Frivillig respons utvalg
|
|
|
- Andrea Espeland
- 9 år siden
- Visninger:
Transkript
1 Design av utvalg Andel college-studenter som er konservative? Andel ungdom som ser tv-reklame om ny sportssykkel? Gjennomsnittelig inntekt i en populasjon? Ønsker informasjon om stor populasjon Tid, kostnad: Undersøker kun et utvalg Design av utvalg: Hvordan velge ut utvalg
2 Dårlige utvalg Fabrikk produserer ruller av tynt stål Ønsker å sjekke kvalitet Ber teknikker kutte små biter til undersøkelse Teknikker velger «gode» biter Debattprogram og sms-målinger Ønsker meningsmåling av populasjon Teller opp andel for/mot fra sms-innsendinger Ikke representativt for populasjonen
3 Frivillig respons utvalg Et frivillig respons utvalg består av personer som velger å svare på en generell forespørsel Slike utvalg er forventningsskjeve fordi personer med sterke meninger, spesielt negative meninger, svarer oftere
4 Enkelt tilfeldig utvalg n individer trukket ut av total populasjon slik at alle individer har like stor sjanse for å komme med. Et enkelt tilfeldig utvalg (SRS:simple random sample) av størrelse n
5 Sannsynlighetsutvalg Et utvalg valgt ved tilfeldighet Må vite Hvilke utvalg som er mulige Sannsynlighet for de ulike utvalg Enkelt tilfeldig utvalg: Alle utvalg mulige, sannsynlighet lik for alle utvalg
6 Stratifisert tilfeldig utvalg Del populasjon inn i grupper av lignende individer, kalt strata Velg et enkelt tilfeldig utvalg innen hver strata Kan gi mer eksakt informasjon enn enkelt tilfeldig utvalg Alle helt like innen hvert strata: Nok med et individ fra hvert strata
7 Eksempel stratifisering Meningsmålinger Strata: Fylker Reduserer variabilitet som skyldes forskjeller mellom fylker
8 Underdekning og mangel på respons Tilfeldige utvalg fjerner skjevheter Design av utvalg for store populasjoner krever gode design Underdekning: Noen grupper glemt Krever komplett og presis liste over populasjon Mangel på respons: Større manglende respons i utkantstrøk
9 Andel ikke svarende Current population survey 4% nekter å svare, 3-4% kan ikke nås General Social Survey 30% som ikke svarer Problem: De som ikke svarer kan ha andre meninger/egenskaper enn de som svarer
10 Biologiske egenskaper Av interesse: Vekt av lemmen Utvalg: Lemmen tatt i feller Har lemmen som ikke gått i feller samme vekt som de som har gått i feller?
11 Statistisk inferens Hvordan overføre informasjon fra utvalg til informasjon om populasjon Intervju av 2500: 1650 (66%) finner kjøp av klær frustrerende og tidkrevende Hva er sannheten om hele populasjonen (220 millioner)? Statistisk inferens: Trekke konklusjoner om videre populasjon fra utvalgte individer
12 Parametre og observatorer Parameter Et tall som beskriver populasjonen Fast tall, men ukjent Observator Tall beskrevet av utvalg Kjent, men endres fra utvalg til utvalg Bruker observator for å estimere (anslå) parameter Shopping: p andel av populasjon p = 1650/2500=0.66 er estimatet
13 Utvalgsvariabilitet Nytt utvalg vil gi nytt estimat p Utvalggsvariabilitet Tilfeldig utvalg Fjerner skjevhet Vil alltid ha variabilitet Variasjonen følger et predikerbart mønster Statistisk inferens: Hvor pålitelig en prosedyre er, spør hva som skjer hvis den blir repetert mange ganger
14 Hvordan måle variabilitet? Ta mange utvalg fra samme polulasjon Beregn p for hvert utvalg Lag et histogram av p Se etter mønstre i histogram I praksis For dyrt/tidkrevende å se på mange utvalg Alternativ: Simuler med datamaskin
15
16
17 Utvalgsfordeling Utvalgsfordeling for en observator er fordelingen av verdier tatt over alle mulig utvalg av samme størrelse fra populasjonen Simulering: Tilnærming av sann fordeling Sannsynlighetsteori: Kan noen ganger gi eksakt fordeling Mønstre: Form, senter, spredning
18
19 Forventningsskjevhet og variabilitet Forventningsskjevet: Om senter av utvalgsfordeling. Forventningsrett hvis forventning i fordeling er lik sann verdi av parameter Variabilitet: Spredning i fordeling. Avhenger av Utvalgsdesign Utvalgsstørrelse
20
21 God design Redusere skjevhet: Tilfeldig utvalg Redusere variabilitet: Bruk stort utvalg Usikkerhetsmarginer: Setter grenser for størrelse på feil Liten variabiabilitet, små usikkerhetsmarginer Populasjonsstørrelse betyr ingenting! Utvalg på 2500 like bra for populasjon med individer som for
22 Hvorfor randomisere Fjerne skjevheter, senter i fordeling lik sann parameterverdi Kan bruke sannsynlighetsteori for å analysere data Form kjent, ofte (nesten) normal fordelt Spredning kan minskes ved å øke utvalgsstørrelse Statistisk teori: Hva skjer hvis eksperimentet repeteres mange ganger
Kapittel 3. Datainnsamling Dataproduksjon
Kapittel 3 Datainnsamling Dataproduksjon Produsere/samle data Kap 1: Utforske og analysere gitte data for en variabel ved hjelp av grafer og tall Kap 2: Analysere sammenhenger mellom gitte data for to
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
Statistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg
ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk
ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Lærebok Robert Johnson
6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind
Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind [email protected] Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
Introduction to the Practice of Statistics
David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 3: Producing Data Copyright 2005 by W. H. Freeman and Company Produsere data Kap 1: Utforske gitte data
Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"
Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.
Forelesning 4 Populasjon og utvalg. Hvorfor er utvalgsteori viktig? Kjent tabbe før det amerikanske presidentvalget i 1936
Forelesning 4 Populasjon og utvalg Generalisering -Estimering av feilmarginer -Statistisk testing av hypoteser Populasjon ca. 0000 studenter ved NTNU Måling Trekke utvalg (sampling) Utvalg på 500 (sample)
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
Kort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet
Kap. 6.1: Fordelingen til en observator og stok. simulering
Kap. 6.1: Fordelingen til en observator og stok. simulering Data, observatorer og relaterte fordelinger. Stokastisk simulering. Illustrasjon: - Sammenligning av jury bedømmelser i idrett. Fra data til
MET 3431: Statistikk (våren 2011) Introduksjon. Genaro Sucarrat. Institutt for samfunnsøkonomi, BI. http://www.sucarrat.net/teaching/met3431/v2011/
MET 3431: Statistikk (våren 2011) Introduksjon Genaro Sucarrat Institutt for samfunnsøkonomi, BI http://www.sucarrat.net/teaching/met3431/v2011/ Sist endret: 11. januar 2011 1 Praktisk info 2 Typer data
Introduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger
2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger
Bootstrapping og simulering Tilleggslitteratur for STK1100
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor
Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.
1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling
Kapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
Tid: 29. mai (3.5 timer) Ved alle hypotesetester skal både nullhypotese og alternativ hypotese skrives ned.
EKSAMENSOPPGAVE, bokmål Institutt: IKBM Eksamen i: STAT100 STATISTIKK Tid: 29. mai 2012 09.00-12.30 (3.5 timer) Emneansvarlig: Trygve Almøy (Tlf: 95141344) Tillatte hjelpemidler: C3: alle typer kalkulator,
I dag. Problemstilling. 2. Design og begreper. MEVIT januar Tanja Storsul
2. Design og begreper MEVIT 2800 24. januar 2012 Tanja Storsul I dag Problemstilling Forskningsdesign Enheter, variabler, verdier Reliabilitet og validitet Univers, utvalg og generalisering Kvalitative
STK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 [email protected] p.1/21 Har sett
Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
Inferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:
Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,
Kapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
Bootstrapping og simulering
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk, men
Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X
Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent
1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.
Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)
TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk
7.2 Sammenligning av to forventinger
7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning
Falske nyheter. En webundersøkelse utført av Sentio Research for Medietilsynet
03.04.2017 Falske nyheter En webundersøkelse utført av Sentio Research for Medietilsynet Innledning og metode Undersøkelsen er gjennomført over web og består av et utvalg på 1000 personer i alderen 18-80
Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind
Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind [email protected] Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering
MET 3431 Statistikk Forelesning 1: Introduksjon til Statistikk
MET 3431 Statistikk Forelesning 1: Introduksjon til Statistikk Eivind Eriksen BI, Institutt for Samfunnsøkonomi 10. januar 2012 Eivind Eriksen (BI) Forelesning 1 10. januar 2012 1 / 32 Praktisk Informasjon
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Fredag 28. oktober 2016 Tid for eksamen: 14.00 16.00 Oppgavesettet er på
Kap. 8: Utvalsfordelingar og databeskrivelse
Kap. 8: Utvalsfordelingar og databeskrivelse Utvalsfordelingar Utvalsfordeling for gjennomsnitt (med kjent varians) ( X ) Sentralgrenseteoremet (SGT) Utvalsfordeling for varians (normalfordeling) Utvalfordeling
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.4: Konfidensintervall for µ 8.7: Student-t fordeling 8.6: Fordeling til S 2 Mette Langaas Foreleses onsdag 13.oktober, 2010 2 Estimering Mål: finne sannheten
1 10-2: Korrelasjon. 2 10-3: Regresjon
1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en
Innhold. Forord... 11
Forord.................................................................. 11 Kapittel 1 Praktiske undersøkelser: spørsmål, spekulasjoner og fakta......... 13 1.1 Hva er poenget med empiriske undersøkelser?............................
Innhold. Innledning. Del I
Del I Innledning 1 Hva er statistikk?... 19 1.1 Bokas innhold 20 1.1.1 Noen eksempler 20 1.1.2 Historie 23 1.1.3 Bokas oppbygning 25 1.2 Noen viktige begreper 26 1.2.1 Populasjon og utvalg 26 1.2.2 Variasjon
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet
Kvantitative metoder datainnsamling
Kvantitative metoder datainnsamling Pensum: Dag Ingvar Jacobsen (2005): Hvordan gjennomføre undersøkelser?, side 235-303 og 380-388. Tematikk: Oppsummering fra sist forelesning. Operasjonalisering. Utforming
Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling
Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).
Kapittel 4.3: Tilfeldige/stokastiske variable
Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.
Kapittel 1 Spørsmål og svar teori og empiri
Innhold Kapittel 1 Spørsmål og svar teori og empiri...15 1.1 Forskning og fagutvikling...16 1.2 «Dagliglivets forskning»...18 1.3 Hvorfor metode?...19 1.4 Krav til empiri...20 1.5 Å studere egen organisasjon...21
Kapittel 7: Inferens for forventningerukjent standardavvik
Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon
Kap. 5.2: Utvalgsfordelinger for antall og andeler
Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
TMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
Sjekkliste for vurdering av en kasuskontrollstudie
Sjekkliste for vurdering av en kasuskontrollstudie Hvordan bruke sjekklisten Sjekklisten består av tre deler der de overordnede spørsmålene er: Kan du stole på resultatene? Hva forteller resultatene? Kan
Tabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av
Repeterbarhetskrav vs antall Trails
Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er andre artikkel i en serie av fire om tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien
Eksamensoppgave i TMA4295 Statistisk inferens
Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00
UNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
MEVIT2800 Metoder i medievitenskap. Tema: Forskningsdesign. Kvantitativ eller kvalitativ? Pensum: Grønmo (2004): Kap 5, 6, 7, 11 og 12
MEVIT2800 Metoder i medievitenskap Tema: Forskningsdesign. Kvantitativ eller kvalitativ? Pensum: Grønmo (2004): Kap 5, 6, 7, 11 og 12 Plan for dagen Sentrale begreper Forskningsdesign Hva kjennetegner:
