Skisser med relevans innenfor Miljøvennlig energi

Like dokumenter
Sterk global konkurranse, raske teknologiskift og det grønne skiftet utfordrer dagens løsninger og produksjonsmetoder.

INFRASTRUKTUR Innstilling om prioritering av prosjektsøknader Strategisk infrastrukturutvalg. Dekanmøtet 2. oktober 2018

HONSEL process monitoring

Horisont 2020 EUs forsknings- og innovasjonsprogram. Brussel, 6. oktober 2014 Yngve Foss, leder, Forskningsrådets Brusselkontor

WÄRTSILÄ MARINE SOLUTION POWER CONVERSION INNOVATIVE LAV- OG NULLUTSLIPPSLØSNINGER OG UTFORDRINGER MED Å FÅ DISSE INN I MARKEDET.

EU Energi, SET-plan. Beate Kristiansen, Spesialrådgiver/EU NCP Energi

Baltic Sea Region CCS Forum. Nordic energy cooperation perspectives

Capturing the value of new technology How technology Qualification supports innovation

Tor Haakon Bakken. SINTEF Energi og NTNU

Nytt strømforbruk. Fra strøm til hydrogen, en ny lagringsmetode

Havrommet. 70 % av jordens overflate er hav. Ocean Space Centre. Møre Ocean lab Det Digitale Havrom. Norwegian University of Science and Technology

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

RF Power Capacitors Class kV Discs with Moisture Protection

The TrAM-project Transport Advanced & Modular

Europeiske FOU muligheter innen energiområdet

Software applications developed for the maritime service at the Danish Meteorological Institute

Norwegian Offshore Wind Research Infrastructure (NOWERI) The FLEXWT Project Floating Wind Turbine NOWERI

Refleksjoner om kunnskapsstrategi, regional rolle og utvikling

Vindparktilkopling til offshore installasjonar

ESTABLISHING A EUROPEAN HIGH POWER CHARGING NETWORK JAN HAUGEN IHLE, REGIONSDIREKTØR NORTHERN EUROPE, IONITY. IONITY Präsentation October 2018

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Samarbeid om forvalting av Havrommet. Per Magne Einang Senterleder Smart Maritime SFI Forum 2016

Øystein Haugen, Professor, Computer Science MASTER THESES Professor Øystein Haugen, room D

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

Complete tank expertise

Smart Grid aktiviteter og FoU

Electricity Solutions and Distribution / 2011

PETROMAKS & Integrerte Operasjoner. Rådgiver Tor-Petter Johnsen, PETROMAKS

Emneevaluering GEOV272 V17

RF Power Capacitors Class1. 5kV Discs

Status Aker Verdal Mai 2010

What's in IT for me? Sted CAMPUS HELGELAND, MO I RANA Tid

IEA PVPS. Trond Moengen. Global co-operation towards sustainable deployment of photovoltaic power systems

Midler til innovativ utdanning

Q2 Results July 17, Hans Stråberg President and CEO. Fredrik Rystedt CFO

EUROPEAN UNIVERSITIES

Innovasjonsvennlig anskaffelse

Visjoner og ambisjoner for UiOs energisatsning. Rektor Ole Petter Ottersen

Presentasjon NFAS konferanse 4 oktober. Autonome systemer

Stortingsmelding om energipolitikken Oppstartmøte

Solenergi og energisystemer Viken møte 16 januar 2019

Hvordan kan Europas energirevolusjon påvirke nordisk og norsk skogsektor?

Kjell Arne Mork, Francisco Rey, Henrik Søiland

TriCOM XL / L. Energy. Endurance. Performance.

TUNNEL LIGHTING. LED Lighting Technology

- En essensiell katalysator i næringsklyngene? Forskningsrådets miniseminar 12. april Mer bioteknologi i næringslivet hvordan?

BioCarb+ NFR KPN prosjekt MNOK. Enabling the biocarbon value chain for energy

Skogbasert biodrivstoffproduksjon. Ås Trond Værnes

Samlet, men delt: nasjonal infrastruktur med distribuerte enheter. Kay Gastinger Leder NorFab

Statoil- status og noen tanker om fremtidens energiforskning. Dialogmøte Oslo, 28. september 2011

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

FirstEnergy s Ohio Utilities. Energy Efficiency Programs for Business

NorSun AS. NorSun AS Karenslyst Allé 9C, 0278 Oslo, Norway (+47)

6 December 2011 DG CLIMA. Stakeholder meeting on LDV CO 2 emissions - Scene setter

Centre for environmental design of renewable energy CEDREN. SINTEF Energy Research

Subsea FoU, batteridrevne ferjer og fiskefartøy - et samarbeid med NTNU og SINTEF. Jan Erik Lystad, Direktor Power Electronics, Siemens AS

Climate change and adaptation: Linking. stakeholder engagement- a case study from

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning

SeaWalk No 1 i Skjolden

The building blocks of a biogas strategy

Horisont 2020 Sikker, ren og effektiv energi- Workshop utlysninger Energy efficiency. Mari Lyseid Authen NCP Energi, Forskningsrådet

Vekstkonferansen: Vekst gjennom verdibaserte investeringer. Thina Margrethe Saltvedt, 09 April 2019

Research on Low Carbon Emissions - Road Transport in Norway

The Research Council of Norway, grants and levels of research

ISO CO 2 -rørtransportstandarden. Arne Dugstad, IFE Svend Tollak Munkejord, SINTEF

INTPART. INTPART-Conference Survey 2018, Key Results. Torill Iversen Wanvik

Status for IMOs e-navigasjon prosess. John Erik Hagen, Regiondirektør Kystverket

UiA employees Students. Frank!

Little Mountain Housing

FME-enes rolle i den norske energiforskningen. Avdelingsdirektør Rune Volla

Offshore Wind Turbine Support Structures. Erfaringer med å søke EU finansiering

Horisont 2020 forskning og innovasjon for norske aktører. Gudrun Langthaler, Oslo, Oktober 2015

The ZEB Research Centre and Pilot Buildings. Zero Emission Buildings fra forskning til praksis

Norsk marin forskning sett utenifra. Stein Kaartvedt Universitetet i Oslo

Sarepta Energi AS Projects and Ambitions

Compact and efficient technology for particle separation Trondheim, 5. mai 2017 Jo Terje Lestum Project controller

COUNTRY REPORT- NORWAY

European Crime Prevention Network (EUCPN)

Haugesundkonferansen Norsk teknologiindustri hvordan gripe muligheten Even Aas

NTNUs nettverkskonferanse Digital omstilling NTNUs innsats for digital transformasjon

Generalization of age-structured models in theory and practice

TEST AREA TRONDHEIMSFJORDEN. Kay Fjørtoft, SINTEF Ocean

Rollen til norsk vannkraft i 2050 scenarioer for Norge som leverandør av balansekraft

Coastal Infrastructure and Climate Change Adaption

FREMTIDENS ETTERSPØRSEL ETTER BIOMASSE

ENERGIX. Seminar om INNOVASJONSPROSJEKTER I NÆRINGSLIVET relatert til ENERGIEFFEKTIVISERING I INDUSTRIEN

CYBER SECURITY AUTONOME SYSTEMER. Marie Moe, forskningsleder for Cyber Security,

Digital Transformasjon

Har vi forretningsmodeller som muliggjør effektiv utvikling og introduksjon av nye tjenester i helsesektoren?

Nasjonal satsing på forskningsinfrastruktur "Norske investeringer i infrastruktur i et internasjonalt perspektiv"

Bedriftenes møteplass. Thina Margrethe Saltvedt, 02 April 2019

Vannkraft Ren energi som verdens batteri

Virginia Tech. John C. Duke, Jr. Engineering Science & Mechanics. John C. Duke, Jr.

Teknologiske studier ved HVE, Fakultet for realfag og ingeniørfag

Multimedia in Teacher Training (and Education)

Nasjonalt kvalifikasjonsrammeverk og læringsmål i forskerutdanningen

Forskning og teknologi innen CO 2 håndtering

Issues and challenges in compilation of activity accounts

De riktige valgene. Arvid Hallén

NORTEM - statusrapport og utfordringer fra et infrastrukturprosjekt i startgropa..

Transkript:

Skisser med relevans innenfor Miljøvennlig energi

Tabell: Oversikt over skisser med relevans for området Miljøvennlig energi Prosjektnr. Prosjekttittel Søkerinstitusjon Prosjektleder National Surface and Interface Characterisation 289724 Laboratory-NICE II SINTEF (UiO, NTNU) 289737 289740 289745 289751 289762 289764 289789 289796 289798 289799 289815 NcNeutron - Norwegian Center for neutron research - phase II Norwegian Analyses Platform for Energy Systems Thermoelectricity Norway Norwegian Centre for X-ray Diffraction, Scattering and Imaging REsource Centre X- rays (RECX-II) National Smart Grid laboratory 2.0 Norwegian contribution to the European Multidisciplinary Seafloor and Water Column Observatory Norwegian Research Centre for Hydropower Technology Laboratories Advanced Hydrogen and Fuel Cell Research Centre at UIT (AHFCRC) Offshore Boundary Layer Observatory (OBLO) - Stage 2 IFE (UiO, UiS, SINTEF, NTNU) SINTEF ENERGI (NTNU, IFE, SINTEF T&S) SINTEF (UiO, NTNU, UiA) UiO (NTNU) SINTEF ENERGI (NTNU) Estimert søkt beløp fra Forskningsrådet Spyridon Diplas 43 750 000 Bjørn C. Hauback 45 000 000 Stefan Jaehnert 20 445 000 Ole Martin Løvvik 58 600 000 Helmer Fjellvåg 30 000 000 John Olav Tande 41 000 000 UiB (HI, UIT, UNI, NPI, MET.NO) Ilker Fer 88 000 000 NTNU (SINTEF ENERGI, NINA) UiT (NTNU, SINTEF, IFE, UiO) UiB (CMR, NORCE) APPLICATION ON MATERIALS RESEARCH FOR TRANSPORTING HYDROGEN (SMART- H) NTNU (SINTEF ENERGI) Building HUB - e- infrastructure SINTEF (SINTEF ENERGI, NTNU, SINTEF DIGITAL) Ole G. Dahlhaug 196 200 000 Mohamad Mustafa 62 500 000 Joachim Reuder 31 200 000 Afrooz Barnoush 125 700 000 Karen Byskov Lindberg 40 000 000 2

289823 Nasjonal forskningsinfrastruktur for bruk av solstrøm (BrukSol) IFE (SINTEF, UiA, NMBU, UiT, NTNU) Sean Erik Foss 53 750 000 289831 Remote Gas Hydrogen Research Laboratory SINTEF (NTNU) Petter Nekså 52 710 000 289847 Norwegian Advanced Battery Laboratory Infrastructure IFE (NTNU, SINTEF, UIO, FFI) Hanne Flåten Andersen 58 000 000 289865 HighEFF Lab - Phase 2 SINTEF ENERGI Ingrid Camilla Claussen 28 000 000 289883 289885 289899 289902 GreenMAT-BOX Lab, from Green bag To green BOX Laboratory Van der Waals Heterostructures Exploratory Laboratory ECCSEL Research Infrastructure for Norwegian Full-Scale CCS IFE (Romerike biogassanlegg RBA-EGE, Zeg Power AS) UiT (IFE) SINTEF ENERGI (SINTEF ENERGI, IFE, NORSAR, UiO) Asuncion Aranda 13 820 000 Matteo Chiesa 29 000 000 Sigurd Weidemann Løvseth 177 500 000 CO2 transport infrastructure IFE Rolf Nyborg 19 000 000 3

Prosjektnummer: 289724 National Surface and Interface Characterisation Laboratory-NICE II SINTEF Spyros Diplas UiO, NTNU NICE II is an expansion of the infrastructure project NICE which established a national laboratory for physical and chemical characterization of surfaces and interfaces. NICE is based on two nodes and successfully implemented the investments of 1 TAP, 1 ToF-SIMS, and 2 XPS instruments. NICE satisfies characterisation needs of various user groups within the research fields of catalysis, PV technology, H2 production, storage and transport, thermoelectric materials, Al alloys and processing, steels, Si, intermetallic and oxide powders etc. The NICE II project builds on NICE and proposes mainly five investment actions at the two nodes Oslo and Trondheim. NICE II aims towards: 1) installing the first laboratory-based ambient pressure APXPS unit in Norway, 2) procuring a next generation multi-technique UHV-XPS unit with in situ sample preparation/treatment via glove box and thermochemical pre-treatment cells, 3) integrating XPS into a unique operando STM in Oslo (AVIT funded in 2015), 4) establishing cutting-edge time-resolved AP-XPS experiments at the MAX IV synchrotron in tandem with the Oslo-based TAP instrument, 5) facilitate an integrated workflow among the different complementary instruments and promote a collaborative use of the national infrastructure via a suitcase sample transfer system. The NICE-II infrastructure is optimized for high throughput and surface sensitive operando studies. It will act as a robust home laboratory environment for preparation and screening studies before conducting advanced experiments at large scale synchrotron facilities including MAX IV in Sweden, ALS in the USA, and ERSF in France. NICE II will cover needs of various user groups with activities within the national research priority areas addressing TRL levels 1-9. NICE-II will both strengthen existing and establish new synergies within the emerging community of users within catalysis, energy material technologies (e.g. electrodes for batteries, photocatalysis, electrolysers), smart materials, semiconductor, sensor and actuator technology, biomaterials, hybrid materials, life science, material degradation e.g., corrosion, oxidation, weathering etc. The infrastructure is technically entirely complementary to existing characterisation infrastructures national centre for X-ray diffraction, scattering and imaging, (RECX), transmission electron microscopy (NORTEM), Norwegian Laboratory for Mineral and Materials Characterisation (MiMaC) and will serve the needs of the infrastructure on advanced fabrication (NORFAB) which requires surface analysis of micro-nano structures, thin films and interfaces. It will be also bridge national instrumentation and expertise to international largescale synchrotron-based surface characterisation (MAX IV, ESRF, etc.). 43 750 000 kroner Nanoteknologi og avanserte materialer Bioteknologi, Klima og miljø, Miljøvennlig energi

Prosjektnummer: 289737 NcNeutron - Norwegian Center for neutron research - phase II IFE Bjørn C. Hauback UiO, UiS, SINTEF, NTNU NcNeutron inkluderer 7 moderne instrumenter for nøytronspredning og avbildning lokalisert i IFEs JEEP II forskningsreaktor på Kjeller. Disse instrumentene har ulike funksjoner og bruksområder. Nøytronspredning og avbildning er viktig og relevant for en rekke forskjellige fagområder og disipliner som for eksempel fysikk, kjemi, geologi, biologi, materialvitenskap og nanoteknologi, medisin, energi og miljø. NcNeutron består av fire hovedaktiviteter: konstruksjon av 2 nye nøytroninstrumenter, betydelig oppgradering av et eksisterende instrument og oppgradering av oppsett for produksjon av såkalt kalde nøytroner som er sentralt for to av instrumentene. Den første bevilgningen til NcNeutron inkluderer kun instrumentoppbygging/oppgradering og ikke finansiering av utstyr for å gjøre eksperimenter ved forskjellige prøveomgivelser. NcNeutron II søknaden vil være utstyr for avanserte prøveomgivelser for de 7 instrumentene som utgjør NcNeutron. Der det er realistisk og mulig, vil denne instrumenteringen kunne brukes på flere av NcNeutron-instrumentene, men for andre enheter må det skreddersys for spesielle instrumenter. Det vil også være oppsett som kan brukes ved andre internasjonale nøytronanlegg i tillegg til JEEP II. De viktigste utstyrsenhetene er: - Magneter for både nøytrondiffraksjon og -reflektometri - Celler for elektrokjemiske eksperimenter - Oppsett for kjøling og oppvarming (flere oppsett tilpasset instrumentene) - In-situ celler (temperatur, forskjellige gasser, trykk) - Rheometer kombinert med SANS - Oppsett for nøytronavbildning i brenselceller og elektrolysører - Strekktesting av materialer kombinert med diffraksjonsekperiment og nøytronavbildning - Kammer for kontrollert atmosfære Via nøytroninstrumenteringen i NcNeutron og investering i tilleggsutstyr for instrumentene, vil NcNeutron sammen med NcNeutron II betydelig utvide mulighetene og interessen for nøytronbaserte metodene i norske og internasjonale brukermiljøer, inkludert brukere fra industrien. Tilleggsutstyret vil gjøre det mulig å gjennomføre eksperimenter med forskjellige ytre påvirkninger. Parallelt med arbeidet med NcNeutron pågår arbeidet ved European Spallation Source (ESS) hvor Norge bidrar med 2.5% av investeringen. Fram til planlagt brukertilgang ved ESS for de 3 første instrumentene i løpet av 2023 og alle 15 nåværende finansierte instrumentene i løpet av 2026, er JEEP II og NcNeutron det eneste anlegget for slike eksperimenter i Norden. 45 000 000 kroner Nanoteknologi og avanserte materialer IKT, Klima og miljø, Medisin og helse, Miljøvennlig energi

Prosjektnummer: 289740 Analysis platform Energy systems SINTEF Energi as Stefan Jaehnert NTNU, IFE, SINTEF T&S The infrastructure applied for will establish a national Norwegian analysis platform for energy systems, gathering competence, models and datasets developed by the Norwegian research community within the energy system framework. NAPLES is a virtual server system and database providing academic access to Norwegian energy system models for research, analyses and education. The objective of the project is to establish a database and a computing server system, which provide access to existing Norwegian models for energy systems. This infrastructure project comprises the procurement of the server and database system, the installation of the software models, the establishing of according datasets, a coupling of the models as well as the provision of access to this system via a web portal. The software models address various topics within the framework of the energy system, such as power, heat, gas, consumption, economy and others. 20,5 mill NOK Miljøvennlig energi, e-infrastruktur, Klima og miljø

Prosjektnummer: 289745 Norwegian Centre for X-ray Diffraction, Scattering and Imaging REsource Centre X-rays (RECX-II) SINTEF Ole Martin Løvvik UiO, NTNU, UiA Thermoelectricity (TE) has been an increasingly active area of research in Norway during the last 15 years. The infrastructure, TENOR, will consist of five platforms located at the three nodes Agder, Oslo, and Trondheim. 1. Advanced modelling platform (SINTEF Oslo): Lab for measuring fundamental transport properties of thermoelectric materials 2. Intermetallic platform (Oslo/Agder): a) Characterization lab (UiO): Equipment to synthesize, fabricate and characterize intermetallic (nonoxide) materials and prototype couples in inert atmosphere. b) Inert lab (SINTEF Oslo): Equipment to synthesize, fabricate and characterize intermetallic (nonoxide) materials and prototype couples in inert atmosphere. c) Sinter lab (UiA): A vacuum hot press system with direct current heating for consolidation of intermetallic powder. d) Probe lab (SINTEF Oslo/UiO): System to investigate current flow and interface losses in TE unicouples. 3. Oxide platform (Trondheim/Oslo): a) Characterization lab (UiO): Equipment for performing thermoelectric characterisation of oxide samples at low, medium and high temperatures in oxygen atmospheres. b) Sinter lab (NTNU): Equipment for milling, slip casting and sintering in controlled atmosphere, using a high temperature furnace. A high temperature dilatometer able to operate in controlled atmosphere for accurate measurement of thermal expansion and sintering properties. 4. Module prototyping platform (SINTEF Oslo): Robotic 3D printers including tape-casting and extrusion, specialised sintering furnaces, drying chambers. A specialized jet milling equipment will be installed for large scale production of powder. 5. Module testing platform (Agder/Oslo): a) Standard lab (UiA): Standard test unit from commercial vendor with options. b) Custom lab (SINTEF Oslo): Custom-made apparatus and specialist equipment for testing modules and sub-assemblies suitable for end-user applications. The infrastructure is complementary to existing relevant infrastructures for materials science on advanced fabrication (NORFAB), X-ray characterisation (RECX), electron microscopy (NORTEM), and surface characterization (NICE). It will also be complementary to the Future Materials Catapult center, where pilot scale production of powder is one of the aims. 58 600 000 kroner Nanoteknologi og avanserte materialer Miljøvennlig energi

Prosjektnummer: 289751 Norwegian Centre for X-ray Diffraction, Scattering and Imaging REsource Centre X-rays (RECX-II) UiO Helmer Fjellvåg UiO The current national centre for X-ray diffraction, scattering and imaging, RECX, has brought together and coordinated instrumentation and competence at leading X-ray laboratories at UiO and NTNU. A key rationale for RECX is to operate two complementary modes providing the research community with state-ofthe- art X-ray facilities at both UiO and NTNU, where in addition one mode (UiO) has focused on regular and advanced analysis based on cutting-edge commercial systems, while the second (NTNU) has focused on establishing flexible and modular set-ups to tailor a range of sophisticated experiments. For RECX there has been more than 250 unique users of the facilities at UiO and NTNU during 2013-17. The existing RECX instrumentation matches identified needs, as requested by disciplines, technologies and nationally prioritized thematic efforts and covers thereby broad interests of chemistry, physics, materials/nanoscience; and technologies like energy, environment, catalysis, processes, pharmacy, sensors and microsystems, medicine (diagnostics and therapy) and metallurgy. The vision for RECX-II is to strengthen these broad user aspects even further, benefiting from recent developments on optics and detectors, as well on auxiliary equipment. RECX-II focuses on new instrumentation, beyond what is available by the present RECX, and the upgrade may include: UiO node: Routine XRD; This is a necessary replacement of a workhorse instrument providing characterization data to large number of users. Multipurpose diffractometer: will open new science in areas where time resolved data, operando data, studies at non-ambient conditions is needed (catalysis, batteries, adsorbents, multiferroics etc), including data for nanoparticles and disordered materials where analysis based on total scattering/pdf is needed. Small angle-x-ray scattering upgrade: will open position the instrument at top level, nest to synchrotrons and become an important unit for life-science activities and more. NTNU node: The thin film diffractometer; this will expand tremendously the capacity to precisely determine crystal structure and texture/epitaxy of thin films and nanostructures (ferroelectric, mulitferroic, magnetic) and texture in alloys/metals. High-resolution diffractometer; necessary replacement for high resolution structural studies of a range of different materials and compounds. Routine XRD; this is a necessary replacement of a workhorse instrument providing daily access to quantities and qualitative analysis. RECX is complementary to the NORTEM (electron based), NcNeutron (neutron based) and MiMac (atom probe, micro probe) national infrastructures. It is furthermore important in the perspective of other platforms and infrastructures by providing essential data on the atomic arrangements of condensed matter in wide areas of research, from nanoscience, via energy technology to biological systems. The NICE and in particular NORFAB activities are important in this context. 30 000 000 kroner Nanoteknologi og avanserte materialer, Miljøvennlig energi Bioressurser, Bioteknologi, IKT, Medisin og helse, Petroleum

Prosjektnummer: 289762 Smart Grid Lab 2.0 SINTEF Energi as John Olav Tande NTNU The infrastructure consists of an upgrade and expansion of the present features of two existing infrastructures: - National SmartGrid Laboratory (NSGL) located in Trondheim and jointly operated by SINTEF Energi AS and NTNU. The infrastructure provides a flexible environment for testing electric systems at 400 V ac, 800 V dc and at around 100 kw with capabilities for real-time simulation and grid emulation. Several power electronic converter and electrical machines are available and directly pluggable. The laboratory includes also facilities for testing energy storage systems and smart-house technologies. - SINTEF Energy lab located in Trondheim and operated by SINTEF Energi AS. The laboratory building has a net floor area of 5,400 m2, and houses seven laboratories including a high-voltage laboratory designed to carry out testing at voltages up to 420 kv. SINTEF Energy Lab provides increased capacity and performance compared with other existing laboratories at SINTEF/NTNU and allows to conduct experiments at much higher rated voltage and power due to a direct access to a high-capacity substation. The infrastructure will enable research into smartgrid technologies, including interactions between power electronics and power systems, and interaction between communication systems and power system operation. Moreover, the infrastructure in combination with the already existing facilities at NSGL and SINTEF Energy lab can be used to do research and test components in a controlled environment for conditions that would be difficult or dangerous to replicate in a real power system at full scale. 41 mill NOK Miljøvennlig energi, e-infrastruktur/ikt

Prosjektnummer: 289764 Norwegian contribution to the European Multidisciplinary Seafloor and Water Column Observatory Universitetet i Bergen Ilker Fer HI, UiT, Uni, NPI, MET NorEMSO is a deep ocean observatory initiative to establish a Norwegian node for the European Multidisciplinary Seafloor and water column Observatory (EMSO, http://www.emso-eu.org/). EMSO aims to explore the under-sampled oceans, to gain a better understanding of the critical role that oceans play in the broader Earth systems. The EMSO research consortium was established in September 2016, and is now a European research infrastructure consortium (ERIC). EMSO is a system of observatories distributed in the European seas that provide key data and constant monitoring of marine environments, in key areas across the Arctic Ocean, the Atlantic Ocean, the Mediterranean Sea and the Black Sea. Infrastructures are divided in 1) cabled infrastructures (installations which support instruments deployed on, below, and/or above the seabed, continuously acquiring oceanographic and geophysical time series) and 2) stand-alone observatories (autonomous installations of instruments, sensors and command modules operating in the long-term on and beneath the seafloor, in the water column and/or at the sea surface). NorEMSO will contribute to both types of infrastructures. 88 000 000 kroner Klima og miljø Havteknologi og maritim innovasjon / Maritim teknologi

Prosjektnummer: 289789 HydroPower NTNU Ole Gunnar Dahlhaug SINTEF Energi, NINA HydroCen Labs er infrastruktur som er knyttet til vannkraftindustrien i Norge og forskningssenteret for fornybar energi (FME), HydroCen, og er lokalisert i ved NTNUs campus i Trondheim. HydroCen har gjennom sine partnere et godt etablert nettverk med brukere til HydroCen labs. Infrastrukturen skal være tilgjengelig for student-oppgaver, anvendt- og grunnforskning med utgangspunkt i utfordringer som vannkraftindustrien har i dag og vil få i fremtiden. I de neste 7 årene vil infrastrukturen i stor grad benyttes av forskningsprosjekter i HydroCen. Behovet for denne infrastrukturen er knyttet til endringene i energisystemet som forventes i fremtiden. Introduksjon av mye vind- og sol-energi i kraftnettet vil kreve at vannkraftverk vil bli benyttet som energilagring, effekt regulering, grunnlast og som backup når vind- eller solkraftverkene ikke er i drift. Dersom eksisterende og nye vannkraftverk skal benyttes til denne type operasjon, kreves det større fleksibilitet fra vannkraftverk enn i dag, og dette krever at man har god forskningsinfrastruktur tilgjengelig i Norge for utvikling og testing av nye driftsmønstre. Kostnadene gjelder i hovedsak investeringer i infrastruktur og utstyr som vil være nødvendig for å drive forskning i disse laboratoriene i fremtiden. 196,2 mill NOK Miljøvennlig energi, Klima og miljø

Prosjektnummer: 289796 Hydrogen and Fuel cells UNIVERSITETET I TROMSØ - NORGES ARKTISKE UNIVERSITET UIT Mohamad Y. Mustafa NTNU, SINTEF, IFE, UiO This proposal concerns new research infrastructure at UIT in the northern part of Norway but will be part of the National Hydrogen and Fuel Cell infrastructure, which is already established in the southern part of Norway. The proposed infrastructure will act as a supplementary node of the national Hydrogen and Fuel Cell infrastructure. The research infrastructure is single-sited and will be located at UIT Narvik campus. Currently there is no infrastructure for Hydrogen and Fuel Cell Research in the Northern parts of Norway, the proposed centre will supplement the growing national research infrastructures. The research infrastructure will enable research on: a) Hydrogen production, storage, utilisation and safety measures and standards. b) Research on fuel cells and electrolyser development (This comprises research on fuel cell and electrolyser components, materials, transport mechanics in the fuel cells, electrolyser and electrochemical diagnostics) and c) General lab and safety equipment for hydrogen and fuel cell research. 62,5 mill NOK Miljøvennlig energi, Nanoteknologi og avanserte materialer

Prosjektnummer: 289798 OBLO 2 UiB, Geophysical Institute Joachim Reuder CMR, NORCE The second phase of the Offshore Boundary Layer Observatory (OBLO-2) infrastructure will provide both, the access to state-of-the art meteorological and oceanographic measurement equipment, including a flexible and reliable platform for its offshore deployment, and the required manpower to apply and operate this instrumentation based on profound scientific expertise. It is related to, and an extension of, the existing and well-established OBLO infrastructure project that supplies since 2010 advanced instrumentation for met-ocean measurements with a specific focus on offshore wind energy applications. 31,2 mill NOK Miljøvennlig energi, Havteknologi og maritim innovasjon / Maritim teknologi, Klima og miljø

Prosjektnummer: 289799 SMART H NTNU, Department of Mechanical and Industrial Engineering Afrooz Barnoush SINTEF Industry This proposal for funding of a national, and world-leading, research infrastructure on the study of the interaction between hydrogen and materials will be essential for the near future safe and economically sound entry into the Hydrogen economy both for Norway and for Europe. Currently, there is no existing national research infrastructure dedicated to studying the influence of hydrogen gas on the structural integrity of materials let alone equipment that is essential to deeply understand and explain the uptake, diffusion, and interaction of Hydrogen in metallic materials. 125,7 mill NOK Miljøvennlig energi, Klima og miljø, Nanoteknologi/Avanserte materialer, Petroleum

Prosjektnummer: 289815 - Building HUB e-infra Building HUB e-infra SINTEF Byggforsk Karen Byskov Lindberg SINTEF Energi, NTNU Fakultet for Arkitektur og Design, NTNU Fakultet for Ingeniørvitenskap, og SINTEF Digital. SINTEF og NTNU ønsker å etablere en nasjonal infrastruktur for detaljerte målinger av bygg kalt Building Hub som skal inneholde time- og minutt-baserte målinger av blant annet elektrisitet forbruk, varmeforbruk og parametre for inneklima. Slike målinger vil legge til rette for analyser innen et vidt spekter av forskningsspørsmål, samt muliggjøre nye energitjenester i bygg- og energisektorene. Infrastrukturen skal linke og samordne både eksisterende og fremtidig infrastruktur, med bl.a. living labs, i tillegg til å innlemme målinger fra avsluttede forskningsprosjekt. Infrastrukturen vil bli av stor betydning for de to forskningssentrene for miljøvennlig energi innenfor bærekraftige lokale energisystemer (FME ZEN) og fremtidens fleksible distribusjonsnett (FME CINELDI). Denne typen forskningsinfrastruktur finnes ikke i Norge fra før. Infrastrukturen skal knytte sammen eksisterende databaser og datakilder som Elhub og fjernvarmemålinger, i tillegg til å integrere og videreutvikle måledata fra nye og eksisterende laboratorier, blant annet ZEB/ZEN labs over hele landet, SmartHouse i Smartgrid lab i Trondheim, og Energilaboratoriene hos SINTEF Byggforsk i Oslo. Tidsavhengige måledata skal minimum ha timesoppløsning slik at effekt (makslast) kan måles. E-Infrastrukturen vil også inneholde detaljerte data fra undermålere og metadata. 40 mill NOK e-infrastruktur, Miljøvennlig energi, IKT, Medisin og helse

