Anvendelser av grafer
|
|
|
- Petra Jacobsen
- 9 år siden
- Visninger:
Transkript
1 Grafer
2 Anvendelser av grafer Brukes for datasett med ikke-lineære og ikkehierarkiske forbindelser mellom dataobjektene Forbindelsene i en graf er ofte usystematiske Typisk anvendelser er modellering av nettverk: Veisystemer/rutekart Prosesser Sosiale forhold Organisasjonsmodeller Internett / LAN
3 Flyruter
4 Veikart med avstandsangivelse
5 Molekylmodell
6 Nettverk for signalbehandling
7 Venner på Facebook
8 Grafer: Definisjon En graf G består av en mengde V med noder (vertices) sammen med en mengde E med kanter (edges), G = (V, E) En kant er et par (v, w) av noder, som angir at det er en forbindelse mellom nodene Hvis det er en kant mellom nodene v og w, dvs. at (v, w) E, sier vi at de to nodene er naboer i grafen G
9 Rettede og urettede grafer En graf er rettet hvis kantene er ordnede par: Kantene er énveis En kant (v, w) angir at det er en forbindelse fra v til w, men ikke fra w til v Grafen er urettet hvis kantene ikke er ordnet: Kantene er toveis En kant (v, w) angir at det er en forbindelse både fra v til w og fra w til v
10 Urettede grafer En vei i grafen er en sekvens av noder der hver node er nabo til neste node i sekvensen En cykel er en vei med minst 3 noder, der siste node på veien er nabo med første En urettet graf er sammenhengende hvis det finnes en vei fra enhver node i grafen til enhver annen node, ellers er den usammenhengende En urettet graf kalles for et tre hvis den er sammenhengende og uten cykler
11 Sammenhengende, urettet graf Noder: 0, 1, 2, 3, 4, 5, 6 Kanter: (0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (4, 6), (5, 6) Vei: 0, 1, 2, 4, 6, 5 Cykel: 1, 3, 2
12 Usammenhengende, urettet graf
13 Tre Grafen er sammenhengende og uten cykler: Et tre
14 Rettede grafer Kantene i grafen har en retning: Må ha to kanter for å ha forbindelse begge veier mellom to noder Veiene i grafen blir rettede (har en retning) En rettet graf er sterkt sammenhengende hvis det finnes en rettet vei fra enhver node til enhver annen node i grafen En rettet graf er svakt sammenhengende hvis det finnes en vei fra enhver node til enhver annen node i den tilsvarende urettede grafen
15 Svakt sammenhengende rettet graf
16 Sterkt sammenhengede rettet graf
17 Vektede grafer Hver kant har en lengde (eller kostnad) En kant består av tre deler: To noder En verdi som angir kantlengden En vektet graf kan være enten rettet eller urettet Veiene i grafen har en vektet veilengde*: Summen av lengdene av alle kantene langs veien *: Uvektet veilengde er antall kanter langs veien
18 Urettet vektet graf
19 Rettet vektet graf
20 Antall kanter i en graf med n noder Kan anta at det aldri er mer enn én kant fra en node til enhver annen node i grafen Maksimalt antall kanter er da n2 Grafer og nettverk er oftest tynt befolket, dvs, at antall kanter er mye mindre enn n 2, vanligvis O(n) Sparse graph: Antall kanter er O(n) Dense graph: Antall kanter er O(n2 ) Viktig at implementasjon av grafer og grafalgoritmer er effektive når grafen er sparse
21 3-D dense graph
22 Datastruktur for grafer Trenger å lagre: Dataene i hver node Hvilke noder som er naboer i grafen (kantene) Evt. lengde/kostnad for hver kant for vektet graf Rettede og urettede grafer lagres på samme måte: En urettet kant (v, w) lagres som de to rettede kantene (v, w) og (w, v) To standard måter å lagre grafen på: Nabomatrise Nabolister
23 Nabomatriser * Nummererer de n nodene i en graf, fra 0 til n 1 Hele grafen kan representeres med en todimensjonal boolsk n x n tabell/matrise G der: G[i][j] er true hvis og bare hvis det går en kant fra node i til node j, og false ellers For vektede grafer kan det brukes en matrise med kantlengder (heltall eller reelle tall), der: G[i][j] er lik kantlengden hvis det går en kant fra node i til node j, ellers lik uendelig (ingen kant) *: Engelsk: adjacency matrices
24 Nabomatrise for urettet graf For urettede grafer blir nabomatrisen symmetrisk om hoveddiagonalen, G[i][j] = G[j][i] (redundans) T T F F F F F 1 T T T T F F F 2 F T T T T F F 3 F T T T F F F 4 F F T F T F T 5 F F F F F T T 6 F F F F T T T
25 Nabomatrise for rettet graf Rettede grafer har usymmetrisk nabomatrise T F F F F T 2 F T T F F T 3 F T T T F T 4 T F F T T F 5 F F F T T T 6 T F F T F T (nodene nummereres med start i 1 i figuren ovenfor)
26 Nabo- / kantmatrise for vektet graf
27 Nabolister * Nabomatriser bruker O(n2 ) hukommelse, sløsing med plass siden de fleste grafer er sparse Nabolister: Grafen representeres som en array med lister, én liste for hver node i grafen Listen for en node inneholder nodens direkte naboer i grafen Rettede og urettede grafer kan behandles likt, urettede kanter lagres to ganger Nabolisten for en sparse graf med med n noder krever O(n) hukommelse Engelsk: adjacency lists / edge lists
28 Nabolister for en rettet, vektet graf
29 Lagring av grafdata på filer Naboliste-formatet er velegnet til lagre en graf som en tekstfil Nodene nummereres fra 0 til n 1 Legger antall noder i grafen, n, først på filen Deretter én linje for hver node, med: Nodenummer Dataene som er lagret i noden Antall naboer En liste med nodenummere for alle naboene I tillegg kantlengder for vektede grafer
30 Eksempel, lagring av rettet graf 5 0 a b c d e 1 0 Fil: graf_5.txt
31 Eksempel, lagring av urettet graf Fil: graf_7.txt
32 Eksempel, lagring av urettet graf 17 0 A B C D E F G H I J K L M N O P Q Fil: graf_17.txt
33 Uvektet graf: Enkel implementasjon Noder med data som bare er enkel tekst-streng Representerer grafen som en Java-klasse med: En array med dataene i hver node En nabomatrise, der rettede og urettede grafer lagres på samme måte Leser inn hele grafen fra fil ved opprettelse av et nytt graf-objekt ingen metoder for innsetting eller fjerning av data i grafen Java-kode: enkelgraf.java
34 Eksempel, lagring av urettet, vektet graf Fil: vgraf_5.txt
35 Eksempel, lagring av rettet, vektet graf 7 0 V V V V V V5 0 6 V Fil: vgraf_7.txt
36 Vektet graf: Enkel implementasjon Noder med data som bare er enkel tekst-streng Representerer grafen som en Java-klasse med: En array med dataene i hver node En vekt-/kantlengde-matrise, der rettede og urettede kanter lagres på samme måte Ingen kant representeres med verdien uendelig Leser inn hele grafen fra fil ved opprettelse av et nytt graf-objekt ingen metoder for innsetting eller fjerning av data i grafen Java-kode: enkelvektetgraf.java
Anvendelser av grafer
Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart
Vi skal se på grafalgoritmer for:
Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?
Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar
Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.
Grunnleggende Grafteori
Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk
Grunnleggende Grafalgoritmer
Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 6 1 / 31 Dagens plan:
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55
Dagens plan: INF Algoritmer og datastrukturer. Grafer vi har sett allerede. Det første grafteoretiske problem: Broene i Königsberg
Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Definisjon av en graf Grafvarianter Intern representasjon
Det første grafteoretiske problem: Broene i Königsberg
Dagens plan: INF0 - Algoritmer og datastrukturer HØSTEN 007 Institutt for informatikk, Universitetet i Oslo INF0, forelesning 6: Grafer Denisjon av en graf (kap. 9.1) Grafvarianter Intern representasjon
Definisjon: Et sortert tre
Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
Datastrukturer for rask søking
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
INF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Definisjon av en graf (kapittel 9.1) Grafvarianter Intern representasjon av grafer (kapittel 9.1.1) Topologisk sortering (kapittel 9.2) Korteste vei, en-til-alle, for: uvektet graf
Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
Eksamen iin115, 14. mai 1998 Side 2 Oppgave 1 15 % Du skal skrive en prosedyre lagalle som i en global character array S(1:n) genererer alle sekvenser
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 14. mai 1998 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider. Vedlegg:
PG4200 Algoritmer og datastrukturer Forelesning 10
PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk
Et eksempel: Åtterspillet
Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende
Innledning. IN2010/INF Algoritmer og datastrukturer. Tirsdag 27. november 2018 Kl (4 timer)
Innledning IN2010/INF2220 - Algoritmer og datastrukturer Tirsdag 27. november 2018 Kl. 14.30-18.30 (4 timer) Oppgavesettet består av totalt 15 oppgaver. Poengsum er angitt for hver oppgave. Maksimum poengsum
Lenkelister, iteratorer, indre klasser. Repetisjonskurs våren 2018 kristijb
Lenkelister, iteratorer, indre klasser Repetisjonskurs våren 2018 kristijb Lenket liste av objekter Vi lager en lenke ved at objekter refererer til hverandre. Vanlige er ofte å ha Node-objekter som har
Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
Oppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
Definisjon. I et binært tre har hver node enten 0, 1 eller 2 barn
Binære trær Definisjon I et binært tre har hver node enten 0, 1 eller 2 barn Rekursiv definisjon: Et binært tre er enten tomt, eller: Består av en rotnode og to binære trær som kalles venstre subtre og
Løsnings forslag i java In115, Våren 1996
Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra
Ny/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø [email protected]
Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø [email protected] Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,
IN Algoritmer og datastrukturer
IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity
MAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!
Heap og prioritetskø. Marjory the Trash Heap fra Fraggle Rock
Heap og prioritetskø Marjory the Trash Heap fra Fraggle Rock Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle
Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf
Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 2008 Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt
Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver - LF. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python.
Algoritmer og datastrukturer Kondisjonstest Python-oppgaver - LF Onsdag 6. oktober 2004 Her er noen repetisjonsoppgaver i Python. Som alltid er den beste måten å lære å programmere på å sette seg ned og
Algoritmer og datastrukturer Kapittel 11 Delkapittel 11.2
Delkapittel 11.2 Korteste vei i en graf Side 1 av 17 Algoritmer og datastrukturer Kapittel 11 Delkapittel 11.2 11.2 Vektede grafer 11.2.1 Datastruktur for vektede grafer En graf representeres normalt ved
Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing
Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering
LO118D Forelesning 9 (DM)
LO118D Forelesning 9 (DM) Grafteori 26.09.2007 1 Introduksjon 2 Veier og sykler 3 Hamiltonsykler og omreisende handelsmenn Graf, urettet Definisjon En graf (eller urettet graf) G består av en mengde V
INF1020 Algoritmer og datastrukturer GRAFER
GRAFER Dagens plan: Avsluttende om grådige algoritmer Huffman-koding (Kapittel 10.1.2) Dynamisk programmering Floyds algoritme for korteste vei alle-til-alle (Kapittel 10.3.4) Ark 1 av 16 Forelesning 22.11.2004
MAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:
Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.
Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen
Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til
Eksamen iin115 og IN110, 15. mai 1997 Side 2 Oppgave 1 Trær 55 % Vi skal i denne oppgaven se på en form for søkestrukturer som er spesielt godt egnet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN110 Algoritmer og datastrukturer Eksamensdag: 15. mai 1997 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
PG4200 Algoritmer og datastrukturer Forelesning 7
PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse
Backtracking som løsningsmetode
Backtracking Backtracking som løsningsmetode Backtracking brukes til å løse problemer der løsningene kan beskrives som en sekvens med steg eller valg Kan enten finne én løsning eller alle løsninger Bygger
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Obligatorisk oppgave 1 i INF 4130, høsten 2009
Obligatorisk oppgave 1 i INF 4130, høsten 2009 Leveringsfrist fredag 2. oktober Institutt for informatikk Krav til innleverte oppgaver ved Institutt for informatikk (Ifi) Ved alle pålagte innleveringer
Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:
Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel
Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf
Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...
INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak
LISTER Vanligste datastruktur Mange implementasjonsmåter (objektkjeder, array...) Operasjoner på listen definerer forskjellige typer lister (LIFO, FIFO,...) På norsk bruker vi vanligvis ordet «liste» for
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.
Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen
Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til
Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl
TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl
Student nr.: Side 1 av 5 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
Definisjon av binært søketre
Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
Notater til INF2220 Eksamen
Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær
EKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
Liste som abstrakt konsept/datatype
Lister Liste som abstrakt konsept/datatype Listen er en lineær struktur (men kan allikevel implementeres ikke-lineært bak kulissene ) Hvert element har en forgjenger, unntatt første element i listen Hvert
Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
IN2010: Forelesning 11. Kombinatorisk søking Beregnbarhet og kompleksitet
IN2010: Forelesning 11 Kombinatorisk søking Beregnbarhet og kompleksitet KOMBINATORISK SØKING Oversikt Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige
INF2220: Forelesning 3. Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5)
INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) Map og hashing Ett minutt for deg selv: Hva vet du om maps/dictionarys og hashing fra tidligere?
INF2220: Forelesning 3
INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) ABSTRAKTE DATATYPER 2 Abstrakte datatyper En ADT består av: Et sett med objekter. Spesifikasjon
Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
Obligatorisk oppgave 1 INF1020 h2005
Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte
Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array
Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type (kapittel.) Hash-funksjoner (kapittel..)
Algoritmeanalyse. (og litt om datastrukturer)
Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller
Binær heap. En heap er et komplett binært tre:
Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: 11. juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 8
Korteste vei problemet (seksjon 15.3)
Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k
EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer
EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,
EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består
Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array
Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type Hash-funksjoner hashcode Kollisjonshåndtering
UNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 3: Maps og Hashing Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 3 1 / 25 Maps
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens
Løsnings forslag i java In115, Våren 1998
Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker
PG 4200 Algoritmer og datastrukturer Innlevering 2
PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:
Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding
Grafer Dagens plan INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Avsluttende om grådige algoritmer (kap. 10.1.2) Dynamisk programmering Floyds algoritme
TMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
INF1000 (Uke 15) Eksamen V 04
INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a
INF1000 (Uke 15) Eksamen V 04
INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a
Et eksempel: Åtterspillet
Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 13. august 2012 Eksamenstid 0900 1300 Sensurdato 3. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
Informasjon Prøveeksamen i IN1000 høsten 2018
Prøveeksamen IN1000-INF1001-H18 Informasjon Prøveeksamen i IN1000 høsten 2018 Tid Fra tirsdag 6.11 kl. 14:15 til tirsdag 13.11 kl. 12:00 (Normal eksamenstid er 4 timer) Oppgavene Oppgave 2b og 2c er flervalgsoppgaver.
Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer
