Algdat - Øvingsforelesning. Maks flyt

Størrelse: px
Begynne med side:

Download "Algdat - Øvingsforelesning. Maks flyt"

Transkript

1 Algdat - Øvingsforelesning Maks flyt

2 Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2

3 Øving 7 4b) I hvilken rekkefølge velges noder hvis Dijkstra brukes på denne grafen? Gjennomgang på tavla... 3

4 Øving 7 5d) Anta vi har en graf med kantvekter som er positive heltall og anta E er antall kanter og V er antall noder. Hva gjør Dijkstras(G,w,s)(Dijkstra's algoritme) dersom man forandrer alle kantvektene til w ' (u, v)=(e+ V log(v ) ) w (u, v)+1? Svar: b) Den finner korteste veier fra én startnode til alle andre noder, der antall kanter er minimalt. Å legge til 1 gjør at hvis to stier har samme vekt, vil den med færrest kanter prioriteres. Vi må gange den originale vekten med en konstant > E, ellers kan vi velge en sti som er suboptimal i den originale grafen, f.eks. (4+1) framfor (1+1)+(1+1)+(1+1) 4

5 Flytnettverk Intuisjon Tenk på et nettverk med vannledninger. Hver ledning har en viss kapasitet (tykkelse). Vi vil prøve å transportere mest mulig vann fra ett punkt til et annet i dette nettverket. Dere må gjerne tenke datanettverk, distribusjonsnettverk eller lignende i stedet. 5

6 Flytnettverk Graf der hver kant (u,v) har en kapasitet, c(u,v). To spesielle noder: s kilde (source) t sluk (drain) En flyt i denne grafen er en funksjon f(u,v) som oppfyller følgende: f(u,v) c(u,v) for alle u, v V f(v,u) = f(u,v) for alle u, v V v V f(u,v) = 0 for alle u V {s, t} 6

7 Flytnettverk På norsk f(u,v) c(u,v) for alle u, v V Kan ikke gå mer flyt langs en kant enn den kanten kan holde på. f(v,u) = f(u,v) for alle u, v V Vi definerer utgående flyt som positiv, og innkommende flyt som negativ. Mest konvensjon, men det gjør jobben vår en hel del enklere. v V f(u,v) = 0 for alle u V {s, t} Flyt kan ikke oppstå eller forsvinne, utenom i kilden og sluket. Vi sier at «flyten må være opprettholdt». 7

8 Maks flyt-problemet Vi definerer verdien av en flyt f som: f = v V f(s, v) Mer intuitivt: «Hvor mye flyt går det fra s til t?» Maks flyt-problemet er å finne en flyt som maksimerer denne verdien. 8

9 Max flow/min cut-teoremet Den maksimale flyten er begrenset av hvor grafen er «smalest». Et snitt i en flytgraf er et subsett av kanter slik at hvis disse kantene fjernes, vil det ikke lenger finnes en sti fra s til t. Det minimale snittet er det snittet som har minst total kapasitet. Den maksimale flyten er lik kapasiteten til det minimale snittet. 9

10 Ford Fulkerson-metoden Iterativ algoritme for å finne maksimal flyt. FORD-FULKERSON-METHOD(G, s, t) 1 initialize flow f to 0 2 while there exists an augmenting path p : 3 augment flow f along p 4 return f Send mer og mer flyt gjennom grafen, til du ikke kan sende mer. 10

11 Flytforøkende stier Gitt et flytnettverk G og en flyt f, er en flytforøkende sti (augmenting path) en sti fra s til t der residualkapasiteten til alle kantene er større enn 0. Residualkapasitet: c f (u,v) = c(u,v) f(u,v) Alternativt kan vi definere et residualnettverk Gf : G f (V, E f ), der E f = {(u,v) V V : c (u,v) > 0} f En flytforøkende sti blir da en sti fra s til t i Gf. 11

12 Ford Fulkerson komplett algoritme FORD-FULKERSON(G, s, t) 1 for each edge (u, v) E[G] : 2 f[u,v] 0 3 f[v,u] 0 4 while there exists a path p from s to t in the residual network G f : 5 c f (p) min {c f (u,v) : (u,v) is in p} 6 for each edge (u,v) in p : 7 f[u,v] f[u,v] + c f (p) 8 f[v,u] f[u,v] 12

13 13 Eksempler på tavla!

14 Oppheving av flyt Hvor er den flytforøkende stien i denne grafen? Siden f(v2, v3) = 1, har vi cf (v2, v3) = 0 ( 1) = 1 14

15 Korrekthet og kjøretid Ford-Fulkerson på grafer med heltallige kapasiteter vil terminere, siden flyten øker med minst 1 hver iterasjon. Kjøretid: O(E f* ), der f* er den maksimale flyten. Pseudopolynomisk kjøretid skikkelig dårlig! 15

16 Edmonds Karp-algoritmen Ford Fulkerson sier ikke noe om hvordan man finner flytforøkende stier. Edmonds Karp: Ford Fulkerson der man bruker BFS. Mye bedre kjøretid: O(V E²) 16

17 Maksimal bipartitt matching En matching M for en graf G = (V, E) er et subsett av kantene slik at alle noder maksimalt har én kant fra M inn til seg. Å finne en maksimal matching for en bipartitt graf kan uttrykkes som et maksflytproblem. 17

18 Maksimal bipartitt matching 1. Legg til kilde og sluk 2. Trekk en kant fra kilden til alle nodene på venstresiden 3. Trekk en kant til sluket fra alle nodene på høyresiden 18

19 Praksisøving 9 Dere skal implementere Ford-Fulkerson! Pluss noen andre greier... Grafen har flere kilder og flere sluk. Nodene skal ha en kapasitet. For å fikse dette må dere lage en ny graf slik at «vanlig» Ford-Fulkerson kan brukes. 19

Øvingsforelesning 12 Maks flyt

Øvingsforelesning 12 Maks flyt Øvingsforelesning 12 Maks flyt Ole Kristian Pedersen 9. november 2018 ] Plan for dagen Maksimal flyt og minimale snitt Maksimal bipartitt matching Tidligere eksamensoppgaver Introduksjon øving 12 Hva er

Detaljer

Øvingsforelesning 9. Flytnettverk, maksimum flyt og maksimum bipartitt matching. Jon Marius Venstad

Øvingsforelesning 9. Flytnettverk, maksimum flyt og maksimum bipartitt matching. Jon Marius Venstad Øvingsforelesning 9 Flytnettverk, maksimum flyt og maksimum bipartitt matching Jon Marius Venstad venstad@idi.ntnu.no 1 Dagens tema Flytnettverk Terminologi Max-flow min-cut teoremet Ford-Fulkersons metode

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Maks Flyt og NPkompletthet

Maks Flyt og NPkompletthet Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av

Detaljer

Øvingsforelesning Korteste vei: Alle til alle

Øvingsforelesning Korteste vei: Alle til alle Øvingsforelesning Korteste vei: Alle til alle TDT4120 Algoritmer og datastrukturer Ole Kristian Pedersen 02. november, 2018 IDI, NTNU Plan for dagen Løsninger teoriøving 10 Alle til alle med Dijkstra &

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

Algdat Eksamensforelesning. Nils Barlaug

Algdat Eksamensforelesning. Nils Barlaug Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

Algdat - øvingsforelesning

Algdat - øvingsforelesning Algdat - øvingsforelesning Topologisk sortering og minimale spenntrær Nils Barlaug Dagens plan 1. 2. 3. 4. 5. Praktisk og dagens plan Topologisk sortering Minimale spenntrær a. Kruskal b. Prim Tips til

Detaljer

Fra A til B. Syvende forelesning

Fra A til B. Syvende forelesning Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

Øvingsforelesning 4. Topologisk sortering, Strongly Connected Components og Minimale spenntrær. Magnus Botnan

Øvingsforelesning 4. Topologisk sortering, Strongly Connected Components og Minimale spenntrær. Magnus Botnan Øvingsforelesning 4 Topologisk sortering, Strongly Connected Components og Minimale spenntrær Magnus Botnan botnan@stud.ntnu.no 09/10/09 1 I dag Topologisk Sortering Sterke Komponenter Minimale Spenntrær

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Lineær sortering. Radix sort

Lineær sortering. Radix sort Fra forrige gang 1 Lineær sortering Radix sort 2 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 918 51 949 Eksamensdato 4. desember, 2017

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner.

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner. Algdat Redux Fjortende forelesning Repetisjon av utvalgte emner. 1 Nå har vi en brukbar (om enn ikke helt intuitiv) definisjon av «alt» og nå ønsker vi å lage oss en liste med de problemene som er «verst

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

Rundt og rundt og. Trettende forelesning

Rundt og rundt og. Trettende forelesning Nettverksalgoritmer. Anvendelser og generaliseringer. Sirkulasjonsproblemet/ lineær programmering. (Kap. 29.1-29.2) Rundt og rundt og Trettende forelesning 1 Merk: Ikke sikkert alt dette blir gjennomgått

Detaljer

Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding

Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding 1 Grådighet 2 Forelesningsplan Grådighet Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding LF Øving 9 Teori Praksis 3 Forelesningsplan Grådighet Hva er

Detaljer

45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 1992

45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 1992 45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 12 Oppgave 1 Idé til algoritme Benytter S n som betegn på en tallmengde med n elementer. For at et tall m skal være et majoritetstall

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag)

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) TDT4125 2011-06-04 Kand.-nr. 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) Kontakt under eksamen Tillatte hjelpemidler Magnus Lie Hetland Alle trykte/håndskrevne;

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB

Detaljer

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland Algdat-ninja på 60 minutter: Et galskapsprosjekt Magnus Lie Hetland 15. november, 2002 Advarsel: Tettpakkede og overfladiske foiler forut! 1 Algtdat i 6 punkter 1. Grunnbegreper og basisverktøy 2. Rekursjon

Detaljer

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær Forelesning 28, eksempler Dag Normann - 5. mai 2008 I dag skal vi se på en rekke eksempeloppgaver, og gjennomgå løsningene på tavla. Alle eksemplene er oppgaver som ville kunne bli gitt til eksamen, enten

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Algdat - øvingsforelesning

Algdat - øvingsforelesning Algdat - øvingsforelesning Dynamisk programmering Nils Barlaug Dagens plan 1. 2. 3. 4. Praktisk og dagens plan LF øving 8 a. Teori b. Praksis Dynamisk programmering a. Introduksjon b. Rod Cutting c. Matrise-multiplikasjon

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal

Detaljer

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0 O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i bwfs(u, i) for each neighbor u of v if λ[u] = 0 bwfs(u, i+1) Bacwards-first search; traverserer en graf med kvadratisk worst-casekjøretid.

Detaljer

Grunnleggende Grafteori

Grunnleggende Grafteori Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim Minimum Spenntrær Lars Vidar Magnusson 2.4.2014 Kapittel 23 Minimum spenntrær Kruskal Prim Minimum Spenntrær Et spenntre er et tre som spenner over alle nodene i en graf G = (V, E). Et minimum spenntre

Detaljer

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja)

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja) Eirik Benum Reksten Hans Olav Norheim (ja, det kommer nok litt matte nå ja) Hva er lineærprogrammering? Vi har et problem hvor vi... 1. ønsker å minimere eller å maksimere et mål 2. kan spesifisere målet

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning 1 Reduksjons- Eksempler 2 Clique til Independent Set 3 Partition til Bin Packing 4 Partition til Subset Sum 5 CNF-SAT til Dir. Ham. Cycle 6 Dir. Ham. Cycle til Ham.

Detaljer

Kompleksitet og Beregnbarhet

Kompleksitet og Beregnbarhet Kompleksitet og Beregnbarhet 16. September, 2019 Institutt for Informatikk 1 Dagens plan Avgjørelsesproblemer. P EXPTIME NP Reduksjoner NP-kompletthet Uavgjørbarhet UNDECIDABLE DECIDABLE PSPACE NPC NP

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Prøveekasmen 2007, med svarforslag Eksamen i: INF 330/430: Algoritmer: Design og effektivitet Eksamensdag: Fredag. desember 200 Tid

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø rodsjo@stud.ntnu.no Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity

Detaljer

Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1

Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1 Øvingsforelesning 7 ijkstras algoritme oiler: redrik Ludvigsen oreleser: Jon Marius Venstad 0/4/09 Korteste sti - hvorfor? ksempel på bruk GPS-systemer ilde-krymping (som vist forrige mandag) Routing-protokoller

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser algdat@idi.ntnu.no Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

Eksamenshefte TDT4120 Algoritmer og datastrukturer

Eksamenshefte TDT4120 Algoritmer og datastrukturer Eksamenshefte TDT4120 Algoritmer og datastrukturer Eirik Benum Reksten 1 SIF8010 august 2003 - Oppgave 1 I de følgende tre deloppgavene (1 a, b og c) skal du bruke den vektede, rettede grafen G = (V, E),

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 0. desember, 08 Eksamenstid

Detaljer

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt. Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 1 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning Div notater finnes på http://www.idi.ntnu.no/~algdat Foiler finnes på http://www.idi.ntnu.no/~mlh/algdat/latitudinary Spørsmål? algdat@idi.ntnu.no Sjekkliste Dette

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Kompleksitet. IN algoritmer og datastrukturer Plenumstime / repetisjon

Kompleksitet. IN algoritmer og datastrukturer Plenumstime / repetisjon Kompleksitet IN2010 - algoritmer og datastrukturer Plenumstime / repetisjon Dagens agenda Kompleksitet - hva er det? Avgjørelsesproblemer Kompleksitetsklassene P og NP Reduksjoner - å redusere et problem

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.

Detaljer

O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-)

O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) Dagens oppvarming 1 O, what a tangled Fjerde forelesning Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) O, what a tangled web we weave / When first we practice

Detaljer

Algdat - Øvingsforelesning. NP-komplette problemer

Algdat - Øvingsforelesning. NP-komplette problemer Algdat - Øvingsforelesning NP-komplette problemer Dagens plan 1. LF teoriøving 10 2. Kompleksitetsklasser 3. P, NP, NP-COMPLETE 4. Noen NP-komplette problemer 5. Kahoot! 6. Presentasjon av øving 12 2 Øving

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Torsdag 5. desember 00 Tid for eksamen : 09.00-15.00 Oppgavesettet er på

Detaljer

En litt annen måte å forklare traversering på. Traversering

En litt annen måte å forklare traversering på. Traversering En litt annen måte å forklare traversering på Traversering 2 def walk(g, s): # Walk the graph from node s P, Q = dict(), set() # Predecessors + "to do" queue P[s] = None # s has no predecessor Q.add(s)

Detaljer