INF1400. Kombinatorisk Logikk
|
|
|
- Marit Torgersen
- 6 år siden
- Visninger:
Transkript
1 INF1400 Kombinatorisk Logikk
2 Hva lærte vi forrige uke? Student login Omid Mirmotahari 1
3 Læringsutbytte Kunnskapsmål: Kunnskap om hvordan addisjon og subtraksjon for binære tall gjøres Kunnskap om fulladder og halvadder design Kunnskap om å kunne diskutere fordeler og ulemper ved ulike adderdesign/løsning Ferdighetsmål: Kunne implementere adder på portnivå Kunne analysere kretsdesign Generelle kompetansemål: Kunne forklare viktigheten av mentepropagering Kunne forklare og bruke negative binære tall Omid Mirmotahari 2
4 Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre Omid Mirmotahari 3
5 Binær addisjon Prosedyren for binær addisjon er identisk med prosedyren for desimal addisjon Eksempel Adder 5 og 13: Omid Mirmotahari 4
6 Negative binære tall Mest vanlig representasjon: 2 er komplement Lar mest signifikante bit være 1 for negative tall Dette må være avtalt på forhånd Eksempel: 4 bit kan representere tallene 8 til Omid Mirmotahari 5
7 2 er komplement Setter minus foran et binært tall ved å invertere alle bittene og plusse på 1 Eksempel: Finner -5: Omid Mirmotahari 6
8 Binær subtraksjon Fremgangsmåte for tall representert ved 2 er komplement: Omid Mirmotahari 7
9 Binær subtraksjon Eksempel: Omid Mirmotahari 8
10 Binær adder En av de mest brukte digitale kretser Vanlige anvendelser: Mikroprosessor ALU / Xbox / mikserbord / digitalt kommunikasjonsutstyr / AD-DA omformere osv... Basis for addisjon / subtraksjon / multiplikasjon / divisjon og mange andre matematiske operasjoner All form for filtrering / signalbehandling Omid Mirmotahari 9
11 Binær adder Ønsker å designe en generell binær adder Funksjonelt eksempel Adder to tall A=5 og B=13: Omid Mirmotahari 10
12 Halvadder (ingen mente inn) Adderer sammen de to minst signifikante bittene A 0 og B 0. Elementet har 2 innganger og 2 utganger Omid Mirmotahari 11
13 Halvadder implementasjon Omid Mirmotahari 12
14 Fulladder (mente inn) Adderer sammen bit A n, B n med evt. mente inn Elementet har 3 innganger og 2 utganger Omid Mirmotahari 13
15 Forenkling Forenkler C n+1 ved Karnaughdiagram Omid Mirmotahari 14
16 Implementasjon I Rett fram implementasjon S n = A n B n C n C n+1 = A n B n + A n C n + B n C n Omid Mirmotahari 15
17 Implementasjon II Forenklet implementasjon av C n+1 basert på gjenbruk av porter fra S n Omid Mirmotahari 16
18 Implementasjon II Vanlig implementasjon av en-bits fulladder S n = (A n B n ) C n C n+1 = A n B n + (A n B n ) C n Omid Mirmotahari 17
19 Binær adder Halvadder (ikke mente inn) A 0 B 0 S 0 C n+1 C n C 1 C 1 A n A n B n Fulladder (evt. mente inn) S n A B S = A 0 B 0 C n+1 B n S n S C n
20 Et adder system Systemelementer: Halvadder: Tar ikke mente inn Fulladder: Tar mente inn A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0 C 4 Full adder C 3 Full adder C 2 Full adder C 1 Halv C 0 = 0 adder S 3 S 2 S 1 S 0 Omid Mirmotahari 1 9
21 Menteforplantning 4-bits binær adder Full adder C 3 Full adder C 2 Full adder C 1 Halv adder C 4 Omid Mirmotahari 20
22 Menteforplantning Portforsinkelse gir menteforplantning (rippeladder) Eksempel Adderer 0101 og 1011 Full adder Full adder Full adder Halv adder Omid Mirmotahari 21
23 Subtraksjon? Omid Mirmotahari 22
24 Carry Lookahead Ønsker å unngå menteforplantning gir økt hastighet G i generate: brukes i menteforplantningen P i propagate: påvirker menteforplantningen Omid Mirmotahari 23
25 Carry Lookahead S i = P i C i C i+1 = G i + P i C i Omid Mirmotahari 24
26 Carry Lookahead For en 4-bits adder bestående av 4 fulladdertrinn har vi: S i = P i C i C i+1 = G i + P i C i Uttrykker C 1, C 2 og C 3 rekursivt C 1 = G 0 + P 0 C 0 C 2 = G 1 + P 1 C 1 = G 1 +P 1 (G 0 + P 0 C 0 ) = G 1 + P 1 G 0 + P 1 P 0 C 0 C 3 = G 2 + P 2 C 2 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 C 0 Omid Mirmotahari 25
27 Carry Lookahead generator Rett fram implementasjon av C 1, C 2, C 3 Omid Mirmotahari 26
28 Carry Lookahead adder 4-bits Carry Lookahead adder med input carry C 0 2 7
29 Generell analyseprosedyre for digitale kretser 1) Sett funksjonsnavn på ledningene 2) Finn funksjonene 3) Kombiner funksjonsuttrykkene Omid Mirmotahari 28
30 Eksempel T 2 F 1 F 1 T 1 T 3 F 2 F 2 F 2 2 9
31 Oppsummering Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre Omid Mirmotahari 30
INF1400. Kombinatorisk Logikk
INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre
Forelesning 4. Binær adder m.m.
Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon
IN1020. Logiske porter om forenkling til ALU
IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor
INF2270. Boolsk Algebra og kombinatorisk logikk
INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk
Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form
Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte
Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3
Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter
INF1400. Karnaughdiagram
INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige
Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form
Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
4 kombinatorisk logikk, løsning
4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =
Repetisjon digital-teknikk. teknikk,, INF2270
Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!
Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter
Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:
INF1400. Sekvensiell logikk del 1
INF1400 Sekvensiell logikk del 1 Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAND-porter D-latch Flip-flop Master-slave D-flip-flop JK flip-flop T-flip-flop Omid Mirmotahari
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er
INF1400. Sekvensiell logikk del 1
INF4 Sekvensiell logikk del Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAN-porter -latch Flip-flop Master-slave -flip-flop JK flip-flop T-flip-flop Omid Mirmotahari 3 efinisjoner
INF1400. Digital teknologi. Joakim Myrvoll 2014
INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................
IN1020. Sekvensiell Logikk
IN12 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer og tilstandstabeller Omid Mirmotahari 2 Definisjoner
TFE4101 Krets- og Digitalteknikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på
INF2270. Sekvensiell Logikk
INF227 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Shift register Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer Reduksjon av tilstand Ubrukte tilstander
ITPE2400/DATS2400: Datamaskinarkitektur
ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art
Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)
Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Hovedpunkter Pensumoversikt Gjennomgang av sentrale deler av pensum Div informasjon
Forelesning 2. Boolsk algebra og logiske porter
Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
INF1400 Kap4rest Kombinatorisk Logikk
INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3
Forelesning 3. Karnaughdiagram
Forelesning 3 Karnaughdiagram Hovedpunkter Karnaughdiagram Diagram med 2-4 variable Don t care tilstander Alternativ utlesning (leser ut ere) XOR implementasjon NAND implementasjon ved DeMorgan 2 Bakgrunn,
Forelesning 6. Sekvensiell logikk
Forelesning 6 Sekvensiell logikk Hovedpunkter Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAN latch Flip-Flops Master-slave flip-flop JK flip-flop T flip-flop 2 efinisjoner Kombinatorisk
INF1400 Kap 02 Boolsk Algebra og Logiske Porter
INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
Oppsummering digital-teknikk, teknikk, INF2270
Oppsummering digital-teknikk, teknikk, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
Forelesning 5. Diverse komponenter/større system
Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall
Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling
INF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
Rapport. Lab 1. Absoluttverdikrets - portkretser
TFE4105 Digitalteknikk og datamaskiner Rapport Lab 1 Absoluttverdikrets - portkretser av Even Wiik Thomassen Broen van Besien Gruppe 193 Lab utført: 8. september 2004 Rapport levert: 12. november 2004
Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]
Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på
INF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)
Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Faglig kontakt: Ragnar Hergum (1 3.5) / Per Gunnar
NY EKSAMEN Emnekode: ITD13012
NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3
Løsningsforslag INF1400 H04
Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk
SIE 4005, 2/10 (2. Forelesn.)
SIE 4005, 2/10 (2. Forelesn.) Første forelesning: 7.1 Datapaths and operations 7.2 Register Transfer operations 7.3 Microoperations (atitm., logic, shift) 7.4 MUX-based transfer 7.5 Bus-based transfer
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene
INF1400 Kap 1. Digital representasjon og digitale porter
INF4 Kap Digital representasjon og digitale porter Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell
Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall
Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL
Løsningsforslag til eksamen i INF2270
Løsningsforslag til eksamen i INF227 Oppgave 9 Omid Mirmotahari Oppgave 6 Dag Langmyhr. juni 24 Eksamen INF227 Sensorveiledning Oppgave 2 Kretsforenkling Hva er funksjonsuttrykket for Output gitt av A
Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler
Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103
IN1020. Obligatorisk oppgave 1. Formål
IN1020 Obligatorisk oppgave 1 Formål Hovedformålet med denne obligatoriske oppgaven er å gjøre dere godt kjent med design og simuleringsverktøyet for kretser, Logisim. Del (2) av oppgaven har som formål
Årsplan matematikk 6.klasse, Multi 6a Temaer kan bli flyttet på. Med forbehold om større eller mindre endringer i løpet av året.
Årsplan matematikk 6.klasse, 2017-2018 Multi 6a Temaer kan bli flyttet på. Med forbehold om større eller mindre endringer i løpet av året. Uke Kompetansemål Kriterier for måloppnåelse 33 33 Plassverdisystemet
Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3
Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01
Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS
Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende
INF1040 Digital representasjon TALL
TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)
Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch
Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3
Intel Core i7. Omid Mirmotahari 4
INF2270 Pipeline Hovedpunkter Oppsummering av én-sykel implementasjon Forbedring av én-sykel designet Introduksjon til pipelining Oppbygning av datapath med pipelining Intel Core i7 Omid Mirmotahari 4
EKSAMEN Emnekode: ITD13012
EKSAMEN Emnekode: ITD13012 Dato: 29.11.2017 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk Eksamenstid: 3 timer Faglærer: Robert
Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAND D latch. Master-slave D flip-flop JK flip-flop T flip-flop
Hovedunkter Kaittel 5 ekvensiell logikk Låsekretser (latch er) R latch bygget med NOR R latch bygget med NAN latch Fli-Flos Master-slave fli-flo JK fli-flo flo T fli-flo 2 Kombinatorisk logikk efinisjoner
Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen
Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller
Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
Analog til digital omformer
A/D-omformer Julian Tobias Venstad ED-0 Analog til digital omformer (Engelsk: Analog to Digital Converter, ADC) Forside En rask innføring. Innholdsfortegnelse Forside 1 Innholdsfortegnelse 2 1. Introduksjon
Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.
Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell
Mer om representasjon av tall
Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder
Intel Core i7. Omid Mirmotahari 4
INF2270 Pipeline Hovedpunkter Oppsummering av én-sykel implementasjon Forbedring av én-sykel designet Introduksjon til pipelining Oppbygning av datapath med pipelining Intel Core i7 Omid Mirmotahari 4
Løsningsforslag til regneøving 4
Løsningsforslag til regneøving 4 Utlevert: tirsdag 1. april 2008 ppgave 1: a) Presenter teksten under i form av en streng med heksadesimalkodet SCII: Dot. Gal ruker tabellen i boka side 290, og oversetter
I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.
Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med
Rapport Lab 2. Absoluttverdikrets
Fag: TFE4105 Digitalteknikk og datamaskiner Rapport Lab 2 Absoluttverdikrets av Mats Lieungh Andreas Nordal Labgruppe 623 Lab utført: 2/10 2008 Rapport levert: 11/11 2008 Fakultet for informasjonsteknologi,
Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall
Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til
Forelesning 7. Tilstandsmaskin
Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre
Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200
Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
INF2270. Datamaskin Arkitektur
INF2270 Datamaskin Arkitektur Hovedpunkter Von Neumann Arkitektur ALU Minne SRAM DRAM RAM Terminologi RAM Signaler Register Register overføringsspråk Von Neumann Arkitektur John von Neumann publiserte
Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9
IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen
F = a bc + abc + ab c + a b c
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 Digital Systemkonstruksjon Eksamensdag: 8. desember 1998 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
kl 12:00 - mandag 31. mars 2008 Odde: uke 11 (12. mars 2008) Utlevert: fredag 7. mars 2008 Like: uke 13 (26. mars 2008) Regneøving 4
Innleveringsfrist: Øvingsveiledning: 12:15-14:00 EL5 kl 12:00 - mandag 31. mars 2008 Odde: uke 11 (12. mars 2008) Utlevert: fredag 7. mars 2008 Like: uke 13 (26. mars 2008) Regneøving 4 Oppgave 1: 30 poeng
Reelle tall på datamaskin
Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke
En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:
2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis
PENSUM INF1400 H11. Joakim Myrvoll Johansen. Digital Design, M. Morris Mano, 4th edition
PENSUM INF1400 H11 Digital Design, M. Morris Mano, 4th edition Joakim Myrvoll Johansen 1 STIKKORDREGISTER: 2'er komplement s. 20 AND s. 25 Binær adder s. 34 Boolsk algebra s. 22, 26 CMOS s. 10 CPU s. 48
EKSAMEN (Del 1, høsten 2015)
EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"
EKSAMEN (Del 1, høsten 2014)
EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
TDT4105/TDT4110 Informasjonsteknologi grunnkurs:
1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre [email protected] Slidepakke forberedt
INF2270. Datamaskin Arkitektur
INF2270 Datamaskin Arkitektur Hovedpunkter Von Neumann Arkitektur ALU Minne SRAM DRAM RAM Terminologi RAM Signaler Register Register overføringsspråk Von Neumann Arkitektur John von Neumann publiserte
Kapittel 5 Tilstandsmaskin
Hovedpunkter Kapittel 5 Tilstandsmaskin Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert smaskin Reduksjon av antall er Tilordning av skoder Designprosedyre for smaskin basert
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 13. juni 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2270 Datamaskinarkitektur
Notater: INF2270. Veronika Heimsbakk 10. juni 2014
Notater: INF2270 Veronika Heimsbakk [email protected] 10. juni 2014 Innhold 1 Binære tall og tallsystemer 3 1.1 Tallsystemer............................ 3 1.2 Konvertering...........................
TDT4105/TDT4110 Informasjonsteknologi grunnkurs:
1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang [email protected] Bidragsytere
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
INF1400 Kap 0 Digitalteknikk
INF1400 Kap 0 Digitalteknikk Binære tall (ord): Digitale signaler: Hva betyr digital? Tall som kun er representert ved symbolene 0 og 1 (bit s). Nøyaktighet gitt av antall bit. (avrundingsfeil) Sekvenser
RAPPORT LAB 3 TERNING
TFE4110 Digitalteknikk med kretsteknikk RAPPORT LAB 3 TERNING av June Kieu Van Thi Bui Valerij Fredriksen Labgruppe 201 Lab utført 09.03.2012 Rapport levert: 16.04.2012 FAKULTET FOR INFORMASJONSTEKNOLOGI,
Prosent- og renteregning
FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra
Matematisk førstehjelp
Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:
VEILEDNING TIL LABORATORIEØVELSE NR 4
VEILEDNING TIL LABORATORIEØVELSE NR 4 «SAMMENSATTE DIGITAL KRETSER» FY-IN 204 Revidert utgave 98-03-13 Veiledning FY-IN 204 : Oppgave 4 1 4 Sammensatte digitalkretser. Litteratur: Millman, Kap. 7. Oppgave:
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider
Teori og oppgaver om 2-komplement
Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).
TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.
TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)
Det matematisk-naturvitenskapelige fakultet
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: 5/12-2006 Tid for eksamen: 15:30 18:30 Oppgavesettet er på: 5 sider Vedlegg: Ingen Tillatte hjelpemidler:
IN1020. Datamaskinarkitektur
IN1020 Datamaskinarkitektur Hovedpunkter Von Neumann Arkitektur BUS Pipeline Hazarder Intel Core i7 Omid Mirmotahari 4 Von Neumann Arkitektur John von Neumann publiserte i 1945 en model for datamaskin
MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.
Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og
