En litt annen måte å forklare traversering på. Traversering
|
|
|
- Sondre Dahle
- 9 år siden
- Visninger:
Transkript
1
2 En litt annen måte å forklare traversering på Traversering 2
3 def walk(g, s): # Walk the graph from node s P, Q = dict(), set() # Predecessors + "to do" queue P[s] = None # s has no predecessor Q.add(s) # We plan on starting with s while Q: # Still nodes to visit u = Q.pop() # Pick one, arbitrarily for v in G[u].difference(P): # New nodes? Q.add(v) # We plan to visit them! P[v] = u # Remember where we came from return P # The traversal tree Fra «Python Algorithms». All koden fra boka kan lastes ned gratis (og lovlig ;-) på nett.
4 def components(g): comp = [] seen = set() for u in G: if u in seen: continue C = walk(g, u) seen.update(c) comp.append(c) return comp # The connected components # Nodes we've already seen # Try every starting point # Seen? Ignore it # Traverse component # Add keys of C to seen # Collect the components Fra «Python Algorithms»
5 Adventurers always go right Ikke alle grafer ser ut som grafer Men hvordan navigerer vi i grafer? Eksempel: (1) Besøk aldri et sted mer enn én gang; (2) gå alltid til (f.eks.) høyre; (3) snu 180 i blindveier. D.F.S.
6 Evt. google flood-fill for et viktig eksempel. def dfs(g, s, S=None): if S is None: S = set() S.add(s) for u in G[s]: if u in S: continue dfs(g, u, S) # Initialize the history # We've visited s # Explore neighbors # Already visited: Skip # New: Explore recursively Fra «Python Algorithms»
7 D.F.S. Foreldre skrives opp før barn Discover-time
8 D.F.S. Foreldre strykes ut etter barn Backtracking/finish-time
9 Ikke veldig sentralt pensum beskrives ikke i Kleinberg. Tree edges Traveseringstreet Forward edges Back edges Cross edges Fremover i treet Bakover i treet Andre kanter Kan avgjøres ved hjelp av discover-time og finish-time.
10 Litt spesielt: I praksis besøker vi hver nabo vi finner direkte (vha. rekursjon), før de andre legges inn i køen. DFS? WTF? Hvilken informasjon ligger egentlig i finish-time? Alle noder er hvite fra starten «Halvferdige» er grå Ferdige er svarte d[v]: discover-time f[v]: finish-time Litt «Cormen-orientert». Besøk alle hvite vi støter på rekursivt En grå node har ikke fått besøkt alle sine naboer ennå (dvs. vi har ikke backtracket over den). Eksempel s. 605 i Cormen (3. utg). 10
11 Leting i spiralmønster B.F.S. En annen fremgangsmåte: Jobb deg ut fra startpunktet nivå for nivå i spiral. Nye områder du kommer i kontakt med må vente ( stå i kø ) til du er ferdig med nåværende runde (dvs. det som alt står i kø ).
12 def bfs(g, s): P, Q = {s: None}, deque([s]) # Parents and FIFO queue while Q: u = Q.popleft() # Constant-time for deque for v in G[u]: if v in P: continue # Already has parent P[v] = u # Reached from u: u is parent Q.append(v) return P Fra «Python Algorithms»
13 Kjekt å vite Korrekthet (rekursjon, induksjon) for korteste vei og to-farging. BFS kan finne én-til-alle korteste vei DFS har andre nyttige egenskaper All traversering kan brukes til to-farging Vi snakker her om *uvektet* korteste vei. Mer om DFS-anvendelser neste gang. En tofargbar graf kalles også *bipartitt*. Nodene kan deles i to mengder uten interne kanter (f.eks. konflikter). Trefarging (etc.) er atskillig vanskeligere ingen kjente metoder.
