Korteste vei problemet (seksjon 15.3)
|
|
|
- Lauritz Andresen
- 9 år siden
- Visninger:
Transkript
1 Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k ) der k 0, v i V (0 i k) og a i = (v i 1, v i ) (i k). Sier at P går fra v 0 til v k, og kaller P en v 0 v k -vandring. En (rettet) vei er en vandring P der v 0, v 1,..., v k er distinkte; kalles en v 0 v k -vei. Forskjellen er at en vandring kan inneholde sykler (flertall av syklus, altså ikke noe man sykler på!) Korteste vei problemet: gitt en rettet graf D = (V, E) med et gitt ikkenegativt tall (lengde) c ij for hver kant (i, j), samt to noder s og r, finn en korteste vei P fra s til r. Her er lengden til en vei P summen av c ij -ene for kantene i P. 1 / 10
2 Problemet har direkte anvendelser i de fleste typer nettverk (kjørerute bil (GPS), fly,..) eller i dynamiske optimeringsproblemer f.eks. i økonomi/finans. Er også et delproblem i mange ulike, mer komplekse problemer. Ofte vil vi finne korteste vei mellom flere par av noder; algoritmene under gjør dette fra felles startnode s til enhver annen node. Eksempel: dynamisk programmering (dynamiske systemer med sekvensielle beslutningsproblemer): tar det til slutt! 2 / 10
3 Nettverk strøm formulering Korteste vei problemet er et spesialtilfelle av MKS (minimum kost strøm) problemet: min{c T x : Ax = b, x O}. Her er A node-kant indikator matrisen til grafen, c kostnadsvektoren (lengdene), og b = (b v : v V ) er vektoren gitt ved b s = 1, b r = 1 og b v = 0 ellers. Dette går greit fordi vi har en heltallig optimal løsning, og den må inneholde en vei fra s til r: x ij = 1 for alle kanter i veien, og x ij = 0 ellers. Tenk gjennom detaljene! Følgelig kan vi løse korteste vei problemet som MKS problem ved hjelp av nettverk simpleks algoritmen. Faktisk kan vi ved å endre b (og innføre kantkapasiteter på 1) finne korteste vei fra enhver v V til r ved å løse et MKS problem! Skal se på enda raskere og enklere algoritmer! 3 / 10
4 Bellman-Ford algoritmen For v V og k 0 (heltall), defineres d k (v) som minimum lengde av en sv-vandring med høyst k kanter. Hvis det ikke finnes noen slik vandring, lar vi d k (v) =. Hvordan kan vi beregne disse avstandsfunksjonene? Bellman-Ford s algoritme: la d 0 (s) = 0 og d 0 (v) = for hver v s. Beregn funksjonene d 1, d 2,..., d n ved for alle v V. d k+1 (v) = min{d k (v), min (d k(u) + c uv )} (1) u:(u,v) E Teorem: Bellman-Ford algoritmen finner virkelig de korrekte avstandene, dvs. d k (v) blir minimum lengde av en sv-vandring med høyst k kanter. Spesielt er d n 1 (v) lengden av korteste sv-vei (her er n antall noder i grafen). 4 / 10
5 Bevis: En korteste sv-vei med høyst k + 1 kanter har enten (i) høyst k kanter eller (ii) den har k + 1 kanter og inneholder en kant (u, v) som siste kant. Men i tilfelle (ii) må delveien fram til u være en korteste su-vei med høyst k kanter (for ellers kunne vi velge en annen vei dit, og forbedre sv-veien). Likningen (1) for beregning av d k+1 ut fra d k kalles Bellman s likning. Den brukes også i liknende problemer i (diskret) dynamisk programmering og i en mer generell (kontinuerlig) utgave som kalles Hamilton-Jacobi-Bellman (HJB) likningen i optimal kontrollteori. BF-algoritmen har kompleksitet (antall regneoperasjoner) O(nm) der grafen har n noder og m kanter. Algoritmen har en viktig annen egenskap: den kan brukes også hvis det er negative kantlengder i følgende betydning. BF vil da oppdage om det finnes en syklus med negativ (total-)lengde som kan nåes fra s; da er d n (v) < d n 1 (v). Hvis dette ikke skjer, finner BF en korteste sv-vei. 5 / 10
6 Dijkstra s algoritme Dette er også en algoritme for Korteste vei problemet. Den virker bare for ikkenegative kantlengder (som er mest vanlig!) Dijkstra s algoritme er raskere enn Bellman-Ford algoritmen. (Vår beskrivelse er litt forskjellig fra bokas: vi starter i s og går forover langs kanter; Vanderbei går baklengs!) som vanlig betegner n antall noder 6 / 10
7 Algoritmen har n iterasjoner, i hver iterasjon føyes én ny node til en viss mengde F og noen beregninger gjøres. Ved starten er F =. Man har en verdi (en label) d i, for hver node i: d i er en øvre skranke på (korteste) avstand fra s til i. Ved starten er: d s = 0, og d i = ellers. F består av de nodene man allerede har funnet korteste vei til, så for disse nodene er d i lik avstanden fra s til i. I hver iterasjon: 1. velg en i F med d i minst mulig ( nærmeste node ), og oppdater F := F {i}. 2. for hver kant (i, j) E der j F, sett d j = min{d j, d i + c ij } og, hvis d j ble redusert, sett en peker prev(j) = i. 7 / 10
8 Dette betyr at, ved starten av hver iterasjon, er d(v) lik lengden av en korteste sv-vei som bare bruker noder i F. Vi har (uten å gi beviset, selv om det er et relativt enkelt induksjonsbevis): Teorem: Dijkstra s algoritmen finner en korteste vei, og tilhørende avstand d v, fra s til hver node v. Kompleksiteten er O(n 2 ). Eksempel: bruk Dijkstra (og Bellman-Ford) her u 3 v s 7 r 8 / 10
9 Eksempel: dynamisk programmering I dynamisk programmering (DP) har man en diskret dynamisk prosess som man vil kontrollere best mulig ved å påvirke prosessen ved hvert diskret tidspunkt t i (i m). Prosessen beskrives ved funksjoner f i der s i+1 = f i (s i, x i ) (i m) (2) der s i er tilstanden ved tidspunkt t i og x i er en variabel som vi kaller kontrollen ved tid t i. Vi antar at alt her er diskret (faktisk endelig), så kontrollen x i X og tilstanden s i S der X og S er endelige. Videre er f i : S X S. Det er også gitt kostfunksjoner g i (s i, x i ) som angir kostnaden ved å velge kontrollen x i ved tilstand s i i tidspunkt t i (i m). Problemet i DP er å finne en kontroll x 1, x 2,..., x m som minimerer totalkostnad m g i (s i, x i ) i=1 under kravene (2) og s i = s, s m+1 = s der s og s er gitt start- og slutt-tilstander. 9 / 10
10 Lag en rettet graf D med noder (t i, s j ) for hvert tidspunkt t i (i m) og hver tilstand s j S. Videre lager vi en kant fra (t i, s j ) til (t i+1, s k ) hvis det fins en kontroll x i slik at s k = f i (s i, x i ), og la denne kanten ha kostnad lik g i (s i, x i ) (den laveste, hvis det er flere mulige kontroller som gir denne tilstanden). Legg merke til at grafen D får noder som et rutenett, der kantene går mot høyre mellom noder (t i, ) og noder (t i+1, ). Den inneholder derfor ingen rettet syklus. Vi kan løse DP ved å finne en korteste vei i D fra noden (s, t 1 ) til noden (s, t m+1 )!!! Enkelt og greit! Til tross for at DP er en meget generell problemstilling, med mange anvendelser! Vi kan derfor løse DP ved f.eks. Bellman-Ford algoritmen i denne grafen. (Varianten av DP der slutt-tilstand er fri: går nokså likt.) Mer kompliserte varianter av dette oppsettet: stokastisk modell (Markov modell), kontinuerlig tid. Dette krever mer avanserte metoder. 10 / 10
LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2
LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei
Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste
Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen
Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative
Øvingsforelesning Korteste vei: Alle til alle
Øvingsforelesning Korteste vei: Alle til alle TDT4120 Algoritmer og datastrukturer Ole Kristian Pedersen 02. november, 2018 IDI, NTNU Plan for dagen Løsninger teoriøving 10 Alle til alle med Dijkstra &
Anvendelser av grafer
Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart
Løsningsforslag - Korteste vei
Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011
LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former
LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et
Avanserte flytalgoritmer
Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon
Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.
Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne
Korteste vei i en vektet graf uten negative kanter
Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter
Grafteori og optimering en kort innføring. Geir Dahl
Grafteori og optimering en kort innføring Geir Dahl 24. oktober 2001 Innhold 1 Introduksjon til grafteori 1 1.1 Hva er en graf? 1 1.2 Noen grunnleggende begreper 3 1.3 Trær 9 1.4 Oppgaver 12 2 Königsberg,
LO118D Forelesning 10 (DM)
LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad
MAT1140: Kort sammendrag av grafteorien
MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt
LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse
LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse
4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april
4.9 Anvendelser: Markovkjeder
4.9 Anvendelser: Markovkjeder Markov kjeder er en spesiell type diskret dynamisk system. Stokastisk modell: grunnleggende i sannsynlighetsregning. Vinner av Abelprisen 2007, S. Varadhan, jobber i dette
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk
Grunnleggende Grafalgoritmer
Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å
Kapittel 5: dualitetsteori
LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17 Motivasjon Til ethvert LP problem (P) er
MAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier
Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1
Øvingsforelesning 7 ijkstras algoritme oiler: redrik Ludvigsen oreleser: Jon Marius Venstad 0/4/09 Korteste sti - hvorfor? ksempel på bruk GPS-systemer ilde-krymping (som vist forrige mandag) Routing-protokoller
TMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
Løsningsforslag - Floyd-Warshall
Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon martme logget
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og
Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori
Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og
Diagnosekart for oblig 2, INF3/4130 h07
Diagnosekart for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 1. november 2007 Dette er et dokument jeg har skrivd for å gjøre det enklere å gi tilbakemelding på obligene, siden så mange ting går igjen
Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon
Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og
Vann i rør Ford Fulkerson method
Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp
Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april
IN Algoritmer og datastrukturer
IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity
Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen
MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk
Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.
Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra
Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar
Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid
Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet
Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende
Dijkstras algoritme Spørsmål
:: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-
Løsningsforslag for utvalgte oppgaver fra kapittel 9
Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2
Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien
MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.
MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
Rekursiv programmering
Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man
Algdat - Øvingsforelesning. Maks flyt
Algdat - Øvingsforelesning Maks flyt Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2 Øving 7 4b) I hvilken rekkefølge velges noder
SIF8010 ALGORITMER OG DATASTRUKTURER
SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting
LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en
Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag)
TDT4125 2011-06-04 Kand.-nr. 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) Kontakt under eksamen Tillatte hjelpemidler Magnus Lie Hetland Alle trykte/håndskrevne;
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær
MAT1030 Forelesning 24
MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og
5.6 Diskrete dynamiske systemer
5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer
MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()
Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0
Algoritmer - definisjon
Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april
MAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier
Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk
Kompleksitet. IN algoritmer og datastrukturer Plenumstime / repetisjon
Kompleksitet IN2010 - algoritmer og datastrukturer Plenumstime / repetisjon Dagens agenda Kompleksitet - hva er det? Avgjørelsesproblemer Kompleksitetsklassene P og NP Reduksjoner - å redusere et problem
Funksjoner og andregradsuttrykk
88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori
Forelesning 29: Kompleksitetsteori
MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17
Rettede, ikke-sykliske grafer (DAG)
Rettede, ikke-sykliske grafer (DAG) Dersom vi vet at grafen ikke inneholder løkker, kan vi lage en forbedret versjon av Dijkstras algoritme ved å forandre metoden for å velge neste kjente node. Den nye
INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet
INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner
Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a
Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs
Kanter, kanter, mange mangekanter
Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 18. august 2011 Eksamenstid 0900 1300 Sensurdato 8. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann
MAT1030 Diskret Matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 21. april 2010 (Sist oppdatert: 2010-04-21 12:55) MAT1030 Diskret Matematikk 21.
Høst 2014. Øving 5. 1 Teori. 2 Månedskalender. Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 5 1 Teori a) Hva er den binære ASCII-verdien av bokstaven E (stor e)?
MAT Oblig 1. Halvard Sutterud. 22. september 2016
MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker
Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf
Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se
Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs
TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under
Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:
Kap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
IN Algoritmer og datastrukturer
IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet
Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding
1 Grådighet 2 Forelesningsplan Grådighet Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding LF Øving 9 Teori Praksis 3 Forelesningsplan Grådighet Hva er
Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave
MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og
Dynamisk programmering
Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 5-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å gjøre.)
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49
MAT1030 Forelesning 23
MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter
{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}
Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,
