INF1020 Algoritmer og datastrukturer GRAFER

Størrelse: px
Begynne med side:

Download "INF1020 Algoritmer og datastrukturer GRAFER"

Transkript

1 GRAFER Dagens plan: Definisjon av en graf (kapittel 9.1) Grafvarianter Intern representasjon av grafer (kapittel 9.1.1) Topologisk sortering (kapittel 9.2) Korteste vei, en-til-alle, for: uvektet graf (kapittel 9.3.1) vektet rettet graf uten negative kanter (kapittel 9.3.2) vektet rettet graf med negative kanter (kapittel 9.3.3) Ark 1 av 30 Forelesning

2 Det første grafteoretiske problem: Broene i Königsberg Er det mulig å ta en spasertur som krysser hver av broene nøyaktig en gang? Dette problemet ble løst av Euler allerede i 1736! Forelesning Ark 2 av 30

3 Eksempler på grafproblemer Labyrint Rundreise Trær A 4 15 B C D E F G H I Forelesning Ark 3 av 30

4 Hva er en graf? En graf G =(V,E)består av en mengde noder, V,og en mengde kanter, E V og E er henholdsvis antall noder og antall kanter i grafen Hver kant er et par av noder, dvs. (u, v) slik at u, v V En kant (u, v) modellerer at u er relatert til v Dersom nodeparet i kanten (u, v) er ordnet (dvs. at rekkefølgen har betydning), sier vi at grafen er rettet, i motsatt fall er den urettet Urettet graf Rettet graf Grafer er den mest fleksible datastrukturen vi kjenner ( alt kan modelleres ved hjelp av grafer) Forelesning Ark 4 av 30

5 Hvorfor grafer? De dukker opp i veldig mange problemer i hverdagslivet: Flyplassystemer Datanettverk Trafikkflyt Ruteplanlegging VLSI (chip design) og mange flere... Grafalgoritmer viser veldig godt hvor viktig valg av datastruktur er mhp. tidsforbruk Det finnes grunnleggende algoritmeteknikker som løser mange ikke-trivielle problemer raskt Kairo Oslo Tromsø London Stockholm Forelesning Ark 5 av 30

6 Definisjoner og grafvarianter Node y er nabo-node (eller etterfølger) til node x dersom (x, y) E y y z z x x og y er naboer, y og z er naboer, men x og z er ikke naboer z er nabo-node til y, men y er ikke nabo-node til z En graf er vektet dersom hver kant har en tredje komponent, kalt kostnad eller vekty 2 5 z x 9 En vektet, rettet graf En vei (eller sti) i en graf er en sekvens av noder v 1, v 2, v 3,...,v n slik at (v i, v i+1 ) Efor1 i n 1 Lengden til veien er lik antall kanter på veien, dvs. n 1 y z x <z, w, x> er en vei med lengde 2 w Forelesning Ark 6 av 30

7 Kostnaden til en vei er summene av vektene langs veien y 1 z x <z, w, x> er en vei med kost w En vei er enkel dersom alle nodene (untatt muligens første og siste) på veien er forskjellige Våre grafer har vanligvis ikke loops, (v, v), eller multikanter (to like kanter): loop multikant vanlig rettet graf En løkke (sykel) i en rettet graf er en vei med lengde 1 slik at v 1 = v n. Løkken er enkel dersom stien er enkel I en urettet graf må også alle kanter i løkken være forskjellige y z x <x, y, z, w, x> er en enkel løkke w Forelesning Ark 7 av 30

8 En rettet graf er asyklisk dersom den ikke har noen løkker En rettet, asyklisk graf blir ofte kalt en DAG (Directed, Acyclic Graf) En urettet graf er sammenhengende dersom det er en vei fra hver node til alle andre noder ikke sammen- hengende sammenhengende Forelesning Ark 8 av 30

9 En rettet graf er sterkt sammenhengende dersom det er en vei fra hver node til alle andre noder En rettet graf er svakt sammenhengende dersom den underliggende urettede grafen er sammenhengende sterkt sammenhengende svakt sammenhengende Graden til en node i en urettet graf er antall kanter mot noden Inngraden til en node i en rettet graf er antall kanter inn til noden Utgraden til en node i en rettet graf er antall kanter ut fra noden. v Grad(v)=3 v Inngrad(v)=1 Utgrad(v)=4 Forelesning Ark 9 av 30

10 Hvordan representere grafer? Nabo-matrise Bra hvis tett graf, dvs. E = θ( V 2 ) Tar O( V ) tid å finne alle naboer Forelesning Ark 10 av 30

11 Nabo-liste Bra hvis tynn graf Tar O(Utgrad(v)) tid å finne alle naboer til v De fleste grafer i det virkelige liv er tynne! Forelesning Ark 11 av 30

12 Objekter & array I Java kan grafer også representeres ved en kombinasjon av node-objekter og etterfølgerarrayer Arraylengden kan være en parameter til node-klassen: class Node { int antetterf; Node[ ] etterf; Float[ ] vekt; Node(int ant) { etterf = new Node[ant]; antetterf = ant; vekt = new Float[ant]; Må da vite antall etterfølgere når vi genererer noden Eventuelt kan vi estimere en øvre grense og la siste del av arrayen være tom Vi trenger da en variabel som sier hvor mange etterfølgere en node faktisk har Forelesning Ark 12 av 30

13 Topologisk sortering En topologisk sortering er en ordning (rekkefølge) av noder i en DAG slik at dersom det finnes en vei fra v i til v j, så kommer v j etter v i i ordningen Topologisk sortering er umulig hvis grafen har en løkke Vanligvis er det flere mulige løsninger Eksempel: forutsetter/bygger på graf MA100/ MA001 INF111 INF110 En liten del av Ifi s kursplan INF101 INF102 INF212 IN394 IN211 MA008 INF103 INF310 MA-IN 118 IN210 En topologisk sortering er en lovlig rekkefølge å ta alle kursene på Ifi i Forelesning Ark 13 av 30

14 Følgende enkle algoritme finner en topologisk sortering (dersom det er noen): 1. Finn en node med inngrad = 0 2. Skriv ut noden, og fjern noden og utkantene fra grafen (marker noden som ferdig og reduser inngraden til nabonodene) 3. Gå tilbake til punkt 1 Eksempel (figur 9.4): V 1 V 2 V 3 V 4 V 5 V 6 V 7 Forelesning Ark 14 av 30

15 MAW side 295, figur 9.5: void topsort() { Node v; for (int teller = 0; teller < ANTALL_NODER; teller++) { v = finnnynodemedinngradnull(); if (v == null) { error("løkke funnet!"); else{ < Skriv ut v som node teller > for < hver nabo w til v > { w.inngrad--; Denne algoritmen er O( V 2 ) siden finnnynodemedinngradnull ser gjennom hele node/inngrad-tabellen hver gang Dette er unødvendig mye, siden bare noen få av verdiene kommer ned til 0 hver gang Forelesning Ark 15 av 30

16 En forbedring er å holde alle noder med inngrad=0 i en boks. Boksen kan implementeres som en stakk eller en kø: 1. Plasser alle nodene med inngrad=0 i boksen. 2. Ta ut en node v fra boksen. 3. Skriv ut v. 4. (Fjern v fra grafen og) reduserer inngraden til alle etterfølgerne. 5. Dersom noen av etterfølgerne får inngrad=0, settes de inn i boksen. 6. Gå tilbake til punkt 2. Forelesning Ark 16 av 30

17 MAW side 297, figur 9.7: void topsort() { Kø k = new Kø(); Node v; for < hver node v > { if (v.inngrad == 0) { k.settinn(v); while (!k.isempty()) { v = k.taut(); < Skriv ut v > for < hver nabo w til v > { w.inngrad--; if (w.inngrad == 0) { k.settinn(w); Forutsatt at vi bruker nabolister, er denne algoritmen O( E + V ). Kø/stakk-operasjoner tar konstant tid, og hver kant og hver node blir bare behandlet én gang. Forelesning Ark 17 av 30

18 Korteste vei, en-til-alle x 2 y 9 Korteste vei fra z til x uten vekt er 1. Korteste vei fra z til x med vekt er 7 (via y). I KORTESTE VEI problemet (en-til-alle) har vi gitt en (vektet) graf G=(V,E) og en node s. Vi ønsker å finne den korteste veien (med vekter) fra s til alle andre noder i G. (Vi skal senere se på korteste vei alle-til-alle, slik som f.eks. i NAF s veibok) Negative vekter (kost) i løkker kan skape problemer: x -12 y 5 Hvor mye koster korteste vei fra x til z? Forelesning Ark 18 av z z

19 Korteste vei i en uvektet graf Korteste vei fra s til t i en uvektet graf er lik veien som bruker færrest antall kanter (tilsvarer at alle kanter har vekt=1) V 1 V 2 V 3 V 4 V 5 V 6 V 7 Forelesning Ark 19 av 30