14 Besøk noder BFS: Korteste vei Uvektede grafer «Huskeliste» Oppdateres Svært anvendelige Ganske naive O(E+V) BFS og DFS
15 Oppsummert Q = [startnode] while Q: plukk ut en node u fra Q legg naboene til u inn i Q Vi gjør gjerne noe mer etter hvert som vi legger inn og plukker ut noder, da. F.eks. når vi legger inn: Husk hvor du kom fra (noden u). Det gir oss et traverseringstre. Det kan også hende vi gjør oppdateringer av avstandsestimater e.l. Mer om det siden. Husk også hvor du har vært 15 Husk: For å besøke flere komponenter må vi starte fra hver (ubesøkt) node i grafen. Hvilken node vi plukker ut påvirker atferden. Er Q en FIFO-kø får vi BFS En LIFO-kø gir DFS En helt vilkårlig (eller tilfeldig) kø vil også gi oss en gyldig traversering. (Prim og Dijkstra bruker prioritetskøer med dynamisk oppdatert prioritet men det er fortsatt en traversering som dette.)
16 Annet perspektiv Vi bygger et tre I hver runde Rundt treet er et snitt Utvid treet med en kant fra snittet Kan være et nyttig perspektiv når vi skal se på hvorfor f.eks. Prims og Dijkstras algoritmer er korrekte. Prim: Vi velger minste kant over snittet (vi har et eget teorem om hva som skjer da). Dijkstra: Vi observerer at det ikke finnes noen snarveier gjennom snittet. Mer om det siden. Snitt: Egentlig fordeling av nodene i to mengder. Her representert ved kantene mellom de to mengdene. 16 Når vi ikke kommer videre har vi (1) enten traversert hele grafen eller (2) truffet et *blokkerende* snitt (tomt for kanter, hvis grafen er usammenhengende, eller med kun rettede baklengskanter ).
17 O, what a tangled Fjerde forelesning Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) O, what a tangled web we weave / When first we practice to deceive! Sir Walter Scott, *Marmion* 17 Bruk av verktøy som rekursjon, induksjon, etc. er mer implisitt denne gangen. Se om hvor mange du kjenner igjen ;-)
18 Topologisk sortering 18
19 DAG Directed Acyclic Graph Rettet asyklisk graf Dvs:Vi kan ikke gå i ring! Naturlig representasjon av avhengigheter 19
20 Dance Grade 10, Open Dramatic Arts Grade 9, Open Dramatic Arts Grade 10, Open Music Grade 9, Open Music Grade 10, Open Dramatic Arts Grade 11, University/College Dramatic Arts Grade 11, Open Music Grade 11, University/College Music Grade 11, Open Grade 12, U Dramatic Arts Grade 12, Open Music Grade 12, University/College Exploring the Arts Grade 12, Open Any Grade 9 or 10 arts course Media Arts Grade 10, Open Any Grade 11 arts course Media Arts Grade 11, Open 20 Visual Arts Grade 11, University/College For å ta et fag må du ta alle de forutsatte fagene, og deres forutsatte fag etc. For å finne ut hva som trengs for et bestemt fag kan du kjøre en baklengs traversering fra noden. Media Arts Grade 12, Open Visual Arts Grade 12, University/Col
21 21
22 22 Et eksempel fra sportsverden (ikke min sterke side): Hvordan kle på seg før man står i mål i hockey
23 Vi må nesten ta på strømper før skøyter < 23
24 24 men maske og susp kan vi ta på i vilkårlig rekkefølge. Hvordan velge?
25 25 Kanskje her?
