Repetisjon av histogrammer

Størrelse: px
Begynne med side:

Download "Repetisjon av histogrammer"

Transkript

1 Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner i fargebilder Lokal gråtone-transformasjon Gråtonehistogram: h( = antall piksler i bildet med pikselverdi i Det normaliserte histogrammet G 1 h( p( =, p( = 1 n m i= Det kumulative histogrammet c( j) = j i= h( G 1 i= h( = n m INF231 1/35 INF231 2/35 Repetisjon av histogrammer II Histogramutjevning (histogram equalization) Maksimal kontrast: Alle pikselverdier like sannsynlige Histogrammet er uniformt (flatt) Ønsker en transformasjon av bildet slik at det transformerte bildet har uniformt histogram Dvs. at bildet har like mange piksler for hver gråtone Tilnærmer ved å flytte på histogramsøyler Trenger en oversikt over hvor hver søyle skal flyttes: T[i] INF231 3/35 INF231 4/35 1

2 Hvis et bilde har uniformt histogram, vil det kumulative histogrammet være tilnærmet en rett linje -> må vi finne en flytting av søylene som gir oss et kumulativt histogram som ligner mest mulig på en rett linje Store mellomrom mellom høye søyler, og lite mellomrom der vi har lave søyler -> en transform med høyt stigningstall hvor det er mange piksler, og lavt stigningstall hvor det er få piksler Det kumulative histogrammet har akkurat disse egenskapene Histogramutjevnings-transformen, T[i], er gitt ved det skalerte kumulative histogrammet til innbildet INF231 5/35 INF231 6/35 i i p( x) dx T k = G i k p( x) dx k 1 G 1/256=1/G INF231 7/35 Algoritme for histogramutjevning For et n m bilde med G gråtoner: Lag array p, c og T av lengde G med initialverdi Finn bildets normaliserte histogram Gå igjennom bildet piksel for piksel. Hvis piksel har intensitet i, la p[i]=p[i]+1 Deretter skalér, p[i] = p[i]/(n*m), i=,1,,g-1 Lag det kumulative histogrammet c c[] = p[] c[i] = c[i-1]+p[i], i=1,2,...,g-1 Sett inn verdier i transformarray T T[i] = Round( (G-1)*c[i] ), i=,1,...,g-1 Gå igjennom bildet piksel for piksel, Hvis bildet har intensitet i, sett intensitet i utbildet til s=t[i] INF231 8/35 2

3 Histogramutjevning, forts Eksempel 1 - histogramutjevning Det resulterende histogrammet ser ikke flatt ut, men det kumulative histogrammet er en rett lineær rampe Søylene kan ikke splittes for å tilfredstille et flatt histogram INF231 9/35 INF231 1/35 Eksempel 2 - histogramutjevning Histogramtilpasning Histogramutjevning gir flatt histogram Kan spesifisere annen form på resultathistogrammet: 1. Gjør histogramutjevning på innbildet, finn s=t( 2. Spesifiser ønsket nytt histogram g(z) 3. Finn den transformen T g som histogramutjevner g(z) og inverstransformen T g Inverstransformer det histogramutjevnede bildet fra punkt 1 ved z=t g -1 (s) INF231 11/35 INF231 12/35 3

4 Tilpasning til Gauss-profil Tilpasning til annen kurve Histogram-utjevnet Tilpasset Gauss-form (Bilder hentet fra DIP/NASA) INF231 13/35 INF231 14/35 Histogram matching Histogramtilpasning hvor det ene bildets histogram benyttes som ønsket form Standardisering av histogram Hensikt: Sørge for at alle bildene i en serie har like histogrammer Metoder: Histogramutjevning Histogramspesifikasjon (f.eks. til oppgitt Gauss-profil) Hvorfor? Fjerne effekten av Døgnvariasjon i belysning Aldringseffekter i lamper og detektorer Akkumulering av støv på linser etc. Hvor: Produkt-inspeksjon i industri Ansiktsgjenkjenning (Eigen-face-demoen) Mikroskopering av celler... INF231 15/35 INF231 16/35 4

5 Når bør du IKKE gjøre dette? Du mener at: Det kan være reelle variasjoner i middelverdi og varians til bildene i en bildeserie Du vet ikke: Om noen senere vil bruke (1. ordens) histogram-parametre til klassifikasjon av bildene Hva gjør du? Behold originalene, og jobb på kopier Gjør lineære gråtonetransformasjoner på bildene Dette vil bevare strukturene i histogrammet, selv om (μ,σ) endres Eksempel: Mikroskopering av kreft-celler (Fra B. Nielsen et.al) INF231 17/35 INF231 18/35 Histogram av flerkanals bilder Mye mer om fargerbilder i egen forelesning senere! Eksempel RGB-bilde Fargekamera: Måler lysintensitet i tre separate bånd i det elektromagnetiske spekteret Øyet er følsomt for rødt, grønt og blått lys Blått~435.8nm, grønt~546.1nm, rødt~7nm Bånd 1: R Bånd 2: G Multispektrale og hyperspektrale sensorer Tettere sampling av det elektromagnetiske spekteret Håndfull til flere hundre bånd INF231 19/35 Bånd 3: B Alle båndene projisert samtidig med forskjellig bølgelengde INF231 2/35 5

6 RGB-kuben,,1 blå cyan Hue, Saturation, Intensity (HSI) hvit Hue: Ren farge - gir bølgelengden i det elektromagnetiske spektrum Gråtonebilder: r=g=b magenta,, svart 1,, rød gul hvit grønn,1, Merk: fargene er her normaliserte slik at de ligger mellom og 1 cyan S grønn blå H gul rød magenta I svart H er vinkel og ligger mellom og 2π: Rød: H=, grønn: H= 2π/3, blå= 4π/3, gul: H=π/3, cyan= π, magenta= 5π/3, Hvis vi skalerer H-verdiene til 8-bits verdier vil Rød: H=, grønn: H= 85, blå= 17, gul: H=42, cyan= 127, magenta= 213. INF231 21/35 INF231 22/35 1D histogram fra fargebilder Vi kan lage et histogram for hver kanal i et RGB-bilde Vi får 3 grafer Dette sier ikke noe om mengden av piksler som har verdien (r 1,g 1,b 1 ) i forhold til (r 2,g 2,b 2 ) 2D histogrammer fra fargebilder Vi kan lage 2D histogrammer for de tre kombinasjonene av 2 og 2 kanaler. Dette gir informasjon om forekomsten av piksler med gitte verdier av (r,g), (r,b) og (b,g). INF231 23/35 INF231 24/35 6

7 3D histogram av fargebilder Histogramutjevning av RGB-bilder Et bilde med tre bånd har egentlig en 3-dimensjonal kube som histogram I hvert element i 3D-matrisen finner vi antall piksler h(r,g,b) Med 256 gråtoner får denne 256*256*256= bins Et bilde på 256*256 piksler fyller maksimalt 1/256 av disse bins, dvs. at 3Dhistogrammet er for det meste tomt Histogramutjevning på hver komponent (r,g,b) uavhengig av hverandre Kan føre til endring i fargetonene i bildet Alternativt benytte HSI: Transformér bildet fra RGB til HSI Gjør histogramutjevning på I- komponenten Transformer HSI ny tilbake til RGB S grønn blå hvit gul H magenta I svart INF231 25/35 INF231 26/35 Eks: Histogramutjevning RGB vs HSI Lokal gråtonetransform (GTT) Vil standardisere den lokale kontrasten Samme kontrast over hele bildet Originalbilde Histogramutjevning på RGB Histogramutjevning i intensitet i HSI Transformasjonene vi har sett på kan beregnes ut fra piksel-verdiene i en lokal omegn (kvadratisk vindu) omkring punktet ( Kun punktet ( bestemmes av transformen basert på dette vinduets piksler INF231 27/35 INF231 28/35 7

8 Lokal GTT - Eksempel Lokal GTT Eksempel II Originalt Global histogramutgjevning Lokal endring av middelverdi og kontrast (Fra DIP, Gonzales & Woods) INF231 29/35 INF231 3/35 Lokal GTT - 2 Utfør lokal GTT som gir samme kontrast over hele bildet Histogramspesifikasjon Beregn det kumulative histogrammet i et vindu sentrert om ( Endre senterpikselen ved den resulterende transformen Lineær standardisering av σ Beregn μ( og σ( i et vindu sentrert om ( Transformer f( til g( med en lineær transform som hadde gitt nytt standardavvik σ innenfor vinduet σ g1( = μ( + ( f ( ) σ ( Lokal GTT - 3 Ønsker vi lokal GTT som også gir en ny middelverdi μ, så bruker vi transformen σ g2( = μ + ( f ( ) σ ( Men dette vil gi et flatt bilde Parameteren β kan styre hvor kraftig vi endrer μ: β = => uforandret middelverdi over hele bildet β = 1 => lik middelverdi over hele bildet σ g3( = β μ + ( 1 β ) μ( + ( f ( ) σ ( INF231 31/35 INF231 32/35 8

9 Lokal GTT - 4 Hva er karakteristisk for homogene områder i et bilde? σ ( = Her får vi problemer, fordi σ g3( =... + ( f ( ) σ ( Innfører parameteren δ: g ( = β μ + ( 1 β ) μ( 4 + ( f ( ) σ ( + δ σ Lokal pikselverdi-mapping gir økt regnearbeid σ Lokal GTT - Implementasjon Lokal konstrastendring er regnekrevende Histogramspesifikasjon: Beregne nytt lokalt kumulativt histogram for hver piksel Lineær transform: Beregne ny μ og σ sigma for hver piksel Benytt overlappet mellom vinduene i det man flytter til neste piksel Løpende oppdatere både histogrammet, μ og σ INF231 33/35 INF231 34/35 Sentrale temaer i dag Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Fjerne effekten av variasjoner i avbildningsforhold (døgnvariasjon, lampe, støv etc) Ikke lurt med histogramtilpasning hvis histogram-formen inneholder informasjon som senere skal benyttes Alternativ til standardisering av bilder med lineær transform Litt om histogramtransformasjoner i fargebilder Lokal gråtone-transformasjon Samme kontrast (og middelverd over hele bildet Beregn og benytt transformene på lokalt vindu rundt hver piksel Regnekrevende INF231 35/35 9

INF 1040 løsningsforslag til kapittel 17

INF 1040 løsningsforslag til kapittel 17 INF 1040 løsningsforslag til kapittel 17 Oppgave 1: Bilder og histogrammer Her ser du pikselverdiene i et lite bilde. Kan du regne ut histogrammet til bildet, dvs. lage en tabell over hvor mange piksler

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Viktige begreper. Viktige begreper, illustrasjon. Matematisk representasjon av digitale bilder. INF Introduksjon og Kap.

Viktige begreper. Viktige begreper, illustrasjon. Matematisk representasjon av digitale bilder. INF Introduksjon og Kap. Viktige begreper INF 23. 25 Introduksjon og Kap. 2 Introduksjon - hva er et digitalt bilde Avbildning Det elektromagnetiske spekteret Litt om bildeformater Kamera og optikk Øyet og egenskaper ved synet

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

FFIs hyperspektrale demonstratorsystem med CUDA-basert GPU prosessering. Trym Vegard Haavardsholm

FFIs hyperspektrale demonstratorsystem med CUDA-basert GPU prosessering. Trym Vegard Haavardsholm FFIs hyperspektrale demonstratorsystem med CUDA-basert GPU prosessering Trym Vegard Haavardsholm Oversikt Introduksjon til hyperspektral teknologi FFIs demonstrator for hyperspektral måldeteksjon Hyperspektral

Detaljer

Bruk av vannmerke ved reproduksjon av gråtonebilder

Bruk av vannmerke ved reproduksjon av gråtonebilder Bruk av vannmerke ved reproduksjon av gråtonebilder EGIL BERNTSEN Examensarbete Stockholm, Sverige 2004 TRITA-NA-E04112 Numerisk analys och datalogi Department of Numerical Analysis KTH and Computer Science

Detaljer

RF5100 Lineær algebra Leksjon 10

RF5100 Lineær algebra Leksjon 10 RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Fargetyper. Forstå farger. Skrive ut. Bruke farger. Papirhåndtering. Vedlikehold. Problemløsing. Administrasjon. Stikkordregister

Fargetyper. Forstå farger. Skrive ut. Bruke farger. Papirhåndtering. Vedlikehold. Problemløsing. Administrasjon. Stikkordregister Skriveren gir deg mulighet til å kommunisere i farger. Farger tiltrekker seg oppmerksomhet og gir trykt materiale og informasjon større verdi. Bruk av farger øker lesbarheten, og dokumenter med farger

Detaljer

Deteksjon av ringformede fotgrøfter i høyoppløselige satellittbilder av jordbruksområder

Deteksjon av ringformede fotgrøfter i høyoppløselige satellittbilder av jordbruksområder Deteksjon av ringformede fotgrøfter i høyoppløselige satellittbilder av jordbruksområder Øivind Due Trier (NR), Anke Loska (Riksantikvaren), Siri Øyen Larsen (NR) og Rune Solberg (NR) Samarbeidspartnere:

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 27.08.2013 20.08.13 Revidert Log GKS 22.08.12

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 24.08.2010 23.08.10 Revidert Log GKS 20.08.09

Detaljer

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder 3/8/29 Digitale bilder med spesielt fokus på medisinske bilder Karsten Eilertsen Radiumhospitalet Neste to forelesninger Torsdag 29/: Enkel innføring i digitale bilder Eksempler på noen enkle metoder for

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

Dette er vakre farger du aldri får se på mobilen

Dette er vakre farger du aldri får se på mobilen Viten BLI ABONNENT LOGG INN ANNONSE Dette er vakre farger du aldri får se på mobilen ARNT INGE VISTNES FØRSTEAMANUENSIS, FYSISK INSTITUTT, UNIVERSITETET I OSLO OPPDATERT: 23.NOV. 2015 15:28 PUBLISERT:

Detaljer

Hvordan påvirker valg av glattingsfilter PET-avbdildning av små svulster? Eksperimenter og simuleringer

Hvordan påvirker valg av glattingsfilter PET-avbdildning av små svulster? Eksperimenter og simuleringer Hvordan påvirker valg av glattingsfilter PET-avbdildning av små svulster? Eksperimenter og simuleringer Arne Skretting 1, Otto Glomset 1, Trond V Bogsrud 1 Seksjon for diagnostikkfysikk Avdeling for nukleærmedisin,

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1.

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1. Geogebra hjelp - 4. mai 2012 Innhold Funksjonsanalyse 1 Komandoer 1 Undersøke om dataene er normalfordelt 1 Finne sannsynlighetsfordeling 2 Binomisk fordeling...........................................

Detaljer

INF 1040 Farger og fargerom. Motivasjon. Litt fysikk om lyskilder. Fargen på lyset. Vi oppfatter bare ca 50 gråtoner samtidig

INF 1040 Farger og fargerom. Motivasjon. Litt fysikk om lyskilder. Fargen på lyset. Vi oppfatter bare ca 50 gråtoner samtidig INF 4 Farger og fargerom Temaer i dag : Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom - fargemodeller 4 Overganger mellom fargerom (se kompendiet) 5 Fremvisning av fargebilder

Detaljer

Resultater Standardiseringsprosjektet

Resultater Standardiseringsprosjektet Resultater Standardiseringsprosjektet Hva er trykkstandardisering? Standardisering av viktige parametre Papirtyper Fargerom Punktøkning Gråbalanse ISO 12647 og PSO PSO: Process Standard Offset ISO 12647-2