Prosjektnummer: 289823 BrukSol IFE Sean Erik Foss Institutt for energiteknikk (IFE), SINTEF, Universitetet i Agder (UiA), Norges miljø- og biovitenskapelige universitet (NMBU), Universitetet i Tromsø (UiT), Norges teknisk-naturvitenskapelige universitet (NTNU) BrukSol er ment å muliggjøre økt grad av forskning og innovasjon innen bruk av solenergi i Norge og globalt. Infrastrukturen vil støtte opp under den nødvendige kunnskapsutviklingen til kunnskapsmiljøene og til norsk næringsliv for å få økt gjennomslagskraft, både nasjonalt og internasjonalt. BrukSol-infrastrukturen er tett knyttet til eksisterende infrastrukturer og vil utgjøre en helhet sammen med disse. Sammen med Norwegian laboratory for silicon-based solar cell technology utviklet gjennom FMEen SolarUnited (2009-2017) utgjør BrukSol forskningsinfrastruktur som dekker behov fra råmateriale til solceller fram til sluttbruk. Infrastrukturen vil utvide eksisterende og til dels bygge ny infrastruktur hos infrastrukturpartnerne: IFE, SINTEF, NMBU, UiA, UiT og NTNU. Infrastrukturen er delt inn i 3 hovedfunksjoner: 1) Måling av solinnstråling og langtidsmonitorering av ytelse for PV-systemer, 2) Testing og karakterisering av PV moduler og 3) Utvikling av PV-moduler. De geografiske nodene (IFE, SINTEF, NMBU, UiA, UiT og NTNU) vil i varierende grad ha infrastruktur knyttet til hver av de tre funksjonene. 53,75 mill NOK Miljøvennlig energi

Prosjektnummer: 289831- Remote gas Remote gas SINTEF Energi AS Petter Nekså SINTEF Energi, NTNU, SINTEF Industri The objective for the Remote Gas Hydrogen Research Laboratory is to realise essential research infrastructure elements to support development of hydrogen from natural gas value chains. The research infrastructure has three dedicated research topics, addressing separate elements of the hydrogen to natural gas value chain. These are 1) hydrogen liquefaction, 2) storage and transport, and 3) end use. Overall focus is safe and efficient processing, transport and use of large volumes of hydrogen produced from natural gas. The research infrastructure will be unique and differs in topics covered from other RIs that has a full or partly focus towards hydrogen related topics, for example SINTEF Industry fuel cell and hydrogen lab and SINTEF Ocean maritime hybrid lab. Some of the applied RI builds on existing RI elements in the partner institution laboratories. Further the elements applied for relates to possible R&D activities in existing or future planned applications. 52,71 mill NOK Petroleumsteknologi, Miljøvennlig energi

Prosjektnummer: 289847 Norwegian Advanced Battery Laboratory Infrastructure (NABLA) INSTITUTT FOR ENERGITEKNIKK Hanne Flåten Andersen NTNU, SINTEF, UiO, FFI NABLA will provide tools for research along the entire battery value chain, including battery materials development, battery design and production and battery safety. The infrastructure will be distributed in virtual nodes among all the central players in battery R&D in Norway. The infrastructure will serve existing and future industry players. The infrastructure will complement already existing infrastructures on both sides of the values chain, i.e. advanced materials characterization laboratories, like NORTEM and RECX, as well as energy system laboratories, like the National Smart Grid laboratory, and laboratories established for marine propulsion. Regarding the former, the current equipment is not generally suitable for battery research, for example due to lack of possibilities for inert transfer of samples. The NABLA infrastructure will also complement the energy system infrastructures, as it will focus entirely on the batteries, down to cell and materials level, and can provide useful information on the optimized operation of the batteries. 58 mill NOK Miljøvennlig energi

Prosjektnummer: 289865 HighEFFLab Phase II SINTEF Energy Research Ingrid Camilla Claussen HighEFFLab Phase II is an extension of the previously granted HighEFFLab, whose purpose is to provide the advanced research facilities required to fulfil the goals of FME HighEFF1 - Centre for an Energy Efficient and Competitive Industry for the Future. In line with the first phase of HighEFFLab, the Phase II will be a joint national laboratory between the various departments at SINTEF and NTNU. The required extension for HighEFFLab is based on the demands that have arisen from the industry and the research groups at SINTEF and NTNU during the first two years of operation of FME HighEFF. In particular, not covered by the first phase, is the demand for more profound experimental research on thermal energy storage (TES). Phase II is a response to this demand, with two main RIs: 1.) Phase change material (PCM) laboratory for designing innovative and effective TES systems based on the utilization of PCMs. 2.) Smart thermal grid (STG) laboratory, for testing and demonstrating intelligent control strategies for thermal grids with multiple heat sources and thermal storage The RIs will be supported by necessary local infrastructure (heating, cooling, power) as well as an Instrument Calibration Laboratory, for ensuring the required accuracy of all the test equipment. 28 mill NOK Miljøvennlig energi