26 socks hose pants shorts t-shirt chest pad Vår oppgave: Finn en *total* ordning som respekterer den *partielle* ordningen. Det flere muligheter. skates sweater leg pads mask batting glove catch glove blocker 26
27 Hvorfor må dette bli riktig? Tenk selection sort Hvordan kan man sikre en kjøretid på Θ(V + E)? 1. «Klipp av» noder uten innkanter 2. Legg løse noder bakerst i lista 3. Hvis grafen ikke er tom, start på nytt Litt «Kleinberg-orientert». 27
28 Cormen-varianten (basert på DFS). Lemma 22.11: G er asyklisk hvis og bare hvis DFS ikke finner bakover-kanter. (Hvorfor?) Vi har altså ingen bakover-kanter 28
29 Kjernen i beviset Ingen bakoverkanter Møter kun hvite/svarte Hvit: Etterkommer lavere Svart Ferdig lavere f[u] > f[v] u v Hvis vi sorterer omvendt etter f[v] vil alle kanter dermed gå samme vei. 29
30 Altså: Sortér i synkende finished -tid. Topological-Sort(G): Hvorfor må det bli riktig? Kall DFS(G) for å beregne f[v] Etter hvert som nodene er ferdige: Legg dem i starten av en liste Dette går an å forstå helt intuitivt, uten å tenke på discover- og finish-tid. En veldig enkel måte å sortere topologisk på og akkurat som man ville ha gjort det i virkeligheten Returner den lenkede listen 30 Du vil gjøre A? Da må du først gjøre B. Du vil gjøre B? Gjør først C. (Etc.) Slike avhengigheter avdekkes med DFS, og legges foran i køen. (Tenk f.eks. pakkesystemer som installerer programvarepakker; de trenger bare følge avhengighetene i noe som i praksis er DFS.
31 Kant-ensretting Ingen sykler Sorter etter f Underveis Evt. «plukk noder uten innkanter og legg dem sist». (DFS-varianten finner egentlig noder uten utkanter og legger dem først; blir jo det samme.) O(E + V) Topologisk sortering 31
32 Eksempel på grådighet: Velg det som er optimalt sett helt med lokale øyne. Det viktigste er da å vise at det blir korrekt (med induksjon og/eller bevis ved selvmotsigelse). Minimale spenntrær 32
33 Spenntrær Har V 1 kanter Har ingen sykler Er ikke nødvendigvis unike 33
34 Vi bygger oss et sett med kanter. Begynner med en tom mengde, og legger til én og én kant. Invariant: Foreløpig løsning er et subsett av et MST. Trenger ikke være sammenhengende. Når vi har V-1 kanter *må* det jo være riktig. 34
35 «Trygg» betyr bare at vi ikke bryter invarianten. Så A er et ekte subsett av et MST helt til det faktisk *er* et MST. 1. A er en tom mengde Hvordan finner vi trygge kanter? 2. Så lenge A ikke er et spenntre: a) Finn en kant som er trygg for A b) Legg kanten til i A Induksjon 35
36 Viktig! Anta at A ikke har noen kanter over «snittet» på figuren. Den letteste kanten er da trygg. (Vi kan ha flere.) Vises lett ved selvmotsigelse. Hvorfor kan det bli galt hvis A allerede krysser snittet? 36
37 A er en skog Hver trygg kant slår sammen to trær Vi trenger V 1 iterasjoner 37
38 Trivia: Union-find-strukturen er *supereffektiv*. Den er et eksempel på en av de få kjøretidene i pensum som er raskere enn logaritmisk, men likevel (i teorien) langsommere enn konstant. ( I teorien, fordi det vil være omtrent fysisk umulig for den å komme over 4 ) Se etter Inverse Ackermann i boka eller på nett :-) «I hytt og vær» Se på dekomponering/ reduksjon/rekursjon/ induksjon som perspektiver her Går igjennom kantene i sortert rekkefølge (etter vekt), og hopper over ulovlige kanter (de som gir sykler). Liten ekstra vanskelighet: Hvordan avgjør vi om en kant skaper en sykel? Vi må ha en lur datastruktur som tar vare på trærne i skogen så langt. Kruskals algoritme Union-find: Beskrevet mer i detalj i læreboka. Hovedprinsipp: Alle trær har en peker til sitt «super-tre»/union. 38
39 Finn MST Sorter kanter Bruk lovlige O(E lg V) Kruskals algoritme 39
40 Minner om DFS/BFS, men har en annen type «kø»/ valgmekanisme: «Jevnt og fint» Ta alltid noden som det er billigst å koble til treet du har så langt. Her har vi altså hele tiden bare ett tre i A. Traversering Prims algoritme 40
41 Her er snittet «rundt» treet. 41
42 Finn MST Traversering Neste: Kortest Raskest i praksis O(V lg V + E) Akkurat det er ikke pensum, men jeg har sett studier som tyder på det :-) (Med vanlig binær heap.) Prims algoritme 42
43 Så 43
44 Topsort: DFS; legg ferdige noder først i liste Kruskal: Kanter sortert; unngå sykler O(E lg V) Prim: Koble til billigste node O(V lg V + E) Ikke helt klart hvilken som er «best» av Prim og Kruskal. Empirisk (i virkelige implementasjoner) vinner Prims algoritme også over mer avanserte algoritmer. 44
