Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1
|
|
- Sigrid Fredriksen
- 6 år siden
- Visninger:
Transkript
1 Øvingsforelesning 7 ijkstras algoritme oiler: redrik Ludvigsen oreleser: Jon Marius Venstad 0/4/09
2 Korteste sti - hvorfor? ksempel på bruk GPS-systemer ilde-krymping (som vist forrige mandag) Routing-protokoller i ip-nettverk (lan, internett etc.) Simulering av kombinasjonskostnader + mye, mye mer 0/4/09 2
3 Simulering av kombinasjonskostnader n administrator skal kjøpe inn datamaskiner, operativsystemer, og programvare til sitt universitet. Hans eneste mål er at maskinene skal kunne gjøre en gitt type avansert bildebehandling, men han vil bruke så lite penger som mulig. (Prisen på maskiner, OS, og programvare skal minimeres.) Operativsystemene fungerer kun på gitte datamaskiner, og de avanserte bildebehandlingsprogrammene fungerer kun under gitte operativsystemer (og enkelte krever plugins). 0/4/09
4 Simulering av kombinasjonskostnader Operativsystemer atamaskiner (rees, MC OS X, Linux, Vista,...) (x86, power6, MIPS,...) Linux GIMP (00 k for nødvendign (00 k) Kinesisk maskin support i 0 år) med MIPS-prosessor (2 mill kr) ildebehandlingsprogrammer (CS4, Paintshop pro, GIMP, CSee, ) Plugin, utvikles ved Universitetet (00 k) Pris på maskin Plugins (som må kjøpes inn eller lages selv) Pris på OS-lisens Pris på bildebahandlings programvare Pris på innkjøp / utvikling av plugin 0/4/09 4
5 Korteste sti med dijkstra hvordan? ijkstras algoritme følger en tankegang som ligner på S. S finner faktisk korteste sti i grafer, hvis man kun ser på antall kanter traversert. (Hvis du tenker at hver kant har lengde ) 0/4/09 5
6 ijkstras algoritme i én setning Velg noder med (minste) økende avstand fra utgangsnoden, helt til målet er nådd. 0/4/09 6
7 ijkstras algoritme eksempel, første gang C /4/09 7
8 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger 0/4/09 8
9 ijkstras algoritme i praksis INITILIZ-SINGL-SOURC(G, s) S Ø while Q Ø do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 9
10 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 0
11 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09
12 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 2
13 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09
14 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 4
15 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 5
16 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 6
17 ijkstras algoritme i praksis sett alle estimater til sett startnodens estimat til 0 S er en tom liste Q er en prioritetskø legg alle noder inn i Q så lenge Q ikke er tom: sett u til den "korteste" noden i Q fjern u fra Q legg u til de kjente nodene for hver nabo v av u: hvis u kan tilby en kortere sti til v: oppdater v sitt estimat sett u som v sin forgjenger INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) 0/4/09 7
18 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) C Q 0 S 2 C 4 0/4/09 8
19 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) C Q S 0 * 2 C 4 0/4/09 9
20 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) C Q 2 4 S 0 * 2 C 4 0/4/09 20
21 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) C Q 4 S 0 2 * 2 C 4 0/4/09 2
22 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) C Q S 0 2 * 2 C 4 9 0/4/09 22
23 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 2 C 4 9 0/4/09 2
24 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 2 C C C 0/4/09 24
25 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 6 C 4 C 9 2 C 4 0/4/09 25
26 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 5 4 C 9 2 C 4 0/4/09 26
27 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 4 C C 4 0/4/09 27
28 ijkstras algoritme eksempel, andre gang 7 5 INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 4 C C 4 0/4/09 28
29 ijkstras algoritme eksempel, andre gang INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) for each vertex v # dj[u] do RLX(u, v, w) Q S C 0 2 * 2 C C 0/4/09 29
30 ijkstras algoritme H I J I forrige eksempel lå alle nodene etter hverandre på den korteste stien G 70 K 20 L 57 ijkstra finner korteste vei en-til-alle, så resultatet er et tre. 0/4/09 0
31 ijkstras algoritme - korrekthet start (4) (8) 0/4/09 () Tankegangen her likner tankegangen i prims algoritme, men nå velges nye noder ut ifra avstand til startnoden, ikke bare avstand til en hvilken som helst del av treet. Hver gang vi velger en ny node u vet vi at avstanden til den er riktig Vi vet at avstanden til alle de andre nodene i S er riktig, og vi kan ikke finne en kortere vei til u via bare disse. Så en kortere vei til u må gå via noder i Q. MN: lle disse har avstand større enn eller lik avstanden til u, og vi antar at det ikke fins negative kanter, så da kan ikke en vei gjennom Q være kortere likevel :) Hvis det finnes negative kanter fungerer verken algoritmen eller beviset.
32 ijkstras algoritme alternativ tankegang, bruk av S C 4 0/4/09 2
33 ijkstras algoritme valg av prioritetskø INITILIZ-SINGL-SOURC(G, s) do u XTRCT-MIN(Q) 6 7 for each vertex v # dj[u] 8 do RLX(u, v, w) Konstruksjon av Q med V elementer () While-løkka kjøres V ganger tt uttak fra Q (5) or-løkka kjøres totalt ganger (7) I verste fall én oppdatering i Q for hver kant (8) 0/4/09
34 ijkstras algoritme valg av prioritetskø Vi skal gjøre følgende: : Konstuere prioritetskø 2: V antall extract-min fra køen : antall oppdateringer i køen (til lavere verdi) Sortert rray rray (Min-)Heap ibonacci Heap konstruer O(n log n) O(n) O(n) O(n) extract-min O() O(n) O(log n) O(log n) * decreasekey O(n) O() O(log n) O() * totalt V log V + V + * V V + V 2 + V + V log V + log V V + V log V + forenklet * V V 2 log V V log V + 0/4/09 4
35 ijkstras algoritme valg av prioritetskø Når vi sammenligner kjøretidene til dijkstras algoritme ved bruk av usortert array og min-heap V 2 log V ser vi at dersom nærmer seg V 2 vil det lønne seg å bruke usortert array. 0/4/09 5
Dijkstras algoritme Spørsmål
:: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-
DetaljerKORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf
Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...
DetaljerMinimum Spenntrær - Kruskal & Prim
Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet
DetaljerTeoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland
Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):
DetaljerGRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6
IN Algoritmer og datastrukturer GRAER Dagens plan: Kort repetisjon om grafer Korteste, en-til-alle, for: uektede grafer (repetisjon) ektede rettede grafer uten negatie kanter (Dijkstra, kapittel 9..) ektede
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.
DetaljerPrioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer
Binære heaper (Leftist) Prioritetskøer Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A, A*, D*, etc.), og i simulering. Prioritetskøer Prioritetskøer
DetaljerPrioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper
Prioritetskøer Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A,
DetaljerIN Algoritmer og datastrukturer
IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen
DetaljerGRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær
IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet
DetaljerKorteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen
Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative
DetaljerPG4200 Algoritmer og datastrukturer Forelesning 10
PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk
DetaljerØvingsforelesning Korteste vei: Alle til alle
Øvingsforelesning Korteste vei: Alle til alle TDT4120 Algoritmer og datastrukturer Ole Kristian Pedersen 02. november, 2018 IDI, NTNU Plan for dagen Løsninger teoriøving 10 Alle til alle med Dijkstra &
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk
DetaljerKorteste vei i en vektet graf uten negative kanter
Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter
DetaljerINF Algoritmer og datastrukturer
INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal
DetaljerGrafalgoritmer: Korteste vei
Grafalgoritmer: Korteste vei Korteste-vei problemer for vektede grafer * Single Source Shortest Path Problem Finn lengden av korteste vei fra én bestemt node til alle andre noder i grafen All-Pairs Shortest
DetaljerHeap* En heap er et komplett binært tre: En heap er også et monotont binært tre:
Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen
DetaljerHeap og prioritetskø. Marjory the Trash Heap fra Fraggle Rock
Heap og prioritetskø Marjory the Trash Heap fra Fraggle Rock Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle
DetaljerOppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april
DetaljerHeapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer
Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk
DetaljerMAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55
DetaljerKorteste vei problemet (seksjon 15.3)
Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
DetaljerINF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Definisjon av en graf (kapittel 9.1) Grafvarianter Intern representasjon av grafer (kapittel 9.1.1) Topologisk sortering (kapittel 9.2) Korteste vei, en-til-alle, for: uvektet graf
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
DetaljerHøgskoleni østfold EKSAMEN. 4 dobbeltsidige ark med notater Lars Magnusson
Høgskoleni østfold EKSAMEN Emnekode: ITF 20006 Emne: Algoritmer og Datastrukturer Dato: 22.05.2015 Eksamenstid: kl 09.00 til kl 13.00 Hjelpemidler: Faglærer: 4 dobbeltsidige ark med notater Lars Magnusson
DetaljerLøsningsforslag. Oppgave 1.1. Oppgave 1.2
Løsningsforslag Oppgave 1.1 7 4 10 2 5 9 12 1 3 6 8 11 14 13 Oppgave 1.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Oppgave 1.3 Rekursiv løsning: public Node settinn(person ny, Node rot) if (rot == null) return
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /
DetaljerGrunnleggende Grafteori
Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk
DetaljerVi skal se på grafalgoritmer for:
Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?
DetaljerDijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
DetaljerHva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
DetaljerForelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen
MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk
DetaljerGrunnleggende Grafalgoritmer
Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å
DetaljerVi skal se på grafalgoritmer for:
Grafalgoritmer Vi skal se på grafalgoritmer for: raversering: Nåbarhet: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte innes det en vei fra en node til en annen node?
DetaljerSøk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.
Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning
DetaljerForelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann
MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april
DetaljerIN Algoritmer og datastrukturer
IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity
DetaljerUretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar
Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.
DetaljerMAT1030 Forelesning 25
MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier
DetaljerINF1020 Algoritmer og datastrukturer. Dagens plan
Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser
DetaljerBinære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre
genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]
DetaljerEksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 0. desember, 08 Eksamenstid
DetaljerAvsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Detaljer... Dagens plan. Prioritetskø ADT
Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser
DetaljerEkstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.
Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene
DetaljerVektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave
MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning
DetaljerØvingsforelesning 4. Topologisk sortering, Strongly Connected Components og Minimale spenntrær. Magnus Botnan
Øvingsforelesning 4 Topologisk sortering, Strongly Connected Components og Minimale spenntrær Magnus Botnan botnan@stud.ntnu.no 09/10/09 1 I dag Topologisk Sortering Sterke Komponenter Minimale Spenntrær
DetaljerEksamen i tdt4120 Algoritmer og datastrukturer
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig
DetaljerBinær heap. En heap er et komplett binært tre:
Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig
DetaljerINF Algoritmer og datastrukturer
IN2220 - lgoritmer og datastrukturer HØSTN 2016 Institutt for informatikk, Universitetet i Oslo orelesning 7: rafer III Ingrid hieh Yu (Ifi, UiO) IN2220 05.10.2016 1 / 28 agens plan: evis for Prim ybde-først
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
DetaljerRepetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon
Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og
DetaljerForelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf
Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se
DetaljerTMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
DetaljerAnvendelser av grafer
Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart
DetaljerINF2220: Time 4 - Heap, Huffmann
INF0: Time 4 - Heap, Huffmann Mathias Lohne mathialo Heap (prioritetskø) En heap (også kalt prioritetskø) er en type binært tre med noen spesielle struktur- og ordningskrav. Vi har to typer heap: min-
DetaljerAlgdat - Øvingsforelesning. Maks flyt
Algdat - Øvingsforelesning Maks flyt Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2 Øving 7 4b) I hvilken rekkefølge velges noder
DetaljerIN Algoritmer og datastrukturer
IN2010 - Algoritmer og datastrukturer HØSTEN 2018 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 3: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2010 H2018, forelesning
DetaljerLøsningsforslag - Korteste vei
Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011
DetaljerAvsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
DetaljerFra A til B. Syvende forelesning
Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra
DetaljerOppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf
Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser
DetaljerINF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Minimale spenntrær Prim Kapittel 9.5.1 Kruskal Kapittel 9.5.2 Dybde-først søk Kapittel 9.6.1 Løkkeleting Dobbeltsammenhengende grafer Kapittel 9.6.2 Å finne ledd-noder articulation
DetaljerHøgskolen i Gjøvik. Avdeling for elektro- og allmennfag E K S A M E N. EKSAMENSDATO: 12. desember 1995 TID:
Høgskolen i Gjøvik vdeling for elektro- og allmennfag E K S M E N FGNVN: FGNUMMER: lgoritmiske metoder LO 64 EKSMENSDTO:. desember 995 TID: 09.00-4.00 FGLÆRER: Frode Haug KLSSE: / E NTLL SIDER UTLEVERT:
DetaljerStudentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005
Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel
DetaljerLøsningsforslag for utvalgte oppgaver fra kapittel 9
Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49
DetaljerALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
DetaljerEt eksempel: Åtterspillet
Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 2220 Algoritmer og datastrukturer Eksamensdag: 8. desember 2016 Tid for eksamen: 09:00 13:00 (4 timer) Oppgavesettet er på:
DetaljerKorteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei
Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste
DetaljerPQ: HEAP. Heap. Er disse heap er? Hvordan implementere heap:
PQ: HEAP Ingen sammenheng med memory heap Definisjon og data-invarianter for heap InsertKey og RemoveMin for heap Kompleksitet for operasjoner: O(log n) Prioritetskø impl vha Heap Heap En heap er et binært
DetaljerDijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.
Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi
DetaljerLineær sortering. Radix sort
Fra forrige gang 1 Lineær sortering Radix sort 2 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall
DetaljerLØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER
DetaljerForelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding
1 Grådighet 2 Forelesningsplan Grådighet Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding LF Øving 9 Teori Praksis 3 Forelesningsplan Grådighet Hva er
DetaljerEksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
DetaljerDatastrukturer for rask søking
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
DetaljerInnledning Grafer. Grafer / Nettverk. Hva er en graf? Hva er en graf? Eksempler på grafer? Hva er en graf? Elementære Graf-Algoritmer
rafer / ettverk nnledning rafer lementære raf-lgoritmer ernt ngvald Sunde 1 ernt ngvald Sunde 2 va er en graf? e fleste applikasjoner involverer vanligvis ikke bare et sett elemeter, men også et sett med
DetaljerNotater til INF2220 Eksamen
Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær
DetaljerSIF8010 ALGORITMER OG DATASTRUKTURER
SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting
DetaljerAvanserte flytalgoritmer
Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53
DetaljerDefinisjon: Et sortert tre
Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og
DetaljerOppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori
Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og
DetaljerFørst litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda
Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no
DetaljerSøkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk
DetaljerGrafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200
DetaljerLøsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:
DetaljerAlgdat Eksamensforelesning. Nils Barlaug
Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum
Detaljer