Prosjektnummer: 289883 GreenMAT-BOX Lab, from Green bag To green BOX Laboratory IFE Asuncion Aranda Romerike biogassanlegg RBA-EGE (Energigjenvinningsetaten, Oslo Kommune), Zeg Power AS The FME Bio4Fuels, IFE, Oslo Kommune (Romerike BiogassAnlegg, RBA) and Zeg Power AS have identified a collaborative opportunity for developing innovative biogas upgrading and conversion technologies towards bioenergy, biofuels and biochemicals applications. This will be possible by making semi-mobile R&D facilities; i.e., adapting and expanding IFE s research infrastructure and know-how to the feedstock and process demands of an industrial-scale biogas production plant (RBA), which processes household bio-waste ( grønn pose waste fraction). The Sorption Enhanced Reforming (SER) technology for the production of hydrogen with integrated CO2 separation has been developed at IFE during the last 17 years for natural gas reforming. The technology relies on integrated high temperature CO2 separation thanks to the addition of a selective solid CO2 sorbent material which allows combined reforming, water-gas shift and CO2 separation in one single step. Near to pure CO2 is released by regenerating the sorbent. Additionally, in the later years, the technology has been explored for reforming of biogas for production of hydrogen with integrated CO2 separation to broaden the application areas towards renewable feedstock, by proposing local, green, de-centralized solutions. In addition, use of biogas as feedstock in the SER process shows also the clear advantage of avoiding a costly biogas upgrading step. SER can also be applied to solid biomass feedstock, after a gasification step, as an efficient gas upgrading technology for production of valuable chemical intermediates and biofuels. This project will provide the adaption of Lab-to-prototype infrastructure necessary to develop the SER technology for its integration with the biogas production sites in Norway (in collaboration with RBA) with regard to: mobility for on-site industrial R&D and validation, feedstock, operating conditions, data acquisition and system control. These upgrades will contribute to the R&D needed to apply SER in the above-mentioned value chains, of interest for developing new biorefinery concepts, in line with circular economy principles. 13 820 000 Miljøvennlig energi Bioressurser

Prosjektnummer: 289885 Van der Waals Heterostructures Exploratory Laboratory UiB Matteo Chiesa IFE Todimensjonale (2D) materialer, som grafen, refereres generelt til tynnlagede materialer som består av et enkelt eller noen få lag atomer. Siden den vellykkede isoleringen av grafen for mer enn ti år siden har det vært en ny bølge av forskning for å utforske andre 2D-materialer. Infrastrukturen vil tillate eksplorasjon av nye metoder for vekst av 2D materialer og skal utfordre de konvensjonelle metoder med å skape en høy grad av fleksibilitet. Når ulike typer 2D-materialer er stablet lag for lag, er de kjent som van der Waals heterostructures (VDWHSs). Infrastrukturen vil bidra til å legge grunnlaget for fremtidig utvikling av det nye feltet VDWHS. Infrastrukturen vil bestå av flere verktøy for vekst og karakterisering av 2D-materialer og direkte måling av van der Waals krefter med frakobling av substratets virkning og inkluderer blant annet Vacuum Oven, CVD with multi stage heating, Sputter Coater and Thermal Evaporator, ALD (2D materials), Plasma Cleaner, ICP-RIE Chiller, Focused Ion Beam (FIB) microscopy, Raman Spectroscopy, Optical microscope, Spin coater, UV Ozone Cleaner og 3D printer. 29 000 000 kroner Nanoteknologi og avanserte materialer Medisin og helse, Miljøvennlig energi

Prosjektnummer: 289899-ECCSEL Phase 3 ECCSEL Research Infrastructure for Norwegian Full-Scale CCS SINTEF Energi AS Sigurd Weidemann Løvseth SINTEF Industry, IFE, NORSAR, UiO The long-term goal of the present project is to accelerate large-scale deployment of CCS in Norway, which is well aligned with the aims of the Norwegian CCS Research Centre (NCCS) FME. The consortium of NCCS includes the most important actors of the Norwegian full-scale CCS project. Hence, NCCS is expected to play a key role in utilizing the new infrastructure. The extension of the Norwegian ECCSEL RI will consist of: High Pressure CO2 test centre at industrial relevant scale (HIPREC) SER Hydrogen production with CO2-capture (HPCC) IFE Medium pressure solvent capture (MPSolv) SINTEF Industry (SI) Realistic demonstration of high temperature membranes and powders for CO2-capture (HTMem) SI Smeaheia ocean bottom seismic (S-OBS) NORSAR / University of Oslo (UiO) National imaging lab for CO2 storage (NILCS) SI The budgeted costs are for establishment or upgrades of the different facilities only. 177,5 mill NOK Miljøvennlig energi, Klima og miljø CCS

Prosjektnummer: 289902 CO2TRANS (CO2 transport infrastructure) IFE Rolf Nyborg IFE has currently a research infrastructure for pipeline and ship transport of dense phase CO2 consisting of two different laboratories: one for studies of multiphase flow of CO2 with impurities in flowlines and injection wells, and one for studies of corrosion in CO2 for pipeline and ship transport. This proposal represents a considerable upgrade of both these facilities. The proposal concerns a significant upgrade of IFE s existing CO2 loop to make it more unique, to close other gaps than it was designed for and currently addresses and enable easier access for external researchers to utilise the research infrastructure. The proposed upgrade will serve the need for broadening the operating range of the facility, and the need for improved and new instrumentation. IFE s DPI loop will be upgraded to cover a larger number of impurities, enable measurements at lower levels more accurately and to make the facility more user friendly for external users. A new mixing and sampling system and a new reactor vessel to be used for geochemical (core) experiments will be build and coupled/integrated to the DPI loop. 19 mill NOK Miljøvennlig energi CCS