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

21.09.2015. Mer enn bare et kamera (Publisert versjon, inneholder bare FFIs egne bilder.) Bilder kommer fra mange kilder

21.09.2015. Mer enn bare et kamera (Publisert versjon, inneholder bare FFIs egne bilder.) Bilder kommer fra mange kilder Bilder kommer fra mange kilder Mer enn bare et kamera (Publisert versjon, inneholder bare FFIs egne bilder.) Torbjørn Skauli og Trym Haavardsholm Optisk avbildning - et felt i forandring Hva kan et kamera

Detaljer

SCANNING OG REPARASJON AV GAMLE BILDER Jessheim bibliotek 21. august 2007. Minikurs. Adobe Photoshop Elements. v/ Randi Lersveen - Krem reklame

SCANNING OG REPARASJON AV GAMLE BILDER Jessheim bibliotek 21. august 2007. Minikurs. Adobe Photoshop Elements. v/ Randi Lersveen - Krem reklame 1 Minikurs v/ Randi Lersveen - Krem reklame Adobe Photoshop Elements Viktige begrep for digitale bilder 2 FARGER (mode) Bitmap: Grayscale: RGB-color: CMYK: Bildet inneholder kun sorte og hvite punkter

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl. Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)

Detaljer

Triangle Colorscale. Created for design CMYK GUIDE. Intuitiv, nøyaktig og praktisk

Triangle Colorscale. Created for design CMYK GUIDE. Intuitiv, nøyaktig og praktisk Created for design CMYK GUIDE Intuitiv, nøyaktig og praktisk «Det er lett å finne en farge i CMYK GUIDE. Og den fargen du velger, blir nøyaktig lik på trykk!» INTUITIV Et hurtig verktøy for designere CMYK

Detaljer

Bildetransformer Lars Aurdal

Bildetransformer Lars Aurdal Bildetransformer Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Lars Aurdal. Forsvarets forskningsinstitutt (FFI), Kjeller. 5 ansatte. Ca. 3 forskere og ingeniører. Tverrfaglig institutt med vekt på arbeide

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Veiledning om fargekvalitet

Veiledning om fargekvalitet Side 1 av 6 Veiledning om fargekvalitet Veiledningen om fargekvalitet hjelper brukerne med å forstå hvordan funksjoner som er tilgjengelige på skriveren, kan brukes til å justere og tilpasse fargene på

Detaljer

LØSNINGSFORSLAG, KAPITTEL 3

LØSNINGSFORSLAG, KAPITTEL 3 LØSNINGSFORSLAG, KAPITTEL 3 REVIEW QUESTIONS: 1 Hvordan påvirker absorpsjon og spredning i atmosfæren hvor mye sollys som når ned til bakken? Når solstråling treffer et molekyl eller en partikkel skjer

Detaljer

Digitale bilder. Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter) og vektorgrafkk (linjer og fater).

Digitale bilder. Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter) og vektorgrafkk (linjer og fater). Høgskolen i Østfold Digital Medieproduksjon Oppgave T4/Digitale bilder Uke 38/23.09.10 Jahnne Feldt Hansen Digitale bilder Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter)

Detaljer

Litteratur : I dag og neste uke: Cyganski kap. 5-6

Litteratur : I dag og neste uke: Cyganski kap. 5-6 Bilder Litteratur : I dag og neste uke: Cyganski kap. 5- -dimensjonal virkelighet Kamera og optikk fokallengde f Bildet blir en 2-dimensjonal projeksjon av objektet Temaer : Hvordan dannes bilder? Hvordan

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF3 Digital bildebehandling Forelesning 8 Repetisjon: Filtrering i bildedomenet Andreas Kleppe Filtrering og konvolusjon Lavpassfiltrering og kant-bevaring Høypassfiltrering: Bildeforbedring og kantdeteksjon

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

Farger Introduksjon Processing PDF

Farger Introduksjon Processing PDF Farger Introduksjon Processing PDF Introduksjon På skolen lærer man om farger og hvordan man kan blande dem for å få andre farger. Slik er det med farger i datamaskinen også; vi blander primærfarger og

Detaljer

Hyperspektralt kamera Forsker Torbjørn Skauli. Kaffemaskin. Datamaskin

Hyperspektralt kamera Forsker Torbjørn Skauli. Kaffemaskin. Datamaskin Hyperspektralt kamera Forsker Torbjørn Skauli Kaffemaskin Datamaskin Forsker Torbjørn Skauli Oppvokst på Romsås, i femte etasje interessert i teknikk som gutt flink på skolen Naturfaglinjen på videregående

Detaljer

Lysbehov og tilrettelegging av fysiske miljøer for personer med nedsatt syn

Lysbehov og tilrettelegging av fysiske miljøer for personer med nedsatt syn Lysbehov og tilrettelegging av fysiske miljøer for personer med nedsatt syn Lystekniske begreper Av Jonny Nersveen, dr.ing Førsteamanuensis Høgskolen i Gjøvik / Norges blindeforbund Innhold Hva er lys?

Detaljer

ITC, Individual Tree Crown Technology 2006 ictrees inc.

ITC, Individual Tree Crown Technology 2006 ictrees inc. overgår tradisjonelle metoder Detaljert skogkartlegging basert på ITC, Individual Tree Crown Technology 2006 ictrees inc. TerraNor Boks 44, 2713 Roa Tlf: +47 6132 2830 Fax: +47 6132 2829 Automatisk skogkartlegging

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Sarpsborg 13.01.2005 12.01.05 Ny oppgave Log LMN Log,

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 Utlevering: fredag 3. november 2006, kl. 12:00 Innlevering: fredag 17. november 2006, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

Høgskolen i Gjøviks notatserie, 2001 nr 5

Høgskolen i Gjøviks notatserie, 2001 nr 5 Høgskolen i Gjøviks notatserie, 2001 nr 5 5 Java-applet s for faget Statistikk Tor Slind Avdeling for Teknologi Gjøvik 2001 ISSN 1501-3162 Sammendrag Dette notatet beskriver 5 JAVA-applets som demonstrerer

Detaljer

Skalar-til-farge korrespondanse. Del 5 Visualisering av skalarfelt. Regnbue-skalaen

Skalar-til-farge korrespondanse. Del 5 Visualisering av skalarfelt. Regnbue-skalaen Skalar-til-farge korrespondanse Del 5 Visualisering av skalarfelt Skalar-intervallet i datasettet korresponderer med en fargeskala s max egnbue ød til Gråtoner s min Sort/hvitt utskrift! INF340/ V04 For

Detaljer

Photoshop CC Guy M. Huste, IGM AS

Photoshop CC Guy M. Huste, IGM AS Photoshop CC Guy M. Huste, IGM AS 2 Når du skal sammenkopiere flere bilder, så må sluttresultatet se troverdig ut. Det holder ikke med å bare klippe-og-lime. Planleggingsfasen før sammenkopieringen er

Detaljer

Datablad for HDL-lighting LED-paneler

Datablad for HDL-lighting LED-paneler Dimbare LED-paneler er fremtidens belysning alle steder der man tradisjonelt har brukt lysrør. Panelene gir tilsvarende mengde lys, helt flimmerfritt, mer energieffektivt og uten behov for å måtte skifte

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

EKSAMEN I EMNE SIB 6005 GEOMATIKK-1. Torsdag 25. november 1999 Tid: 0900-1500

EKSAMEN I EMNE SIB 6005 GEOMATIKK-1. Torsdag 25. november 1999 Tid: 0900-1500 NORGES TEKNISK-NTURVITENSKPELIGE UNIVERSITET (GM1-99h) side 1 av 5 INSTITUTT FOR KRT OG OPPMÅLING EKSMEN I EMNE SIB 65 GEOMTIKK-1 Torsdag 25. november 1999 Tid: 9-15 Faglig kontakt under eksamen: Oddgeir

Detaljer

MA155 Statistikk TI-nspire cx Kalkulator Guide

MA155 Statistikk TI-nspire cx Kalkulator Guide MA155 Statistikk TI-nspire cx Kalkulator Guide Magnus T. Ekløff, Kristoffer S. Tronstad, Henrik G. Fauske, Omer A. Zec Våren 2016 1 Innhold 1 Basics... 4 2 1.1 Dokumenter... 4 1.1.1 Regneark... 4 1.1.2

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

Prosjekt TDT 4195. av Kristian Høegh Mysen & Olav Aanes Fagerlund

Prosjekt TDT 4195. av Kristian Høegh Mysen & Olav Aanes Fagerlund Prosjekt TDT 4195 av Kristian Høegh Mysen & Olav Aanes Fagerlund 3. mai 2007 Kapittel 1 Bilde analyse delen Vi valgte å gjøre som anbefalt i oppgavetekseten; eksperimentere med forskjellige filtere i bildebehandlings

Detaljer

Karakterisering av CT rekonstruksjonsfiltre ved måling av halvverdibreddeog

Karakterisering av CT rekonstruksjonsfiltre ved måling av halvverdibreddeog Karakterisering av CT rekonstruksjonsfiltre ved måling av halvverdibreddeog støy Wibeke Nordhøy, Arne Skretting og Kristine Eldevik Diagnostisk fysikkmøte på Gardermoen, 2.11.09 Oppløsningsevne i CT bilder

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Ordliste. Adaptiv filtrering (adaptive filtering) Et filter som endrer oppførsel etter det lokale innholdet i bildet eller signalet.

Ordliste. Adaptiv filtrering (adaptive filtering) Et filter som endrer oppførsel etter det lokale innholdet i bildet eller signalet. Ordliste Dette er et forsøk på å gi forklaringer til ord og uttrykk som brukes i forbindelse med lyd, bilder og kompresjon i kurset INF1040 høsten 2004. En del av nøkkelordene er IKKE brukt i kurset INF1040,

Detaljer

PRAKTISK FARGESTYRING

PRAKTISK FARGESTYRING PRAKTISK FARGESTYRING Rapport 2 Malin Milder Mediedesign Vår 2008 1 Praktisk fargestyring Fargestyring er et viktig aspekt når det kommer til design, og noe som alle burde benytte seg av for å få best

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 9 (ni) sider. Norges Informasjonstekonlogiske Høgskole RF5100 Lineær algebra Side 1 av 9 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Interaksjon mellom farger, lys og materialer

Interaksjon mellom farger, lys og materialer Interaksjon mellom farger, lys og materialer Etterutdanningskurs 2015. Lys, syn og farger - Kine Angelo Fakultet for arkitektur og billedkunst. Institutt for byggekunst, form og farge. Vi ser på grunn

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Illusjonsutstillingen Du tror det ikke når du har sett det. Elevhefte. Vitensenteret. Nils Kr. Rossing. Revisjon 4.3. Trondheim

Illusjonsutstillingen Du tror det ikke når du har sett det. Elevhefte. Vitensenteret. Nils Kr. Rossing. Revisjon 4.3. Trondheim Illusjonsutstillingen Du tror det ikke når du har sett det Elevhefte Revisjon 4.3 Vitensenteret Trondheim Nils Kr. Rossing 8 8 Utstillingen Elevark Gå gjennom utstillingen og les oppgavene ved hver modell.

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

Statistisk behandling av kalibreringsresultatene Del 2. v/ Rune Øverland, Trainor Elsikkerhet AS

Statistisk behandling av kalibreringsresultatene Del 2. v/ Rune Øverland, Trainor Elsikkerhet AS Statistisk behandling av kalibreringsresultatene Del 2. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. I den første artikkelen

Detaljer

Eksempel på data: Karakterer i «Stat class» Introduksjon

Eksempel på data: Karakterer i «Stat class» Introduksjon Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en

Detaljer

Produkt informasjon 2009

Produkt informasjon 2009 Produkt informasjon 2009 DMX kontroller DMX signal konverter DALI kontroller DSI kontroller LED dimmere konstant strøm LED dimmere konstant spenning 1..10V kontroller DSI/DALI dimmer http://nortronic.biz