20 Følgende bredde-først algoritme løser problemet: 1. Marker at lengden fra s til s er lik Se etter noder som er på avstand 1 fra s ved å finne etterfølgere til s, og som ikke har fått markert noen distanse. Marker disse. 3. Se etter noder som er på avstand 2 fra s ved å finne etterfølgerne til nodene som er på distanse 1, og som ikke har fått markert noen distanse. Marker disse. 4. Se etter noder som er på avstand 3 fra s ved å finne etterfølgerne til nodene som er på distanse 2, og som ikke har fått markert noen distanse. Marker disse. 5. Forsett inntil alle noder er markert, eller vi har kommet til distanse lik V 1. Forelesning Ark 20 av 30

21 Vi kan finne den korteste veien ved å sette bakoverpekere til den noden som «oppdaget» oss. MAW side302, figur 9.16 void uvektet(node s) { s.avstand = 0; for (dist = 0; dist < ANTALL_NODER; dist++) { for < hver node v > { if (!v.kjent && v.avstand = dist) { v.kjent = true; for < hver nabo w til v > { if (w.avstand = UENDELIG) { w.avstand=dist+1; w.vei = v; Tidsforbruk: O( V 2 ). Forelesning Ark 21 av 30

22 Spar tid ved å plassere etterfølgerne til noden vi behandler i en kø Ta alltid ut første node i køen og behandle denne Det gjør at alle noder i avstand 1 blir behandlet før alle i avstand 2, som igjen blir behandlet før alle i avstand 3... Denne strategien ligner på bredde-først traversering av trær (først rotnoden, så alle noder på nivå 1, så alle noder på nivå 2, osv.) Tidsforbruket blir O( E + V ) fordi køoperasjoner tar konstant tid og hver kant og hver node bare blir behandlet én gang En implementasjon av algoritmen i Java følger på neste lysark Forelesning Ark 22 av 30

23 Bredde-først algoritme: MAW side 303, figur 9.18: void uvektet(node s) { Kø k = new Kø; Node v; k.settinn(s); s.avstand = 0; while (!k.isempty()) { v = k.taut(); v.kjent = true; // Egentlig ikke nødvendig! for < hver nabo w til v > { if (w.avstand = UENDELIG) { w.avstand = v.avstand + 1; w.vei = v; k.settinn(w); Forelesning Ark 23 av 30

24 V 1 V 2 V 3 V 4 V 5 V 6 V 7 v kjent avstand vei Forelesning Ark 24 av 30

25 Korteste vei i en vektet graf uten negative kanter Graf uten vekter: Velger først alle nodene med avstand 1 fra startnoden, så alle med avstand 2 osv Mer generelt: Velger hele tiden en ukjent node blant dem med minst avstand fra startnoden Den samme hovedidéen kan brukes hvis vi har en graf med vekter Akkurat som for uvektede grafer, ser vi bare etter potensielle forbedringer for naboer som enda ikke er valgt (kjent) Vi får da en algoritme kjent som Dijkstras algoritme Forelesning Ark 25 av 30

26 Dijkstras algoritme 1. Sett avstanden fra startnoden s til seg selv lik 0 2. Velg ukjent node v med minst avstand, og marker v som «kjent» 3. For hver ukjent nabonode w til v: Dersom avstanden vi får ved å følge veien gjennom v, er kortere enn den gamle avstanden til s reduserer avstanden til s for w sett bakoverpekeren i w til v 4. Så lenge det finnes ukjente noder, gå til punkt 2 Forelesning Ark 26 av 30

27 Eksempel 4 2 V1 V V V V 5 V 6 1 V 7 Initielt: v kjent avstand vei v kjent avstand vei v 1 F 0 0 v 1 v 2 F 8 0 v 2 v 3 F 8 0 v 3 v 4 F 8 0 v 4 v 5 v 6 F F v 5 v 6 v 7 F 8 0 v 7 Forelesning Ark 27 av 30

28 Hvorfor virker algoritmen? Algoritmen har følgende invariant: Ingen ukjente noder har mindre avstand enn noen kjente nodene Det medfører at alle kjente noder har riktig korteste vei satt (avstanden er faktisk den korteste avstanden) Vi plukker ut en ukjent node v med minst avstand (d v ), markerer den som kjent og påstår at avstanden til v er riktig Denne påstanden holder fordi d v er den korteste veien som finnes ved å bruke bare kjente noder de kjente nodene har riktig korteste vei satt en vei til v som er kortere enn d v, må nødvendigvis forlate mengden av kjente noder et sted, men d v er allerede den korteste veien fra kjente noder til v Dette argumentet holder fordi vi ikke har negative kanter Forelesning Ark 28 av 30

29 Tidsforbruk INF1020 Algoritmer og datastrukturer Hvis vi leter sekvensielt etter den ukjente noden med minst avstand tar dette O( V ) tid, noe som gjøres V ganger, så total tid for å finne minste avstand blir O( V 2 ) I tillegg oppdateres avstandene, maksimalt en oppdatering per kant, dvs. til sammen O( E ) Total tid: O( E + V 2 )=O( V 2 ) Raskere implementasjon (for tynne grafer): Bruker en prioritetskø til å ta vare på ukjente noder med avstand mindre enn Vi må ta hensyn til at prioriteten til en ukjent node forandres hvis vi finner en kortere vei til noden DeleteMin og DecreaseKey tar O(log V ) tid Totalt tidsforbruk blir O( V log V + E log V ) =O( E log V ) Forelesning Ark 29 av 30

30 Hva med negative kanter? Dersom den vektede grafen har negative kanter, fungerer ikke Dijkstras algoritme (se oppgave 9.7a) En mulig løsning: Nodene er ikke lenger «kjente» eller «ukjente» Vi har i stedet en kø som inneholder noder som har fått forbedret avstandsverdien sin Løkken i algoritmen gjør følgende: Ta ut en node v fra køen For hver etterfølger w, sjekk om vi får en forbedring Oppdater i så fall avstanden, og plasser w ikøen (hvis den ikke er der allerede) Tidsforbruket blir O( E V ) som er mye verre enn Dijkstras algoritme Algoritmen fungerer ikke hvis det er negative løkker Forelesning Ark 30 av 30

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 6 1 / 31 Dagens plan:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Grafer vi har sett allerede. Det første grafteoretiske problem: Broene i Königsberg

Dagens plan: INF Algoritmer og datastrukturer. Grafer vi har sett allerede. Det første grafteoretiske problem: Broene i Königsberg Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Definisjon av en graf Grafvarianter Intern representasjon

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53

Detaljer

Det første grafteoretiske problem: Broene i Königsberg

Det første grafteoretiske problem: Broene i Königsberg Dagens plan: INF0 - Algoritmer og datastrukturer HØSTEN 007 Institutt for informatikk, Universitetet i Oslo INF0, forelesning 6: Grafer Denisjon av en graf (kap. 9.1) Grafvarianter Intern representasjon

Detaljer

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Grunnleggende Grafteori

Grunnleggende Grafteori Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk

Detaljer

INF1020 Algoritmer og datastrukturer GRAFER

INF1020 Algoritmer og datastrukturer GRAFER GRAFER Dagens plan: Minimale spenntrær Prim Kapittel 9.5.1 Kruskal Kapittel 9.5.2 Dybde-først søk Kapittel 9.6.1 Løkkeleting Dobbeltsammenhengende grafer Kapittel 9.6.2 Å finne ledd-noder articulation

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Rettede, ikke-sykliske grafer (DAG)

Rettede, ikke-sykliske grafer (DAG) Rettede, ikke-sykliske grafer (DAG) Dersom vi vet at grafen ikke inneholder løkker, kan vi lage en forbedret versjon av Dijkstras algoritme ved å forandre metoden for å velge neste kjente node. Den nye

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

Vi skal se på grafalgoritmer for:

Vi skal se på grafalgoritmer for: Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 2008 Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Definisjon av binær relasjon Definisjon av ekvivalens

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø [email protected]

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø [email protected] Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,

Detaljer

Grunnleggende Grafalgoritmer

Grunnleggende Grafalgoritmer Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens

Detaljer

Løsnings forslag i java In115, Våren 1999

Løsnings forslag i java In115, Våren 1999 Løsnings forslag i java In115, Våren 1999 Oppgave 1a Input sekvensen er: 9, 3, 1, 3, 4, 5, 1, 6, 4, 1, 2 Etter sortering av det første, midterste og siste elementet, har vi følgende: 2, 3, 1, 3, 4, 1,

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag 1 Algoritmer og datastrukturer Løsningsforslag Eksamen 29. november 2011 Oppgave 1A Verdien til variabelen m blir lik posisjonen til den «minste»verdien i tabellen, dvs. bokstaven A, og det blir 6. Oppgave

Detaljer

Løsnings forslag i java In115, Våren 1996

Løsnings forslag i java In115, Våren 1996 Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

INF1020 Algoritmer og datastrukturer GRAFER

INF1020 Algoritmer og datastrukturer GRAFER GRAFER Dagens plan: Avsluttende om grådige algoritmer Huffman-koding (Kapittel 10.1.2) Dynamisk programmering Floyds algoritme for korteste vei alle-til-alle (Kapittel 10.3.4) Ark 1 av 16 Forelesning 22.11.2004

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding Grafer Dagens plan INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Avsluttende om grådige algoritmer (kap. 10.1.2) Dynamisk programmering Floyds algoritme

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Brukes for datasett med ikke-lineære og ikkehierarkiske forbindelser mellom dataobjektene Forbindelsene i en graf er ofte usystematiske Typisk anvendelser er modellering av

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

Oppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf:

Oppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf: INF100 Algoritmer og datastrukturer INF100 Algoritmer og datastrukturer Oppgave 1 LØSNINGSFORSLAG Betrakt følgende vektede, urettede graf: V 1 V Eksamen i INF100 1. desember 004 V V 4 V 4 V V Ragnar Normann

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

INF1020 Algoritmer og datastrukturer. Dagens plan

INF1020 Algoritmer og datastrukturer. Dagens plan Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser

Detaljer

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde ([email protected])

Detaljer

Løsningsforslag. Oppgave 1.1. Oppgave 1.2

Løsningsforslag. Oppgave 1.1. Oppgave 1.2 Løsningsforslag Oppgave 1.1 7 4 10 2 5 9 12 1 3 6 8 11 14 13 Oppgave 1.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Oppgave 1.3 Rekursiv løsning: public Node settinn(person ny, Node rot) if (rot == null) return

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity

Detaljer

Algoritmer og datastrukturer Kapittel 11 Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 Delkapittel 11.2 Delkapittel 11.2 Korteste vei i en graf Side 1 av 17 Algoritmer og datastrukturer Kapittel 11 Delkapittel 11.2 11.2 Vektede grafer 11.2.1 Datastruktur for vektede grafer En graf representeres normalt ved

Detaljer

Ny/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

Obligatorisk oppgave 2 - inf

Obligatorisk oppgave 2 - inf Obligatorisk oppgave 2 - inf2220 2007 Frist: fredag 9. november Det er mulig å jobbe sammen to og to på denne oppgaven, helst bør dere da ha samme gruppelærer. Vi anbefaler dere å løse oppgaven selvstendig.

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak

INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak LISTER Vanligste datastruktur Mange implementasjonsmåter (objektkjeder, array...) Operasjoner på listen definerer forskjellige typer lister (LIFO, FIFO,...) På norsk bruker vi vanligvis ordet «liste» for

Detaljer

Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1

Øvingsforelesning 7. Dijkstras algoritme. Foiler: Fredrik Ludvigsen Foreleser: Jon Marius Venstad 10/4/09 1 Øvingsforelesning 7 ijkstras algoritme oiler: redrik Ludvigsen oreleser: Jon Marius Venstad 0/4/09 Korteste sti - hvorfor? ksempel på bruk GPS-systemer ilde-krymping (som vist forrige mandag) Routing-protokoller

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 13. august 2012 Eksamenstid 0900 1300 Sensurdato 3. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN2010 - Algoritmer og datastrukturer HØSTEN 2018 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 3: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2010 H2018, forelesning

Detaljer

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013 Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du

Detaljer

LO118D Forelesning 9 (DM)

LO118D Forelesning 9 (DM) LO118D Forelesning 9 (DM) Grafteori 26.09.2007 1 Introduksjon 2 Veier og sykler 3 Hamiltonsykler og omreisende handelsmenn Graf, urettet Definisjon En graf (eller urettet graf) G består av en mengde V

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

... Dagens plan. Prioritetskø ADT

... Dagens plan. Prioritetskø ADT Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser

Detaljer

INF2220: Time 4 - Heap, Huffmann

INF2220: Time 4 - Heap, Huffmann INF0: Time 4 - Heap, Huffmann Mathias Lohne mathialo Heap (prioritetskø) En heap (også kalt prioritetskø) er en type binært tre med noen spesielle struktur- og ordningskrav. Vi har to typer heap: min-

Detaljer