Kapittel 5 Tilstandsmaskin
|
|
|
- Birgitte Rønningen
- 8 år siden
- Visninger:
Transkript
1 Hovedpunkter Kapittel 5 Tilstandsmaskin Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert smaskin Reduksjon av antall er Tilordning av skoder Designprosedyre for smaskin basert på D flipflops 2 Tilstandsmaskin n smaskin er et sekvensielt system som gjennomløper et sett med er styrt av verdiene på inngangssignalene Tilstanden systemet befinner seg i, pluss evt. inngangsverdier bestemmer utgangsverdiene Tilstandsmaskins-konseptet gir en enkel og oversiktlig måte å designe avanserte system på Generell smaskin basert på D flip-flops N-stk flip-flops gir 2 N forskjellige er Utgangssignalene er en funksjon av nåværende pluss evt. inngangsverdier Tilstandsmaskin 3 4
2 5 ksempel nr. Tilstandsmaskin der utgang y er en funksjon av en gitt av verdiene til og, samt inngangen x x D A D B y 6 Tilstandstabell Tilstandstabell = sannhetstabell for smaskin ksempel nr.: n inngang, en utgang og 2 stk. D flipflops Utgang for nåværende Inngang x y 7 ksempel nr.: Tilstandsdiagram Tilstandsdiagram = grafisk illustrasjon av egenskapene til en smaskin Inngangsverdi x som medfører ny, samt utgangsverdi y for opprinnelig med inngangsverdi x x / y Tilstand / / / / / / / / 8 ksempel nr.2 To innganger x og y, en utgang som bare er gitt av en x y Innganger x y D A Utgang for nåværende
3 ksempel nr.2 ksempel nr.3 design av sekvensdetektor Tilstandsdiagram, /, /, / Ønsker å lage en krets som finner ut om det har forekommet tre eller flere ere etter hverandre i en klokket bit-sekvens x Liste av inngangskombinasjoner som gir ny / utgangsverdi for nåværende *, / Klokket bit-sekvens: Binært signal som kun kan skifte verdi synkront med et klokkesignal *Merk at i dette tilfelle er utgangsverdien kun avhengig av en (uavhengig av inngangsverdiene) Klokkesignal Utgang x 9 ksempel nr.3 design av sekvensdetektor Tilstandsdiagram Velger å ha 4 er. Lar hver symbolisere antall ere som ligger etter hverandre i bit-sekvensen. Inngang: bit-sekvens x Utgang: gitt av en, for -2, for 3 / / / / / / / / Bruker D flip-flops D A og D B settes til de verdiene man ønsker at og skal ha i neste D A = x + x + x D B = x + x + x y = ksempel nr.3 Utgang for nåværende Inngang x y 2
4 ksempel nr.3 Reduksjon av er orenkler uttrykkene med Karnaugh-diagram D A = x + x D B = x + x y = x D A D B n smaskin gir oss en eller flere utgangssignal som funksjon av en eller flere inngangssignal Hvordan dette implementeres internt i maskinen er uinteressant sett utenifra I noen tilfeller kan man fjerne er (forenkle designet) uten å påvirke inngangs/utgangs-funksjonene y 3 4 Reduksjon av er Reduksjon av er Inngang Utgang 5 Hvis to er har samme utgangssignal, samt leder til de samme nye ene gitt like inngangsverdier, er de to opprinnelige ene like. n som er lik en annen kan fjernes. 6 ksempel: Tilstand G er lik A B A B B C B D C A C D D D A G G G A
5 Reduksjon av er Reduksjon av er ksempel: jerner G. rstatter hopp til G med hopp til Inngang Utgang A B A B B C B D C A C D D D A Inngang Utgang A B ksempel: A B B C B D C A Nå er C D lik D D D A jerner 7 8 Reduksjon av er Tilordning av skoder ksempel: Har fjernet Inngang Utgang A B A B B C B D C A C D D D D A D I en smaskin med M er må hver tilordnes en kode basert på minimum N bit der 2 N M Kompleksiteten til den kombinatoriske delen avhenger av valg av skode Anbefalt strategi for valg av kode: prøv-og-feil i sdiagrammet Tilstand nr. Kode: / / / Tilstand nr.2 Kode: 9 2
6 Ubrukte er I en smaskin med N flip-flopper vil det alltid finnes 2 N er. Designer man for M er der M 2 N vil det finnes ubrukte er. Problem: Under oppstart (power up) har man ikke full kontroll på hvilken man havner i først. Havner man i en ubrukt som ikke leder videre til de ønskede ene vil systemet bli låst. Løsning: Design systemet slik at alle ubrukte er leder videre til en ønsket. / /,/ / / / / / Generell designprosedyre basert på D flip-flops ) Definer ene, inngangene og utgangene 2) Velg skoder, og tegn sdiagram 3) Tegn stabell 4) Reduser antall er hvis nødvendig 5) Bytt skoder hvis nødvendig for å forenkle 6) inn de kombinatoriske funksjonene 7) Skjekk at ubrukte er leder til ønskede er 8) Tegn opp kretsen 2 22 Design eksempel nr.4 ksempel nr.4 Designer en teller som teller sekvensen 5,4,3,2,,. tter skal telleren gjenta sekvensen (telle rundt). Telleren skal kunne resettes til 5 med ett reset signal. ) Velger en for hvert tall ut. Systemet har reset inngang, og trenger 3 utganger for å representere tallene 5 til. 2) Velger skoder som direkte representerer tallene ut. Tallene ut blir gitt av ene 2) Tegner sdiagram / / / / / / / / / /,/ Registrerer at vi har to ubrukte er 23 24
7 25 ksempel nr.4 3) Tegner stabell 4) Ingen reduksjonsmulighet 5) Velger å ikke bytte skoder da utgangene i såfall må omformes Ubrukte er / utgang Inngang R Q C X X X X X X X X Q C X X X X 26 ksempel nr.4 6) Setter inn i karnaughdiagram og finner forenklede funksjoner D A Q C R Q B x x x x D B Q C R Q B x x x x D A = R + Q C + Q C D B = Q C R + Q C R D C = Q C + R D C Q C R Q B x x x x ksempel nr.4 6) Sjekker at ubrukte er leder til ønskede er ok / utgang Inngang Q C R Q C ksempel nr.4 6) Alle ubrukte er leder til ønskede er, viser med diagram / / / /,/ / / / / / / D A = R + Q C + Q C D B = Q C R + Q C R D C = Q C + R / / / / 27 28
8 29 ksempel nr.4 7) Tegner opp krets, og Q C blir tellerens utganger Telleren resettes ved å sette R= Q C Q C R Q C R R Q C R D A D B D C Q C Q C 3 ksempel nr.5 - trafikklys Ønsker å bruker smaskin for å styre trafikklys Krysset har to vanlige trafikklys A og B. Disse styres med de binære signalene R A, G A, Gr A samt R B, G B, Gr B. Setter man G A til lyser det grønt i lys A osv. or å generere lyssekvensene bruker vi en repeterende bit-sekvens s som vist under. Avstanden mellom er pulsene gir intervallene mellom skifte fra grønt i lys A til grønt i lys B og motsatt. Klokkesignal Bit-sekvens s periode ksempel nr.5 - trafikklys Systemet har en induktiv sensor i bakken som registrerer biler den ene veien. Bil over sensoren gir I= ellers har vi I= Vi ønsker at bil registrert av sensoren skal gi grønt lys i A så fort som mulig R A / G A / Gr A R B / G B / Gr B R B / G B / Gr B R A / G A / Gr A Induktiv sløyfe I ksempel nr.5,2) Velger følgende forenklede er: - Grønt lys i A, rødt lys i B - Gult lys i A og B. Skifter mot grønt lys i B. - Rødt lys A, grønt lys i B - Gult lys i A og B. Skifter mot grønt lys i A. Innganger: s, I Utganger: R A, G A, Gr A,R B, G B, Gr B Lar utgangene kun være en funksjon av en 3 32
9 ksempel nr.5 ksempel nr.5 / 2) Tilstandsdiagram,, / XX / X don t care XX / x = si / R A G A Gr A R B G B Gr B / X / ) inner kombinatoriske funksjoner D A = D B = I + si R A = G A = Gr A = R B = Gr A G B = G A Gr B = R A Innganger s I R A G A Gr A Utganger R B G B Gr B 7) Tegner opp krets 36 ksempel nr.5 D A = D B = I + si R A = G A = Gr A = R B = Gr A G B = G A Gr B = R A I s I QB R A Gr B Gr A R B G A G B D A D B
10 Tilstandsmaskin Tilstandstabell Tilstandsdiagram Oppsummering Analyse av D flip-flop basert smaskin Reduksjon av antall er Tilordning av skoder Designprosedyre for smaskin basert på D flipflops 37
Forelesning 7. Tilstandsmaskin
Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre
INF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
INF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
INF2270. Sekvensiell Logikk
INF227 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Shift register Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer Reduksjon av tilstand Ubrukte tilstander
Repetisjon digital-teknikk. teknikk,, INF2270
Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
IN1020. Sekvensiell Logikk
IN12 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer og tilstandstabeller Omid Mirmotahari 2 Definisjoner
Løsningsforslag INF1400 H04
Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er
Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)
Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Hovedpunkter Pensumoversikt Gjennomgang av sentrale deler av pensum Div informasjon
INF1400. Karnaughdiagram
INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige
INF3340/4340. Synkrone design Tilstandsmaskiner
INF3340/4340 Synkrone design Tilstandsmaskiner 18.09.2007 Agenda Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på
INF1400. Sekvensiell logikk del 1
INF4 Sekvensiell logikk del Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAN-porter -latch Flip-flop Master-slave -flip-flop JK flip-flop T-flip-flop Omid Mirmotahari 3 efinisjoner
INF3340. Tilstandsmaskiner
INF3340 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430-Tilstandsmaskiner
Forelesning 6. Sekvensiell logikk
Forelesning 6 Sekvensiell logikk Hovedpunkter Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAN latch Flip-Flops Master-slave flip-flop JK flip-flop T flip-flop 2 efinisjoner Kombinatorisk
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene
Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form
Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte
INF3340/4431. Tilstandsmaskiner
INF3340/4431 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner SM tilstandsdiagrammer Syntese av SM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430/4431 -
INF1400. Sekvensiell logikk del 1
INF1400 Sekvensiell logikk del 1 Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAND-porter D-latch Flip-flop Master-slave D-flip-flop JK flip-flop T-flip-flop Omid Mirmotahari
Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19
En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:
2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis
LØSNINGSFORSLAG 2006
LØSNINGSFORSLAG 2006 Side 1 Oppgave 1), vekt 12.5% 1a) Bruk Karnaughdiagram for å forenkle følgende funksjon: Y = a b c d + a b c d + a b cd + a bc d + a bc d + ab c d + ab cd ab cd 00 01 11 10 00 1 1
INF1400. Digital teknologi. Joakim Myrvoll 2014
INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid kl. 09:00 13:00. Digital sensorveiledning
5.juni 2 Digital sensorveiledning 4.6.2 Side av 4 BOKMÅL NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Bjørn B. Larsen 73 59 44
Forelesning 3. Karnaughdiagram
Forelesning 3 Karnaughdiagram Hovedpunkter Karnaughdiagram Diagram med 2-4 variable Don t care tilstander Alternativ utlesning (leser ut ere) XOR implementasjon NAND implementasjon ved DeMorgan 2 Bakgrunn,
Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.
Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form?
Jeg har rettet alle oppgavene og legger ut et revidert løsningsforslag. Noen av besvarelsene var glitrende! 6. Hva er desimalverdien av 0 0000 0000 (2)? Tallet er gitt på toerkomplement binær form. Eneren
Det matematisk-naturvitenskapelige fakultet
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: 5/12-2006 Tid for eksamen: 15:30 18:30 Oppgavesettet er på: 5 sider Vedlegg: Ingen Tillatte hjelpemidler:
Oppsummering digital-teknikk, teknikk, INF2270
Oppsummering digital-teknikk, teknikk, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side av 9 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen
Øving 7: Løsningsforslag (frivillig)
TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 7 vårsemester 7 Øving 7: Løsningsforslag (frivillig) Oppgave Oppgave (Flanke- og nivåstyrte vipper) a) Vi ser fra figuren at pulstog
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl
Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
5.juni 2010 Side 1 av 17 NORGES TEKNISK- BOKMÅL NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel)
Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre
Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
.juni 20 Side av 9 NORGES TEKNISK- BOKMÅL NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 37 (Digitaldel)
Oppgave 1 (Flanke- og nivåstyrte vipper)
Utlevert: mandag 29. april 2008 Veiledning: ingen veiledning ette er en frivillig øving. Øvingen tar for seg siste del av pensum, og det er derfor anbefalt å regne gjennom øvingen. et vil ikke bli gitt
IN1020. Logiske porter om forenkling til ALU
IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor
Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch
Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3
Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
3.juni 2 Side av 2 Med LF. Institutt for elektronikk og telekommunikasjon Eksamensoppgave i TFE4 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 2 23 / 92 87 72
- - I Aile trykte og skrevne. samt kalkulator
6 hegskolen i oslo!~ne: Faglig veileder: i_d~maskinarkite~tur i Gruppe(r) Eksam e nsti d : 5 I EkSamensoppgaven besclr av: I Tillatte hjelpemidler Antan-slder (Ink[ i forsiden): 5 - - I Aile trykte og
INF2270. Boolsk Algebra og kombinatorisk logikk
INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG
Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen
INF1400 Kap4rest Kombinatorisk Logikk
INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3
Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAND D latch. Master-slave D flip-flop JK flip-flop T flip-flop
Hovedunkter Kaittel 5 ekvensiell logikk Låsekretser (latch er) R latch bygget med NOR R latch bygget med NAN latch Fli-Flos Master-slave fli-flo JK fli-flo flo T fli-flo 2 Kombinatorisk logikk efinisjoner
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 6. aug 2004 Tid. Kl
Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Oppgave 1 (20%) a) Gitt kretsen i Figur 1. Faglig kontakt under eksamen: Spenningen over kondensato
Emnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside.
Høgskolen i østfold EKSAMEN Emnekode: ITD13012 Dato: 2.12.2016 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater Hlø-kalkulator som kan lånes under eksamen Emnenavn: Datateknikk Eksamenstid: 3
Seksjon 1. INF2270-V16 Forside. Eksamen INF2270. Dato 1. juni 2016 Tid Alle trykte og skrevne hjelpemidler, og en kalkulator, er tillatt.
Seksjon 1 INF2270-V16 Forside Eksamen INF2270 Dato 1. juni 2016 Tid 14.30-18.30 Alle trykte og skrevne hjelpemidler, og en kalkulator, er tillatt. Dette oppgavesettet består av 14 oppgaver som kan løses
EKSAMEN Emnekode: ITD13012
EKSAMEN Emnekode: ITD13012 Dato: 29.11.2017 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk Eksamenstid: 3 timer Faglærer: Robert
VHDL En kjapp introduksjon VHDL. Oversikt. VHDL versus C(++)/Java
Oversikt VHDL En kjapp introduksjon Definisjoner Designparadigmer Generell VHDL-struktur Dataflow -beskrivelse Structural -beskrivelse Behaviour -beskrivelse Objekter /datatyper Operatorer Tips for syntese
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form
Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
4 kombinatorisk logikk, løsning
4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG
Side av 8 NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen
Digitalstyring sammendrag
Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 14. august Tid. Kl LØSNINGSFORSLAG
Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92
ITPE2400/DATS2400: Datamaskinarkitektur
ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art
Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3
Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter
MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.
Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og
NY EKSAMEN Emnekode: ITD13012
NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3
Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur
Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat
Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter
Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:
Institutt for elektronikk og telekommunikasjon. Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 24. mai Tid. Kl.
Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Eksamen
Forelesning 5. Diverse komponenter/større system
Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall
Synkron logikk. Sekvensiell logikk; to typer:
Sekvensiell logikk De fleste digitale systemer har også minneelementer (f.eks flipflopper) i tillegg til kombinatorisk logikk, og kalles da sekvensiell logikk Output i en sekvensiell krets er avhengig
Løsningsforslag til 1. del av Del - EKSAMEN
Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Peter Svensson 73 59 05
Forelesning 2. Boolsk algebra og logiske porter
Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler
Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103
TFE4101 Krets- og Digitalteknikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på
Universitetet i Agder. Fakultet for teknologi og realfag E K S A M E N. Elektriske kretser og PLS-programmering
Universitetet i Agder Fakultet for teknologi og realfag E K S A M E N Emnekode: Emnenavn: MAS218 Elektriske kretser og PLS-programmering Dato: 6. desember 2016 Varighet: 0900 1300 Antall sider inkl. forside
Gruppa består av studenter fra AU2: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen
Gruppa består av studenter fra AU: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen Dette er et prosjekt som ble gitt i faget Digitalteknikk ved Høgskolen i Tromsø avd. Ingeniør, år 003. Prosjektet
Tilstandsmaskiner (FSM) Kapittel 5
Tilstandsmaskiner (FSM) Kapittel 5 1) Sette opp tilstandsdiagram Tradisjonell konstruksjonsmetode 2) Sette opp tilstandstabell ut fra tilstandsdiagrammet Nåværende tilstand (PS) og input Neste tilstand
Institiutt for informatikk og e-læring, NTNU Kontrollenheten Geir Ove Rosvold 4. januar 2016 Opphavsrett: Forfatter og Stiftelsen TISIP
Geir Ove Rosvold 4. januar 2016 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen ser vi på kontrollenheten. s funksjon diskuteres, og vi ser på de to måtene en kontrollenhet kan bygges
SIE 4005, 9/10 (4. Forelesn.)
SIE 4005, 9/10 (4. Forelesn.) Tredje forelesning: 8.1 The control unit 8.2 Algorithmic state machines 8.3 Design example: Binary multiplier 8.4 Hardwired Control Fjerde forelesning: litt repetisjon 8.4
5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)
7. juni Side 8 av 17 11) Gitt det negative desimale tallet -20 (10). Hva er det samme tallet på binær 2 skomplement form? A) 110100 (2) B) 101100 (2) C) 001011 (2) Vi starter med å finne binær form av
INF1400. Kombinatorisk Logikk
INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre
Fasit til Eksamen FY-IN 204 våren (avholdt høsten) 1998.
Fasit til ksamen FY-IN 4 åren (aholdt høsten) 1998. Oppgae 1 a) a. V 1,7 olt (asis - emitter spenningen (V ) til en Si-transistor som leder,7olt) b. V,5 -,7 1,8 olt c. Spenningen oer to stk A1,7 * 1,4
Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!
Forelesning 4. Binær adder m.m.
Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon
INF1400 Kap 02 Boolsk Algebra og Logiske Porter
INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
RAPPORT LAB 3 TERNING
TFE4110 Digitalteknikk med kretsteknikk RAPPORT LAB 3 TERNING av June Kieu Van Thi Bui Valerij Fredriksen Labgruppe 201 Lab utført 09.03.2012 Rapport levert: 16.04.2012 FAKULTET FOR INFORMASJONSTEKNOLOGI,
INF3430/4430. Kombinatoriske og sekvensielle byggeblokker implementert i VHDL :57
INF3430/4430 Kombinatoriske og sekvensielle byggeblokker implementert i VHDL 26.09.2005 20:57 Agenda Kombinatoriske kretser forts. Concurrent(dataflow) beskrivelser Beskrivelser ved bruk av process Testbenker
MAX MIN RESET. 7 Data Inn Data Ut. Load
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:
V.17. Sven Åge Eriksen. Referanse:
V.17 Sven Åge Eriksen Referanse: http://www.ee.surrey.ac.uk/projects/labview/minimisation/karnaugh.html#introduction Hensikten med Karnaughdiagrammet er å forenkle funksjonsuttrykk ved å gruppere sammen
Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200
Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