Detaljer

Medisinsk statistikk Del I høsten 2008:

Medisinsk statistikk Del I høsten 2008: Medisinsk statistikk Del I høsten 2008: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Noen tips Boka Summary etter hvert kapittel forteller hvor dere har vært og hva som er sentralt Øvingene Overdriv

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Kapittel 3. Basisbånd demodulering/deteksjon. Intersymbolinterferens (ISI) og utjevning

Kapittel 3. Basisbånd demodulering/deteksjon. Intersymbolinterferens (ISI) og utjevning Kapittel 3 Basisbånd demodulering/deteksjon Intersymbolinterferens (ISI) og utjevning 3.3 s. 136 Ekvivalent kanalmodell TX filter H t (f) Channel H c (f) + RX filter H r (f) t=kt Detector Noise H(f) h(t)

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Den gule flekken er det området på netthinnen som har flest tapper, og her ser vi skarpest og best i dagslys.

Den gule flekken er det området på netthinnen som har flest tapper, og her ser vi skarpest og best i dagslys. Netthinnen inneholder to typer sanseceller: staver og tapper. Når lyset treffer dem, dannes det nerveimpulser som går videre til hjernen gjennom synsnerven. Det området på netthinnen hvor synsnervene går

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Photopolymertrykk... 2. Video av prosessen, fra Grafisk Eksperimentarium... 2 Rastrering via Bitmap... 3. Rastreringsmetoder under Bitmap...

Photopolymertrykk... 2. Video av prosessen, fra Grafisk Eksperimentarium... 2 Rastrering via Bitmap... 3. Rastreringsmetoder under Bitmap... Photopolymertrykk... 2 Video av prosessen, fra Grafisk Eksperimentarium... 2 Rastrering via Bitmap... 3 Rastreringsmetoder under Bitmap... 4 Frekvens... 5 Vinkel på rasternettet og form på punktene...

Detaljer

Hvordan redigere bilder i pixlr.com

Hvordan redigere bilder i pixlr.com Til deltakerne på FFRR sin Fagdag 24.01.14 Hvordan redigere bilder i pixlr.com http://pixlr.com/editor/ Velg om du vil starte med et tomt bilde, eller om du vil åpne et bilde fra datamaskinen. Har du et

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Skanning og avfotografering v/jim-arne Hansen. Grand Nordic Hotell, Tromsø 14. mai 2009

Skanning og avfotografering v/jim-arne Hansen. Grand Nordic Hotell, Tromsø 14. mai 2009 v/jim-arne Hansen Grand Nordic Hotell, Tromsø 14. mai 2009 Innhold: Innledning Tekniske begreper og faguttrykk Formater krav til formater Skanneteknologi: Flatbedskanner Trommelskanner Filmskanner Digitaliseringsbord

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

PhotoShop Grunnleggende ferdigheter

PhotoShop Grunnleggende ferdigheter PhotoShop Grunnleggende ferdigheter Kurs for ansatte DMMH februar/mars 2009 Versjon 2 Svein Sando Åpne og lagre Åpne: to varianter File Open Ctrl+O Lagre: to varianter File Save Ctrl+S Lagre som: to varianter

Detaljer

Regresjon med GeoGebra

Regresjon med GeoGebra Praksis og Teori Askim videregående skole 14.08.14 1 Lærplanmål 2 Punkter og Lister 3 Regresjon 4 Teori 5 Nytt verktøy Læreplanmål i 2P Modellering gjere målingar i praktiske forsøk og formulere matematiske

Detaljer

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave IT Informatikk basisfag 4/9 Sist gang: manipulering av bits I dag: Representasjon av bilde og lyd Heksadesimal notasjon Organisering av data i hovedminne og masselager (elektronisk, magnetisk og optisk

Detaljer

ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING.

ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING. ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING. Det finnes flere måter å strekkodemerke varer på: Ved å integrere strekkoden i emballasjedesignen Ved å sette på en forhåndstrykt

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer