Betydningen av fragmentering beskrives i forhold til artssammensetning, grad av fragmentering, fragmentstørrelse og habitatsammensetning innen fragmentene. WP2: Reetablering av konnektivitet. Mål: Etablere generell kunnskap for design av toveis vandringsløsninger både i laksevassdrag og i mer artsrike innlandsvassdrag

Side 5 Metodisk tilnærming: Design av tekniske/fysiske installasjoner som sikrer vandring, gjennom eksperimentelle feltstudier, utprøvinger og analyser av eksisterende data for fiskevandringer. Effekter av manøvreringstiltak (driftsperioder for fisketrapper, lukemanøvrering m.m.) gjennom utprøving i eksisterende anlegg Studier som skiller dårlige designløsninger fra endrede drivkrefter for vandringer gjennom analyser av vandring (telemetri og genetikk) og forekomst av essensielt habitat (gyting, oppvekst og overvintring) i tilgrensende elveavsnitt. Komparative analyser av trappedesign i laksevassdrag med sterk vandringsmotivasjon og innlandsvassdrag der drivkreftene er endret etter fragmentering. WP3: Tiltak i fragmenterte elveavsnitt Mål: Skaffe kunnskapsgrunnlag for å maksimere produksjon av viktige fiskearter i fragmenterte elveavsnitt. Metodisk tilnærming: Skaffe kunnskap om habitatkrav, bestandsregulering og betydningen av romlig fordeling av ulike habitatkvaliteter for viktige fiskearter basert på kartlegging og karakterisering av gyte-, oppvekst og vinterhabitater. Utvikle metodikk for reetablering av habitatene og evaluering av testtiltak. Utvikle metodikk for økt sekundærproduksjon gjennom fysiske tiltak. Kartlegging av flaskehalser (biologisk og hydrologisk) for fiskeproduksjon relatert til vannføringsforhold og temperatur. Modellmessig utprøving av ulike manøvreringstiltak som reduserer effekten av flaskehalser balansert mot kraftproduksjon. WP4: Helhetlig tiltakspakke for habitatfragmenterte elver Mål: Utvikle en helhetlig tiltakspakke for hvordan habitatfragmentering skal håndteres slik at langsiktig levedyktighet og økologisk funksjonalitet sikres. Metodisk tilnærming: Syntese av kunnskap framskaffet i de andre arbeidspakkene. WP 5: Evaluering av tradisjonelle avbøtende tiltak Mål: Evaluere de avbøtende tiltak som tradisjonelt har vært gjennomført i regulerte og fragmenterte elver for å vurdere om de har hatt ønsket effekt. Metodisk tilnærming: Samle, oppsummere og analysere eksisterende evalueringer av fiskeutsettinger. Gjennomføre nye spesifikke evalueringer av utvalgte utsettinger for å fylle kunnskapshull. Oppsummere og vurdere dagens løsninger for fiskevandringer over dammer i elver med innlandsfisk. Overordnet metodisk tilnærming Prosjektet bygger på erfaringer og konsepter fra EnviDORR fra lakseelver, som videreføres i utvalgte lokaliteter for vandringsproblemstillinger, men har innlandsvassdrag som hovedfokus. Vi tror erfaringene som er bygget opp i EnviDORR og andre prosjekter på laks er gjensidig svært nyttige for tilsvarende problemstillinger på elvelevende innlandsfisk. Vi vil også bygge på bredden av kompetansen i CEDREN konsortiet med kunnskap om både biologi, menneske og natur, hydrologi og kraftverksdrift.

Side 6 Hovedprinsippene for den metodiske tilnærmingen er å utnytte eksisterende datasett fra de store elvene på Østlandet, gjennomføre supplerende og nye komparative studier i utvalgte vassdrag og å utnytte etablerte eksperimentelle feltlokaliteter i eksperimentelle studier av fiskevandringer forbi barrierer. Ved å kombinere disse vil det kunne skaffes kunnskap som kan generaliseres. Prosjektet vil fokusere på aure, laks og harr som alle er økonomisk viktige arter som har stor samfunnsmessig interesse. Så langt er vandringsproblematikk knyttet til ål av ressursmessige årsaker ikke inkludert, selv om behovet for kunnskap om løsninger for denne arten er stor og økende. Forskningspartnere Prosjektet bygger på det etablerte samarbeidet i EnviDORR og CEDREN med NINA, SINTEF, NTNU og Uni miljø som hovedpartnere. I tillegg vil det bli etablert samarbeid med internasjonale partnere innenfor den nordiske aksen i CEDREN hvor det finnes spesielt relevant kompetanse på flere tema. Andre CEDREN forskningspartnere kan også være relevante. Økonomi Prosjektet tar som utgangspunkt at det startes opp som en del av CEDREN basert på finansiering fra konsortiepartnerne og eventuelt nye brukere, med muligheter for utvidelse etter søknad til NFR (når slike muligheter åpnes). Prosjektet er basert på at to PhD studenter og en post-doc skal gjennomføre mange av de fundamentale studiene, og mye av ressursene vil gå til disse. Budsjettet er slik det nå framstår et minimum som kan utvides ettersom nye industripartnere tilkommer og NFR-finansiering eventuelt realiseres. Prosjektet bygger på å utnytte resultater fra en rekke vassdragspesifikke studier (KUer og forundersøkelser) som gis betydelig merverdi gjennom et slikt forskningsprosjekt, samtidig som prosjektet tilføres betydelig ressurser i form av dataserier. Bidragene fra disse undersøkelsene er ikke inkludert i budsjettet. Tabell 1: Foreløpig budsjett År1 År2 År3 År4 Sum WP 1: PhD 638250 638250 638250 638250 2553000 Annet 400000 400000 500000 250000 1550000 Wp 2: Post doc 567333 567333 567333 1702000 Annet 300000 500000 700000 400000 1900000 WP 3: PhD 638250 638250 638250 638250 2553000 Annet 100000 600000 550000 400000 1650000 WP 4 500000 500000 WP 5 100000 250000 250000 150000 750000 Adm/koord/møter 75000 100000 100000 100000 375000 Internasjonale partnere 50000 75000 75000 75000 275000 SUM 2301500 3768833 4018833 3718833 13808000 Derav: PhD & Postdoc 1276500 1843833 1843833 1843833 6808000 Andre 1025000 1925000 2175000 1875000 7000000

Side 7 HydroBalance

Side 8 PART 1: Knowledge needs 1. Knowledge needs Refrasing a famous quote from Shakespeare s Hamlet the main question is: To be or not to be a green battery. This simple question contains a lot of challenging issues that need to be resolved before the answer to the main question itself can be evaluated. CEDREN will deliver: Knowledge in the field of renewable and sustainable energy systems. Innovation and new possibilities for renewable energy solutions. Outstanding dissemination and targeted dialogue about processes and results. One important issue that CEDREN must address is the vision raised in Energy21. This vision is highly relevant due to the development in Europe where energy storage and balancing services will play a key role enabling Europe and EU commission to reach ambitious plans for a carbon free future. Some elements are: Renewable Energy Sources (RES) targets often based in intermittent generation, mainly wind and solar power Common energy markets in EU Infrastructure plans and energy corridors in EU CEDREN can indirectly support a KP project ( Kompetanseprosjekt ) with model development support in terms of 12 Mill NOK by targeting CEDREN funds from Tools towards requirements from the KP. PART 2: The knowledge-building project 2. Objectives The question whether if Norway is to become, and to what degree, an energy storage for intermittent generation in Europe contains many challenges. This proposal will focus on a subset of these challenges but through CEDREN it will be possible to coordinate with parallel activities making it possible to extend the research frontier faster and further. The main objectives are outlined in the following. Objective 1: Norwegian potential contra needs The project will supply detailed and reliable answers to the questions: What is the potential in using hydropower reservoirs for supporting European intermittent energy production and what are the costs What are the potential in capacity expansion of generation and new pumped storage installations Further deployment of unused hydro potential Infrastructure costs and needs What are the needs for RES support in Europe Sensitivity analyzes regarding: o Technologies o Distribution How can the potential be influenced: Reducing existing uncertainty ex, inflow Market organization

Side 9 Objective 2: Business development and business model for operation What are the potential for business development in the planning and construction phase? Local business development what are the possibilities for enhancing business development locally Benefit sharing with local communities Impacts for tourism (increased infrastructure, impacts on landscape) What business model should Norway favour towards Europe in power production, energy storage, back-up and capacity in the operational phase? The objective is to look for answers regarding: Alternative business models Which markets can create pay-back options for investors Share of pay-back from different markets What are the alternatives to balance services from hydro at multiple time scales Comparing with the cost of delivering services from Norway to a receiving market in Europe with local options Objective 3: Address the environmental challenges What are the environmental impacts with focus on: Physical impacts in reservoirs (water level fluctuations, currents, erosion and sedimentation impacts, ice conditions, water temperature) Biological and ecological impacts in reservoirs (invertebrate and fish populations, biodiversity, other ecosystem impacts) Physical and biological impacts in other affected water bodies (rivers, natural lakes and fjords) Assess infrastructure requirements and impacts Assess consequence for terrestrial wild life What can be done to limit the effect? o Physical measures and operational measures Impact on the potential from new measures (connection to objective one) Objective 4: Governance, regulation and public acceptance Assessing the existing regulatory framework in actual countries and needs for change. Governance and policy trends and potential solutions for establishing business models and cross-border trade. Social acceptance: Is this a green battery ( blue battery ) or a water closet? Public and social acceptance Objective 5: Technology Pumped storage technologies Tunneling and waterways Assess the need for grid expansion and new transmission lines. Cable connecting points.

Side 10 Objective 6: Coordination and dissemination There are many activities and stakeholders interested in energy storage from hydropower not only in Norway and Scandinavia but also in Europe. For the project to make maximum impact and to push the research frontier as much as possible CEDREN HydroBalance must be coordinated and cooperate with stakeholders in Norway and Europe. 3. Frontiers of knowledge and technology Describe the national and international state-of-the-art of the relevant technologies/research topics toward which the knowledge-building project is targeted. Describe how the project will generate new knowledge that will be significant to promoting scientific development in these areas. 4. Research tasks and scientific methods The first part of the project divided into specific task targeting the above defined objectives. Activities WP 1: Norwegian potential contra needs Based on the initial estimates in HydroBalance phase 1, the objective is to quantify in greater detail the potential of using Norwegian hydro reservoir as energy storage and balancing service in multiple time scales in connection with the European grid. Focus will be on the southern part of Norway which is closest to the points of delivery in Europe. Capacity expansion of generation and pump installation Further deployment of unused hydro potential between existing reservoirs Infrastructure costs and needs The second task in WP 1 is to assess the market for balance solutions at multiple time scales towards Europe. What are the needs for RES support in Europe Sensitivity analyzes regarding: o Technology mix of intermittent RES o Geographical distribution of intermittent RES This will be done by setting up time series for RES depending on type and location throughout Europe and analyze the series and their impact on the need for short and long term storage. Given different combination of the sensitivity parameters different requirements for balance power will be estimated. This calculation can be done based on type and location only or it can be combined in an energy system model that to larger extend can give a number that is relevant for hydropower as it is possible to account for a likely use of thermal units and other generation assets. Activities WP 2: Business development and business model for operation Activities WP 3: Environmental challenges Reservoir modelling of physical and ecological processes Collaboration with other CEDREN projects

Side 11 Activities WP4: Governance, regulation and public acceptance Activities WP5: Technology Activities WP6: Coordination and dissemination Provide a clearly defined, verifiable primary objective for the knowledge-building project. Provide a bullet list of verifiable secondary objectives that will lead to the achievement of the primary objective. Plainly describe the anticipated results of the project. Identify and describe the research question that will be addressed in the project. Describe the main research tasks in light of the knowledge needs toward which the project is targeted. Describe the methods and theories that the project intends to employ, either specifying how these are well suited to provide answers to the research questions or elaborating how the necessary methodology and theory will be developed. Describe how research fellowships will be utilised in connection with the research tasks under the project. Indicate plans for publication in referee-based scholarly journals. 5. Organisation and project plan Describe the role of each research partner (including international partners) in the implementation of the project, and the type of knowledge/expertise they will contribute. Describe the role of each of the industrial partners and any other users in the management and implementation of the project beyond their financial contribution. If the companies intend to conduct relevant R&D activities alongside the project, please describe in detail what these entails. Explain why the constellation of partners for the project was chosen. Specifically describe the considerations that have come into play when assessing the need for international cooperation in the project. The specific objectives and deliverables with appurtenant costs for all the main activities of the project are to be presented in the table below, cf. the item Main activities and milestones in the project period in the application form. The sum of all expenses must correspond to the total costs for the R&D project, cf. the item Cost plan in the application form. Specify the name of the partner that is responsible for the activity and any other participating partners. Project plan No. Main activity, objectives and deliverables Cost Responsible partner 1 Participating partners The project aims at supporting 2 PhD candidates within the above main objectives. The theme for the Ph.D work is to be elaborated together with resources at NTNU: Olav/Gerard? Knut/Ånund? Audun innen ditt felt?

Side 12 6. Key milestones Describe and estimate the dates for milestones that are deemed crucial to the implementation of the R&D project, and specify the secondary objectives to which they are linked. Such milestones often comprise decision points which may be important in determining the course to pursue in subsequent project activity. 7. Costs incurred by each research-performing partner (NOK 1 000) An overview of how the project costs will be distributed among each of the research-performing partners is to be presented in the table below. Specify the payroll and indirect expenses, expenses for equipment, other operating expenses and total expenses for each partner. The sum of all expenses must correspond to the total costs for the R&D project, cf. the item Cost plan in the application form. Research-performing partner Payroll and indir. exp. Equipment Other op. expenses Sum 8. Financial contribution from industrial partner or other user (NOK 1 000) Use the table below to specify the cash contributions from the individual industrial partners. The last row of the table must indicate the amount of funding sought from the Research Council. This amount may not exceed a maximum of four times the total cash contribution from the industrial/user partners. The sum of all cash contributions per partner and the amount sought from the Research Council must correspond to the total amount of project funding, cf. the item Funding plan in the application form. Industrial partner or other user Cash financing From Research Council 9. Other collaboration If the project entails collaboration with parties other than the partners listed in the cost and funding tables, these must be described here. PART 3: Project impact 10. Importance for national knowledge base Describe how the project will contribute to long-term, national competence-building in the relevant areas, for instance through the development of cutting-edge expertise, expansion of the knowledge base, enhanced researcher training or development of relevant educational programmes. Give an account of the qualifications and research capacity of the research partners in the relevant area, as well as their national position in the field. Describe how the project conforms to these partners internal strategies and plans. Explain why it is important to develop this expertise in Norway as opposed to procuring it from abroad. 11. Relevance for Norwegian industry a) Describe the anticipated potential of the expertise developed to generate value added in the participating companies and indicate how this conforms to their internal strategies and plans. b) Describe in addition the anticipated benefits of the expertise developed for Norwegian trade and industry in general.

Side 13 PART 4: Other aspects 12. Other socio-economic benefits The benefits of the project for Norwegian trade and industry and for competence development at the national level are to be described under item 3. Describe any other benefits the project may provide. 13. Dissemination and communication of results Describe plans for disseminating results from the R&D project. 14. Environmental impact Describe whether the implementation of the R&D project and/or the utilisation of project results will entail any significant environmental impacts (positive and negative). 15. Ethical perspectives If the project raises specific ethical questions, describe how these will be dealt with. 16. Gender issues (Recruitment of women, gender balance and gender perspectives) When relevant, a description should be provided here of how the project will promote the Research Council s general objectives to increase recruitment of women and improve gender balance in projects. If gender perspectives are relevant to the substance of the project, describe how these will be taken into account. 17. Additional information specifically requested in the call for proposals Only information explicitly requested in the call for proposals should be provided here.

Side 14 EcoManage (Assessment of EPR, Ecosystem services and MCDA as tools for analysis of renewable energy production and impact studies in regulated rivers) Skisse til nytt prosjekt del av sakspapirer for styremøte i CEDREN 2011-04-12. Det er fase II av dette prosjektet som er aktuelt for ny prosjektsøknad Oppsummering av møte om nytt prosjekt Notat fra IHA om Water for Hydropower

Side 15 Assessment of EPR, Ecosystem services and MCDA as tools for analysis of renewable energy production and impact studies in regulated rivers Objectives and expected outcome phase I / II The objectives of the proposed project are to demonstrate and evaluate the applicability of new concepts in environmental management and decision-making, namely Energy Payback-Ratio (EPR), the ecosystem services approach and Multi-Criteria Decision-making Analysis (MCDA) by applying them in selected case studies in Norway. The project will be divided into a pilot-study (phase I), followed by a full-scale project (phase II). The objectives for phase I and II will be met by carrying out the following research activities: Activities in Phase I 1. Assessment of all the concepts based on literature studies and preliminary evaluation of the applicability in the context of development of renewable energy production and regulated rivers. 2. Estimation of EPR-values 1 on 5-8 existing Norwegian hydropower plants (on already compiled data) in order to assess the typical EPR-variation/range on Norwegian hydropower plants, primarily based on cases where data are already available 2. 3 3. Preliminary EPR-values for a number of other energy production facilities 4. Development of a plan for of a full-scale project 4 based on the findings in phase I, including scoping of project, development of research approach, selection of case studies, identification of end-users, confirmation of scientific partner contributions/roles and financial plan. Activities in Phase II 1. Estimate EPR-values from various types of energy production, including (see also footnote 3); a. Wind power production (based on data from existing cases) b. Small hydropower production (plants < 10 MW) c. Extension of existing large hydropower (O/U-projects) 5 d. Bio-energy production e. Compare calculate values from various energy production facilities (including those calculated in phase I) 1 The proposed activities on EPR will be carried out in line with established scientific methods in order to ensure intercomparability with published international studies (e.g ISO 14044). 2 Focus in phase I will primarily be EPR-calculation, in order to follow and contribute to the progress of the newly appointed Energy committee (Energiutvalget) (see section 4). EPR-calculations will first be made for those cases where data from LCA-studies (life-cycle analysis) are readily available, which can be utilized to calculate EPR-values with limited additional data collection (see specified list of cases in section 3). 3 An important task will be to develop a more detailed/refined list of energy production options for all major technologies in order to cover the relevant categories of production, based on existing work carried out by NVE (special focus on bio-energy) and DN. A prioritized list of technologies will be developed and EPR values calculated in phase I, the remaining in phase II (also point 1 in phase II). 4 A full-scale project can typically be a KMB-proposal to NFR. 5 For instance adding new tributaries to existing hydropower schemes, replacement of old machinery with new with lower energy losses, reduction of friction losses in head-race tunnels, etc.

Side 16 2. Evaluate the use of EPR as a benchmarking tool for the development of renewable energy production. The activities 1-2 in phase II are all considered relevant and useful in order to provide input to high-level policy-making regarding development of renewable energy production 6. 3. Estimate the value of all ecosystem services 7 in heavily modified water bodies 8 (3-4 demo cases) due to hydropower production, including the value of hydropower production, recreational and ecological values. This will feed into the debate on the interpretation of the term disproportionate costs (or disproportionately expensive) related to the EU Water Framework Directive (EU WFD). 4. Demonstrate the MCDA a. as a decision-support tool in the development of river basin management plans for the implementation of the EU WFD (e.g. priority of measures) b. as a potential concept in prioritizing development of new energy project 9 5. Compare the results obtained by use of the Ecosystem Services Approach and MCA, highlight strengths and weaknesses, and evaluate the concepts for further application in regulated rivers. The activities 3-5 in phase II will demonstrate the applicability of the Ecosystem services Approach and the MCDA-approach in rivers regulated due to hydro-power installations. The project will by testing these concepts provide insights into the different values - economic and non-economic - of these types of river systems, considered being specifically relevant given the on-going implementation of the EU Water Framework Directive. The project will develop and demonstrate knowledge and methods applicable for setting operational ecological goals ( good ecological potential ) in heavily modified water bodies (HMWB), finding the priority of measures and determining disproportionate costs, as EU opens up for exemptions from meeting the environmental goals where the costs of reaching the goals are considered being disproportionate (e.g. EC Technical Report - 2009 027). Research Approach The energy payback is the ratio of total final energy generated during that system s normal lifespan, divided by the supporting primary energy required to build, maintain and supply the system. The calculation excludes the intrinsic energy in energy being supplied (Gagnon, 2008). The EPR is a variant of one of the environmental indicators (cumulative energy demand 10 ) in Life-Cycle Assessments (LCA). A Life Cycle Assessment (LCA) is a process that evaluates the environmental burdens associated with a product system or activity. This is done by identifying and describing the use of energy and material, including corresponding 6 For instance input to the discussion on reaching the targets of/compliance with the EU RES Directive (when finally defined). This will also feed into the discussion on technology neutrality when assessing impacts from various energy production technologies. 7 The Ecosystem Services Approach is defined as identification and valuation in economic terms the benefits and their distribution of different ecosystem services (e.g. identified in the TEEB, 2010). We suggest that metrics used to quantify ecosystem services will also be useful as metrics for identifying off-set opportunities between sites. 8 2 demo cases will be established where both the eco-system services concept and MCDA will be tested, both multiple use rivers (including salmon) but with different bio-geographical characteristics (see details in section 3). 9 It can possibly applied both as a tool to prioritize between various energy production forms (hydropower, wind power, bio-energy, etc), and as a tool to prioritize between hydropower projects. 10 A number of different energy indicators could be relevant for EPR-calculations. Final decision on which indicator to use will be made at a later stage.

Side 17 emissions and waste, along the value chain for the product or service under study. A LCA includes the entire life cycle of the product, from raw material extraction, through materials processing, use and disposal at the end of the product's life (from cradle to grave ). All transportation steps involved are also included. A LCA of a hydropower plant includes potential environmental impacts from the extraction and building of all required infrastructure related to the plant (dam, tunnels, turbines, etc.). All these environmental burdens from the construction phase of the power plant will be calculated per kwh of electricity generated during the life time of the plant. In addition, environmental impacts from the operation and maintenance of the plant, as well as potential impacts from the reservoir will be divided over the relevant electricity generated. EPR illustrates return (in energy units) on one unit of energy spent on this particular energy source. Made on comparable basis it allows comparisons between different energy sources in terms of return on one unit of energy used. The deviation from the more complete LCA is found on the life span (supply side only), and on the thematic scope restricted to energy. In addition, a fossil subcategory of EPR might be used as screening indicator for global warming, acidification, eutrophication and others types of impacts (Huijbregts et al, 2006). An important element in the study will be to systematically quantify the uncertainty of the parameterestimation within the EPR-calculation, in order to provide a qualified range of uncertainty (probabilityrange) of the outcome, by applying Monte Carlo-techniques, Bayesian network or equivalent techniques (e.g Vose, 1996 & Barton et al., 2005). This will also allow systematic sensitivity analysis in order to assess the importance of the various factors in the EPR-calculations. Humankind benefits from multitude of resources and processes that are supplied by natural ecosystems. Collectively, these benefits are known as ecosystem services and include products like clean drinking water and processes such as the decomposition of wastes. The UN 2004 Millennium Ecosystem Assessment (MA) (UN, 2005) grouped ecosystem services into four broad categories: provisioning, such as the production of food and water; regulating, such as the control of climate and disease; supporting, such as nutrient cycles and crop pollination; and cultural, such as spiritual and recreational benefits. The most prominent, and conflicting, services provided by several regulated rivers in Norway are hydropower production and habitat to salmonid fish, however, these interests cover only a part of the services provided by regulated rivers or terrestrial areas impacted by hydropower construction, production and transmission. Multi criteria (decision) analysis (MCDA) provides a framework for information structuring and analysis when several, conflicting criteria are important for a decision. Many MCDA methods allow criteria to be expressed both qualitatively and quantitatively. MCDA also provides a framework for structuring and documenting stakeholder participation in identifying objectives, alternatives, decision criteria and weighting trade-offs between criteria (e.g. Sparrevik, Barton et al. 2011). Social or participatory MDCA techniques are therefore an approach to organizing assessments when many stakeholders/decision makers are likely to be involved. In other words, multi-criteria analysis allows for greater deliberation with stakeholders. Several decision support software and techniques can be used to support the decision making process and facilitate identification of conflict and ease reaching a consensus among the interested parties. These main characteristics indicate MCDA as a suitable approach to support decision making for regulated rivers, for instance when defining multi-objective environmental goals, prioritizing of mitigating measures and negotiating conflicting interests. Furthermore, MCDA could be a feasible framework for assessing the idea of off-setting conflicting eco-system services between river basins, and ultimately between countries. This is a highly relevant issue if export of Norwegian peak-power is realized, asking for off-setting of ecological deterioration when increasing the degree of heavy modification 11 entailed by the green battery type hydropower strategy. 11 EU WFD opens up for exemptions from meeting the environmental goals of the EU WFD in water bodies where the costs of reaching the goals are considered being disproportionate (e.g. EC: Technical Report - 2009 027) when these water bodies are served other important society needs. Disproportionality of costs depends on the type of alternative generation scenarios and the number of alternative projects that are compared, also between watersheds

Side 18 MCDA can also possibly be applied both as a tool to prioritize between various energy production forms (hydropower, wind power, bio-energy, etc), by this being supplemental to the EPR-concept (Energy Payback Ratio), and as a tool to prioritize between hydropower projects on a national master plan level ( updated Samla Plan ). Multi-criteria-analysis can also be seen as a complementary approach to economic valuation of ecosystem services and cost-benefit analysis of measures, in that it opens up for the consideration of nonmonetized benefits/advantages and costs/disadvantages of a proposed decision/project/programme of measures. The parallel studies using the Ecosystem services approach and MCDA will be carried out in consultation with a reference group of concerned stakeholders 12. In particular, it will be important to evaluate the study problem definition with the stakeholders at case study and national level given that peak power, climate and habitat-offsets are new concepts/policies in the Norwegian context. Furthermore, assumptions of the two methods should be clearly explained and discussed with the reference group at the outset in order to create realistic expectations in relation to the problem framing for the two approaches, in the particular case study sites. Stakeholders should also understand and approve the study process in order to increase validity of the results. After regular reality checks throughout the study process, the results from the studies will be compared, and the applicability of the 2 concepts related to management of regulated rivers will be evaluated. Potential case studies LCA-studies have been performed on the following hydropower plants/wind farms and EPR-values will be calculated from the following studies: Trollheim kraftverk (Gråsjø 12,1 MW og Trollheim 126,1 MW) Statkraft Svartisen (350 MW) Statkraft Såheim (183 MW, 3 turbiner) Norsk Hydro Suldal (Kvanndal 41 MW og Suldal II 150 MW) Norsk Hydro (+Statkraft) Rånåsfoss (54 + 45 MW) Akershus Energi Sandal and Byrkjelo run-of-river plants (3/12 MW) (Sandal & Fossheim Kraft/Byrkjelo Kraft) Kjøllefjord (vind) Statkraft Final selection of case-studies for bio-energy production, extension projects hydropower (O/U) will be made at a later stage, but one potential candidate is the extension project Eiriksdal hydropower plant in Høyanger (Statkraft). The selection of case studies will also depend on the developed list (phase II) of energy production options for all major technologies in order to cover the relevant categories of production. For the testing and demonstration of ecosystem services and MCDA, 3-4 demo-cases will be selected. 1-2 of these will be typical salmon rivers which are extensively regulated for hydropower production. One potential candidate is the Aura-regulation in Møre og Romsdal that was used to develop methods to define good ecological potentials as environmental goals for Heavily Modified Water Bodies for the EU WFD (Finstad et al, 2007). Aura is a salmon-river and regulated by Statkraft. However, the final selection will depend on the possibilities of finding catchments that would be potential off-set candidate pair with Aura. (Finstad et al., 2007). The term disproportionate costs are, however, not defined in monetary units and neither comprehensively studied and discussed. This project aims at feeding into this debate by providing experiences from the demo cases in Norway. 12 The group of stakeholders will be formed after the final selection of case studies is made.

Side 19 Another 1-2 demo cases should be selected from a region with contrasting bio-geographical characteristics to the typical salmonid rivers, possibly in southern Norway. Several hydro-power plants are established either on the main stem of Glomma River (run-of-the-river plants), or having an outlet into Glomma. A large numbers of other services are provided by Glomma River, including drinking water supply, biodiversity, recreational activities and as a recipient of effluent discharges. Furthermore, one site will be chosen to demonstrate possible off-setting of heavier modification of waterbodies in a higher hydropower generation potential watershed ( green battery watershed ), with a reduced modification/habitat restoration watershed with lower hydropower generation potential ( natural values watershed ). This case study will most likely be in south-western Norway or central Norway, and will be co-ordinated with the Southern Norway as green battery -project, if possible. The aim is to do a proof of principle study of habitat off-setting to compensate for new climate oriented hydropower strategies in Norway; from a benefit-cost analysis and a multiple criteria (non-monetary) perspective. This case will preferably located where limited transmission capacity is available (need for building transmission lines) to fully utilize generation capacity. The analysis will thereby also address off-setting of terrestrial habitat consequences of exploiting additional hydropower capacity in certain locations, off-set by for example burying transmission lines and removing access roads in potential restoration sites. The ecosystem service approach/mcda calls for a broadening of impact assessment of projects that lead to waterbody modification to also address all ecosystem services affected in the watershed, also in terrestrial environments. Indicative financial plan The project is divided into phase I and phase II. Phase II will be a multi-million project (large-scale project), typically a KMB with substantial financial support from NFR. Detailed financial plan is not given here, but is planned to be detailed as part of phase I. Potential funding for phase I, however, neither requested to proposed funding parties nor confirmed yet, is: CEDREN DN NVE The hydropower industry Other sources TOTAL 300 knok 300 knok 100 knok 300 knok 200 knok 1200 knok Phase I of the project is planned to be carried out in the period June 2011 March 2012, with an intermediate deadline for scoping/development of the project proposal for phase 2 by October. The deadline in March 2012 is set to follow the progress of the newly nominated Committee on Energy, ( Energiutvalget ) that is supposed deliver their final report by March 1 st (http://www.regjeringen.no/nb/dep/oed/pressesenter/pressemeldinger/2011/utvalg-skal-vurdere-denlangsiktige-ener.html?id=635282). Phase I of the project is expected to deliver relevant input to this on-going process.

Side 20 Involved parties The following groups of scientists/management institutions have confirmed their interest in participating in the project. CEDREN/ SINTEF Energy Research Tor Haakon Bakken/ Maria Daniela Catrinu/Audun Ruud/Atle Harby Østfoldforskning Hanne Lerche Raadal/Ingunn Saur Modahl NTNU Industrial Ecology Edgar Hertwich NINA David N. Barton/Henrik Lindhjem DN Svein Grotli Skogen/Odd Kristian Selboe/others NVE Karen Nybakke/Maria Sidelnikova Hydro Quebec Luc Gagnon (not confirmed) Phase II will, depending on scoping and the detailed planning and preparation, most likely be extended with participation from more parties. References/literature Catrinu, M. D. Decision Aid for Planning Local Energy Systems: Application of Multi-Criteria Decision Analysis. PhD, NTNU, Trondheim, 2006. Barton, D.N., Saloranta, T., Bakken, T.H., Lyche Solheim, A., Moe, J., Selvik, J.R. and Vagstad, N. Using Bayesian network models to incorporate uncertainty in the economic analysis of pollution abatement measures under the water framework directive. Water Science and Technology: Water Supply Vol 5 No 6 pp 95 104. 2005. EC Technical Report 2009-027. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Documentation No. 20. Guidance Document on Exemptions to the Environmental Objectives. Finstad, A., Barton, D.N., Jensen, A.J., Johnsen, B.O., Järnegren, J. and Sandlund, O.T. Metodikk for å fastsette miljømål for sterkt modifiserte vannforekomster. Auravassdraget som eksempel. NINA-rapport 292. 2007. Gagnon, L. Civilisation and energy payback. Energy Policy 36 (2008) 3317 3322. 2008. Huijbregts, M.A.J, et al. Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products? Environmental Science Technology 40(3), 641-648, 2006. ISO, International Standard ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines. Sparrevik, M., Barton, D.N., Nagothu, U.S. and Linkov, I. Use of Multicriteria Involvement Processes to Enhance Transparency and Stakeholder Participation at Bergen Harbor, Norway. Submitted to Integrated Environmental Assessment and Management. TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB. 2010. Vose, D. Quantitative Risk Analysis, A Guide to Monte Carlo Simulation Modelling, John Wiley & Sons, Chichester. 1996.

Side 21 EcoManage (økosystemtjenester, multi-criteria decision analysis) Diskusjon fra møte med følgende forskere og brukere: Ottar Michelsen (NTNU), Hilde Kyrkjebø (DN), Julian Sauterleute (SINTEF), Maria Catrinu (SINTEF), Maria Sidelnikova (NVE), Inger Staubo (NVE), Tormod Schei (Statkraft), David Barton (NINA), Tor Haakon Bakken (SINTEF) Forholdet økosystem-tjenester og MCDA: dette ble diskutert og det var klart at økosystem-tjenester som begrep er et overordnet forvaltningsredskap/konsept for verdsetting av natur, mens MCDA anses som en metode å bruke til systematisk å sammenligne fordeler og ulemper (kvantitativt og kvalitativt), samt integrere/vekte ikke-sammenlignbare størrelser i en beslutningsprosess. Videre anses MCDA som et egnet verktøy til å involvere interessenter i beslutningsprosessen. Økosystem-tjenester som begrep og MCDA som verktøy anses derfor som komplementær. Det ble noe diskutert i hvor stor utstrekning begrepet økosystem-tjenester fanger opp i seg helt fundamentale kvaliteter naturen sørger for og sikrer menneskenes eksistens. En operasjonalisering av økosystem-tjenester som begrep vil kunne spille en veldig viktig rolle i forbindelse med implementeringen av EU VD. Det er flere uavklarte forhold rundt hvordan regulerte vassdrag skal behandles (når faller vannforekomster inn under SMVF, hva er uforholdsmessige store samfunnskostnader, prioritering av tiltak, etc) og forskning vil kunne bidra til å finne gode metodiske tilnærminger. Kunnskapen vil være nyttig også utover første runde av implementering, dvs. ved den 6-årige rulleringen av planarbeidet. Det er derfor veldig viktig at case-studier som identifiseres gir relevante innspill til implementeringen av EU VD i 1. runde og i etterfølgende rulleringer. Verdsetting av økosystem-tjenester kan konseptualiseres/demonstreres i regulerte vassdrag/i forbindelse med vannkraft gjennom analyse på 3 uilke skalaer/utstrekninger: 1. Lokal tilnærming: hvordan verdsettes økosystemtjenester gjennom å analysere ett eller noen veldig få anlegg i ett vassdrag. Dette er tilnærmingen som vil kunne bidra til å belyse og dokumentere økosystem-tjenestene i en geografisk ramme som er relevant for EU VD og slik dagens konsesjonsbehandling/revisjon i stor grad foregår. Man kan her tenke seg valgt et anlegg (for eksempel Aura, andre... 13 ) som er til revisjon og vurdere kvantitativt og kvalitativt verdiene i det regulerte vassdraget. 2. Regional tilnærming: hvordan verdsettes økosystemtjenester ved å se på "handel" (off-set) av økosystem-tjenester på tvers av nedbørfelt med den hensikt å optimalisere alle verdiene skapt av økosystem tilgjengelig innenfor en region. Det kan tenkes at det kan være fornuftig å øke intensiteten av energiproduksjon i noen anlegg, mot at andre drives mer skånsomt for økosystemet, for derigjennom å optimalisere forvaltningen av ressursene. Dette har mange av vinn-vinn ideene i seg og søker å demonstrere/dokumentere at dette er mulig (balansering av vannkraftdrift i et vassdrag med et sett av avbøtende tiltak/habitatrestaurering annet sted er sentrale tilnærminger). Både akvatiske og terrestriske miljøulemper/-kvaliteter må inkluderes, herunder også problematikken rundt etablering av overføringslinjer. Aktuelle områder for case kan være Sør-Vestlandet (for eks Sira-Kvina og Tonstadanlegget, Blåsjømagasinet og øvrige deler av denne reguleringen, andre), som sammenfaller med området hvor HydroBalance-studiet foregår. Case-studier i GOVREP-prosjektet WP3 bør også vurderes benyttet, for eksempel restaureringen i Eiriksdalen. 13 Surna og Suldalslågen ble også nevnt som mulige lokasjoner for case, men egnetheten av disse er uavklarte.