O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-)
Dagens oppvarming 1 O, what a tangled Fjerde forelesning Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) O, what a tangled web we weave / When first we practice
Litt om grafer og traversering, og om hashing. Jeg gikk en tur i. Tredje forelesning
Litt om grafer og traversering, og om hashing. Jeg gikk en tur i Tredje forelesning Ikke la dere lure av ordet reduksjon her! X? Det er jo bare å Y. Hvilken vei gir informasjon? Hvis jeg vil vise at A
Litt om grafer og traversering, og om hashing. Jeg gikk en tur i. Tredje forelesning
Litt om grafer og traversering, og om hashing. Jeg gikk en tur i Tredje forelesning Først: Høyreregelen. Så: Rekursiv formulering. Bilde: Hver node er en person. Det sendes rundt en påmeldingsliste. Hver
Øvingsforelesning 4. Topologisk sortering, Strongly Connected Components og Minimale spenntrær. Magnus Botnan
Øvingsforelesning 4 Topologisk sortering, Strongly Connected Components og Minimale spenntrær Magnus Botnan [email protected] 09/10/09 1 I dag Topologisk Sortering Sterke Komponenter Minimale Spenntrær
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.
Algdat - øvingsforelesning
Algdat - øvingsforelesning Topologisk sortering og minimale spenntrær Nils Barlaug Dagens plan 1. 2. 3. 4. 5. Praktisk og dagens plan Topologisk sortering Minimale spenntrær a. Kruskal b. Prim Tips til
Grunnleggende Grafteori
Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk
INF Algoritmer og datastrukturer
INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal
Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner.
Algdat Redux Fjortende forelesning Repetisjon av utvalgte emner. 1 Nå har vi en brukbar (om enn ikke helt intuitiv) definisjon av «alt» og nå ønsker vi å lage oss en liste med de problemene som er «verst
Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
IN Algoritmer og datastrukturer
IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet
Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø [email protected]
Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø [email protected] Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,
Grunnleggende Grafalgoritmer II
Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først
GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær
IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet
INF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Minimale spenntrær Prim Kapittel 9.5.1 Kruskal Kapittel 9.5.2 Dybde-først søk Kapittel 9.6.1 Løkkeleting Dobbeltsammenhengende grafer Kapittel 9.6.2 Å finne ledd-noder articulation
Magnus Moan (Undertegnede) Enkle datastrukturer, trær, traversering og rekursjon
1 Enkle datastrukturer, trær, traversering og rekursjon Magnus Moan (Undertegnede) [email protected] Enkle datastrukturer, trær, traversering og rekursjon 2 Dagens plan Praktisk Enkle datastrukturer Stack
Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
Minimum Spenntrær - Kruskal & Prim
Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet
Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing
Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering
Dijkstras algoritme Spørsmål
:: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen
INF Algoritmer og datastrukturer
IN2220 - lgoritmer og datastrukturer HØSTN 2016 Institutt for informatikk, Universitetet i Oslo orelesning 7: rafer III Ingrid hieh Yu (Ifi, UiO) IN2220 05.10.2016 1 / 28 agens plan: evis for Prim ybde-først
Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim
Minimum Spenntrær Lars Vidar Magnusson 2.4.2014 Kapittel 23 Minimum spenntrær Kruskal Prim Minimum Spenntrær Et spenntre er et tre som spenner over alle nodene i en graf G = (V, E). Et minimum spenntre
Algdat Eksamensforelesning. Nils Barlaug
Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum
Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth
Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser [email protected] Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang
Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland
Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):
Pensum: fra boken (H-03)+ forelesninger
Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.
Korteste vei i en vektet graf uten negative kanter
Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter
All good things. Fjortende forelesning
All good things Fjortende forelesning 1 Reduksjons- Eksempler 2 Clique til Independent Set 3 Partition til Bin Packing 4 Partition til Subset Sum 5 CNF-SAT til Dir. Ham. Cycle 6 Dir. Ham. Cycle til Ham.
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49
Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland
Algdat-ninja på 60 minutter: Et galskapsprosjekt Magnus Lie Hetland 15. november, 2002 Advarsel: Tettpakkede og overfladiske foiler forut! 1 Algtdat i 6 punkter 1. Grunnbegreper og basisverktøy 2. Rekursjon
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 6 1 / 31 Dagens plan:
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55
Grunnleggende Grafalgoritmer
Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å
Løsningsforslag - Korteste vei
Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011
PG4200 Algoritmer og datastrukturer Forelesning 10
PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk
IN Algoritmer og datastrukturer
IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
All good things. Fjortende forelesning
All good things Fjortende forelesning Div notater finnes på http://www.idi.ntnu.no/~algdat Foiler finnes på http://www.idi.ntnu.no/~mlh/algdat/latitudinary Spørsmål? [email protected] Sjekkliste Dette
Vi skal se på grafalgoritmer for:
Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?
Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.
Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også
Eksamen i tdt4120 Algoritmer og datastrukturer
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig
MAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april
INF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Definisjon av en graf (kapittel 9.1) Grafvarianter Intern representasjon av grafer (kapittel 9.1.1) Topologisk sortering (kapittel 9.2) Korteste vei, en-til-alle, for: uvektet graf
Innhold. Innledning 1
Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................
KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf
Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...
Løsningsforslag for utvalgte oppgaver fra kapittel 9
Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................
Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen
Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,
IN2010: Algoritmer og Datastrukturer Series 2
Universitetet i Oslo Institutt for Informatikk S.M. Storleer, S. Kittilsen IN2010: Algoritmer og Datastrukturer Series 2 Tema: Grafteori 1 Publisert: 02. 09. 2019 Utvalgte løsningsforslag Oppgave 1 (Fra
Enkle datastrukturer. Lars Greger Nordland Hagen. Introduksjon til øvingsopplegget og gjennomgang av python
1 Enkle datastrukturer Lars Greger Nordland Hagen [email protected] Introduksjon til øvingsopplegget og gjennomgang av python 2 I dag Stack Kø (queue) Lenkede lister (linked list) Trær Binære søketrær
Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005
Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel
Øvingsforelesning Korteste vei: Alle til alle
Øvingsforelesning Korteste vei: Alle til alle TDT4120 Algoritmer og datastrukturer Ole Kristian Pedersen 02. november, 2018 IDI, NTNU Plan for dagen Løsninger teoriøving 10 Alle til alle med Dijkstra &
Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.
Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra
Algdat - Øvingsforelesning. Maks flyt
Algdat - Øvingsforelesning Maks flyt Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2 Øving 7 4b) I hvilken rekkefølge velges noder
MAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 918 51 949 Eksamensdato 4. desember, 2017
Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk
Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf
Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 2008 Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt
Dagens plan: INF Algoritmer og datastrukturer. Grafer vi har sett allerede. Det første grafteoretiske problem: Broene i Königsberg
Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Definisjon av en graf Grafvarianter Intern representasjon
Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar
Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer
Binære heaper (Leftist) Prioritetskøer Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A, A*, D*, etc.), og i simulering. Prioritetskøer Prioritetskøer
Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.
Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne
Oppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning
UNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper
Prioritetskøer Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A,
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl
Student nr.: Side 1 av 5 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER
