Repetisjon av histogrammer

Størrelse: px
Begynne med side:

Download "Repetisjon av histogrammer"

Transkript

1 Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner i fargebilder Lokal gråtone-transformasjon Gråtonehistogram: h( = antall piksler i bildet med pikselverdi i Det normaliserte histogrammet G 1 h( p( =, p( = 1 n m i= Det kumulative histogrammet c( j) = j i= h( G 1 i= h( = n m INF231 1/35 INF231 2/35 Repetisjon av histogrammer II Histogramutjevning (histogram equalization) Maksimal kontrast: Alle pikselverdier like sannsynlige Histogrammet er uniformt (flatt) Ønsker en transformasjon av bildet slik at det transformerte bildet har uniformt histogram Dvs. at bildet har like mange piksler for hver gråtone Tilnærmer ved å flytte på histogramsøyler Trenger en oversikt over hvor hver søyle skal flyttes: T[i] INF231 3/35 INF231 4/35 1

2 Hvis et bilde har uniformt histogram, vil det kumulative histogrammet være tilnærmet en rett linje -> må vi finne en flytting av søylene som gir oss et kumulativt histogram som ligner mest mulig på en rett linje Store mellomrom mellom høye søyler, og lite mellomrom der vi har lave søyler -> en transform med høyt stigningstall hvor det er mange piksler, og lavt stigningstall hvor det er få piksler Det kumulative histogrammet har akkurat disse egenskapene Histogramutjevnings-transformen, T[i], er gitt ved det skalerte kumulative histogrammet til innbildet INF231 5/35 INF231 6/35 i i p( x) dx T k = G i k p( x) dx k 1 G 1/256=1/G INF231 7/35 Algoritme for histogramutjevning For et n m bilde med G gråtoner: Lag array p, c og T av lengde G med initialverdi Finn bildets normaliserte histogram Gå igjennom bildet piksel for piksel. Hvis piksel har intensitet i, la p[i]=p[i]+1 Deretter skalér, p[i] = p[i]/(n*m), i=,1,,g-1 Lag det kumulative histogrammet c c[] = p[] c[i] = c[i-1]+p[i], i=1,2,...,g-1 Sett inn verdier i transformarray T T[i] = Round( (G-1)*c[i] ), i=,1,...,g-1 Gå igjennom bildet piksel for piksel, Hvis bildet har intensitet i, sett intensitet i utbildet til s=t[i] INF231 8/35 2

3 Histogramutjevning, forts Eksempel 1 - histogramutjevning Det resulterende histogrammet ser ikke flatt ut, men det kumulative histogrammet er en rett lineær rampe Søylene kan ikke splittes for å tilfredstille et flatt histogram INF231 9/35 INF231 1/35 Eksempel 2 - histogramutjevning Histogramtilpasning Histogramutjevning gir flatt histogram Kan spesifisere annen form på resultathistogrammet: 1. Gjør histogramutjevning på innbildet, finn s=t( 2. Spesifiser ønsket nytt histogram g(z) 3. Finn den transformen T g som histogramutjevner g(z) og inverstransformen T g Inverstransformer det histogramutjevnede bildet fra punkt 1 ved z=t g -1 (s) INF231 11/35 INF231 12/35 3

4 Tilpasning til Gauss-profil Tilpasning til annen kurve Histogram-utjevnet Tilpasset Gauss-form (Bilder hentet fra DIP/NASA) INF231 13/35 INF231 14/35 Histogram matching Histogramtilpasning hvor det ene bildets histogram benyttes som ønsket form Standardisering av histogram Hensikt: Sørge for at alle bildene i en serie har like histogrammer Metoder: Histogramutjevning Histogramspesifikasjon (f.eks. til oppgitt Gauss-profil) Hvorfor? Fjerne effekten av Døgnvariasjon i belysning Aldringseffekter i lamper og detektorer Akkumulering av støv på linser etc. Hvor: Produkt-inspeksjon i industri Ansiktsgjenkjenning (Eigen-face-demoen) Mikroskopering av celler... INF231 15/35 INF231 16/35 4

5 Når bør du IKKE gjøre dette? Du mener at: Det kan være reelle variasjoner i middelverdi og varians til bildene i en bildeserie Du vet ikke: Om noen senere vil bruke (1. ordens) histogram-parametre til klassifikasjon av bildene Hva gjør du? Behold originalene, og jobb på kopier Gjør lineære gråtonetransformasjoner på bildene Dette vil bevare strukturene i histogrammet, selv om (μ,σ) endres Eksempel: Mikroskopering av kreft-celler (Fra B. Nielsen et.al) INF231 17/35 INF231 18/35 Histogram av flerkanals bilder Mye mer om fargerbilder i egen forelesning senere! Eksempel RGB-bilde Fargekamera: Måler lysintensitet i tre separate bånd i det elektromagnetiske spekteret Øyet er følsomt for rødt, grønt og blått lys Blått~435.8nm, grønt~546.1nm, rødt~7nm Bånd 1: R Bånd 2: G Multispektrale og hyperspektrale sensorer Tettere sampling av det elektromagnetiske spekteret Håndfull til flere hundre bånd INF231 19/35 Bånd 3: B Alle båndene projisert samtidig med forskjellig bølgelengde INF231 2/35 5

6 RGB-kuben,,1 blå cyan Hue, Saturation, Intensity (HSI) hvit Hue: Ren farge - gir bølgelengden i det elektromagnetiske spektrum Gråtonebilder: r=g=b magenta,, svart 1,, rød gul hvit grønn,1, Merk: fargene er her normaliserte slik at de ligger mellom og 1 cyan S grønn blå H gul rød magenta I svart H er vinkel og ligger mellom og 2π: Rød: H=, grønn: H= 2π/3, blå= 4π/3, gul: H=π/3, cyan= π, magenta= 5π/3, Hvis vi skalerer H-verdiene til 8-bits verdier vil Rød: H=, grønn: H= 85, blå= 17, gul: H=42, cyan= 127, magenta= 213. INF231 21/35 INF231 22/35 1D histogram fra fargebilder Vi kan lage et histogram for hver kanal i et RGB-bilde Vi får 3 grafer Dette sier ikke noe om mengden av piksler som har verdien (r 1,g 1,b 1 ) i forhold til (r 2,g 2,b 2 ) 2D histogrammer fra fargebilder Vi kan lage 2D histogrammer for de tre kombinasjonene av 2 og 2 kanaler. Dette gir informasjon om forekomsten av piksler med gitte verdier av (r,g), (r,b) og (b,g). INF231 23/35 INF231 24/35 6

7 3D histogram av fargebilder Histogramutjevning av RGB-bilder Et bilde med tre bånd har egentlig en 3-dimensjonal kube som histogram I hvert element i 3D-matrisen finner vi antall piksler h(r,g,b) Med 256 gråtoner får denne 256*256*256= bins Et bilde på 256*256 piksler fyller maksimalt 1/256 av disse bins, dvs. at 3Dhistogrammet er for det meste tomt Histogramutjevning på hver komponent (r,g,b) uavhengig av hverandre Kan føre til endring i fargetonene i bildet Alternativt benytte HSI: Transformér bildet fra RGB til HSI Gjør histogramutjevning på I- komponenten Transformer HSI ny tilbake til RGB S grønn blå hvit gul H magenta I svart INF231 25/35 INF231 26/35 Eks: Histogramutjevning RGB vs HSI Lokal gråtonetransform (GTT) Vil standardisere den lokale kontrasten Samme kontrast over hele bildet Originalbilde Histogramutjevning på RGB Histogramutjevning i intensitet i HSI Transformasjonene vi har sett på kan beregnes ut fra piksel-verdiene i en lokal omegn (kvadratisk vindu) omkring punktet ( Kun punktet ( bestemmes av transformen basert på dette vinduets piksler INF231 27/35 INF231 28/35 7

8 Lokal GTT - Eksempel Lokal GTT Eksempel II Originalt Global histogramutgjevning Lokal endring av middelverdi og kontrast (Fra DIP, Gonzales & Woods) INF231 29/35 INF231 3/35 Lokal GTT - 2 Utfør lokal GTT som gir samme kontrast over hele bildet Histogramspesifikasjon Beregn det kumulative histogrammet i et vindu sentrert om ( Endre senterpikselen ved den resulterende transformen Lineær standardisering av σ Beregn μ( og σ( i et vindu sentrert om ( Transformer f( til g( med en lineær transform som hadde gitt nytt standardavvik σ innenfor vinduet σ g1( = μ( + ( f ( ) σ ( Lokal GTT - 3 Ønsker vi lokal GTT som også gir en ny middelverdi μ, så bruker vi transformen σ g2( = μ + ( f ( ) σ ( Men dette vil gi et flatt bilde Parameteren β kan styre hvor kraftig vi endrer μ: β = => uforandret middelverdi over hele bildet β = 1 => lik middelverdi over hele bildet σ g3( = β μ + ( 1 β ) μ( + ( f ( ) σ ( INF231 31/35 INF231 32/35 8

9 Lokal GTT - 4 Hva er karakteristisk for homogene områder i et bilde? σ ( = Her får vi problemer, fordi σ g3( =... + ( f ( ) σ ( Innfører parameteren δ: g ( = β μ + ( 1 β ) μ( 4 + ( f ( ) σ ( + δ σ Lokal pikselverdi-mapping gir økt regnearbeid σ Lokal GTT - Implementasjon Lokal konstrastendring er regnekrevende Histogramspesifikasjon: Beregne nytt lokalt kumulativt histogram for hver piksel Lineær transform: Beregne ny μ og σ sigma for hver piksel Benytt overlappet mellom vinduene i det man flytter til neste piksel Løpende oppdatere både histogrammet, μ og σ INF231 33/35 INF231 34/35 Sentrale temaer i dag Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Fjerne effekten av variasjoner i avbildningsforhold (døgnvariasjon, lampe, støv etc) Ikke lurt med histogramtilpasning hvis histogram-formen inneholder informasjon som senere skal benyttes Alternativ til standardisering av bilder med lineær transform Litt om histogramtransformasjoner i fargebilder Lokal gråtone-transformasjon Samme kontrast (og middelverd over hele bildet Beregn og benytt transformene på lokalt vindu rundt hver piksel Regnekrevende INF231 35/35 9

Hovedsakelig fra kap. 3.3 i DIP

Hovedsakelig fra kap. 3.3 i DIP Repetisjon av histogrammer INF 231 1.2.292 29 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6 Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk

Detaljer

INF februar 2017 Ukens temaer (Kap 3.3 i DIP)

INF februar 2017 Ukens temaer (Kap 3.3 i DIP) 15. februar 2017 Ukens temaer (Kap 3.3 i DIP) Kjapp repetisjon av gråtonetransformasjon Histogramtransformasjoner Histogramutjevning Histogramtilpasning/histogramspesifikasjon Standardisering av histogram

Detaljer

INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER

INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

Repetisjon av histogrammer. Repetisjon av histogrammer II. Repetisjon av gråtonetransform. Tommelfingerløsning

Repetisjon av histogrammer. Repetisjon av histogrammer II. Repetisjon av gråtonetransform. Tommelfingerløsning 2017.02.10. Repetisjon av histogrammer Foreløbig versjon! 15. februar 2017 Ukens temaer h(i) = antall piksler i bildet med pikselverdi i, og følgelig er (Kap 3.3 i DIP) Kjapp repetisjon av gråtonetransformasjon

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 2310 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Temaer i dag Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

Temaer i dag. Repetisjon av histogrammer I. Gjennomgang av eksempler. INF2310 Digital bildebehandling. Forelesning 5. Pensum: Hovedsakelig 3.

Temaer i dag. Repetisjon av histogrammer I. Gjennomgang av eksempler. INF2310 Digital bildebehandling. Forelesning 5. Pensum: Hovedsakelig 3. emaer i dag Digital bildebehandling Forelesning 5 Histogram-transformasjoner Ole Marius Hoel Rindal omrindal@ifi.uio.no Etter orginale foiler av Fritz Albregtsen. Histogramtransformasjoner Histogramutjevning

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

Midtveiseksamen. INF Digital Bildebehandling

Midtveiseksamen. INF Digital Bildebehandling INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:

Detaljer

INF februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3)

INF februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3) 8. februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3) Histogrammer Lineære gråtonetransformer Standardisering av bilder med lineær transform Ikke-lineære,

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Raleigh-kriteriet INF 3 Digital bildebehandling EN KORT MIDTVEIS-REPETISJON Anta en perekt linse med aperture-diameter D, og at lsets bølgelengde er. To punkter i et objekt kan akkurat adskilles i bildet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Løsningsforslaget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Ole Marius Hoel Rindal Gråtonetrasformasjoner Histogramtransformasjoner 2D diskret Fourier-transform (2D DFT Filtrering i Fourierdomenet Kompresjon og koding Segmentering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING IN 06, V-200 DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. BILDE-DANNING SAMPLING og KVANTISERING BILDE-FORBEDRING I BILDE-DOMENET 2/3 200 Fritz Albregtsen. Trinn: Legg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

Bilder del 2. Farger og fargesyn. Tre-farge syn. Farger og fargerom. Cyganski, kapittel 5. Fargesyn og fargerom. Fargetabeller

Bilder del 2. Farger og fargesyn. Tre-farge syn. Farger og fargerom. Cyganski, kapittel 5. Fargesyn og fargerom. Fargetabeller Litteratur : Tema i dag: Neste uke : Bilder del 2 Cyganski, kapittel 5 Fargesyn og fargerom Fargetabeller Endre kontrasten i et bilde Histogrammer Terskling Video og grafikk, litt enkel bildebehandling

Detaljer

Hensikt: INF Metode: Naboskaps-operasjoner Hvorfor: Hvor:

Hensikt: INF Metode: Naboskaps-operasjoner Hvorfor: Hvor: Standardisering av bildets histogram INF 60-8.02.2003 Fritz Albregtsen Tema: Naboskaps-operasjoner Del : - Standardisering av bilder - Konvolusjon Litteratur: Efford, DIP, kap. 7. - 7.2 Hensikt: Sørge

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

INF 1040 løsningsforslag til kapittel 17

INF 1040 løsningsforslag til kapittel 17 INF 1040 løsningsforslag til kapittel 17 Oppgave 1: Bilder og histogrammer Her ser du pikselverdiene i et lite bilde. Kan du regne ut histogrammet til bildet, dvs. lage en tabell over hvor mange piksler

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

Histogrammetoder. Lars Aurdal Norsk regnesentral. Histogrammetoder p.1/91

Histogrammetoder. Lars Aurdal Norsk regnesentral. Histogrammetoder p.1/91 Histogrammetoder Lars Aurdal Norsk regnesentral aurdal@nr.no Histogrammetoder p.1/91 Oversikt 1 Litt praktisk informasjon. Grånivåtransformasjoner. Grunnleggende transformasjoner. Negativer. Log-transformasjoner.

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

3. obligatoriske innlevering, høsten 2014

3. obligatoriske innlevering, høsten 2014 3. obligatoriske innlevering, høsten 2014 {Jonathan Feinberg, Joakim Sundnes} {jonathf,sundnes}@simula.no November 3, 2014 Innleveringskrav Denne skal følge malen gitt på emnesidene Legges ut 2. september.

Detaljer

Kantdeteksjon og Fargebilder

Kantdeteksjon og Fargebilder Kantdeteksjon og Fargebilder Lars Vidar Magnusson April 25, 2017 Delkapittel 10.2.6 More Advanced Techniques for Edge Detection Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Marr-Hildreth

Detaljer

INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset. m cos( Zenit-distansen, z, er gitt ved

INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset. m cos( Zenit-distansen, z, er gitt ved Temaer i dag : INF 310 Farger og fargerom 1 Farge, fargesyn og deteksjon av farge Fargerom - fargemodeller 3 Overganger mellom fargerom 4 Fremvisning av fargebilder 5 Fargetabeller 6 Utskrift av fargebilder

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD INF 040 høsten 2009: Oppgavesett 2 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 6 og 7) 3. Lagring av video på DVD a) Med en bitrate på 250 Mbit/s, hvor lang tidssekvens av en digital

Detaljer

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 310 Farger og fargerom 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller 6. Utskrift av

Detaljer

INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser

INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser INF 2310 Farger og fargerom Temaer i dag (Kapittel 6: Hovedfokus på 6.1 og 6.2): 1. Litt fysikk: sollys og reflektivitet 2. Farge, fargesyn og deteksjon av farge 3. Fargerom - fargemodeller 4. Overganger

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 3 Digital bildebehandling Oppsummering FA, mai 6: Avbildning Sampling og kvantisering Geometriske operasjoner F F F3 Filtrering i bildedomenet F6, F7 Segmentering ved terskling Morfologiske operasjoner

Detaljer

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP)

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP) 25. januar 2017 Ukens temaer (Kap 2.3-2.4 med drypp fra kap. 4. i DIP) Romlig oppløsning Sampling av bilder Kvantisering av pikselintensiteter 1 / 27 Sampling av bilder Naturen er kontinuerlig (0,0) j

Detaljer

INF Kap og i DIP

INF Kap og i DIP INF 30 7.0.009 Kap..4.4 og.6.5 i DIP Anne Solberg Geometriske operasjoner Affine transformer Interpolasjon Samregistrering av bilder Geometriske operasjoner Endrer på pikslenes posisjoner o steg:. Finn

Detaljer

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Spredning, absorbsjon, transmisjon. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Spredning, absorbsjon, transmisjon. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 310 Farger og fargerom 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller 6. Utskrift av

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 2310 Digital bildebehandling Eksamensdag: Tirsdag 18. mai - tirsdag 1. juni 2004 Tid for eksamen: 18. mai 2004 kl 09:00 1.

Detaljer

Forelesning 3. april, 2017

Forelesning 3. april, 2017 Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk

Detaljer

Histogramprosessering

Histogramprosessering Histogramprosessering Lars Vidar Magnusson January 24, 217 Delkapittel 3.3 Histogram Processing Histogram i Bildeanalyse Et histogram av et digitalt bilde med intensitet i intervallet [, L) er en diskret

Detaljer

Flater, kanter og linjer INF Fritz Albregtsen

Flater, kanter og linjer INF Fritz Albregtsen Flater, kanter og linjer INF 160-11.03.2003 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 3: - Canny s kant-detektor - Rang-filtrering - Hybride filtre - Adaptive filtre Litteratur: Efford, DIP, kap.

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 230 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen 05.02.203 INF230 Temaer i dag Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering

Detaljer

Mer om Histogramprosessering og Convolution/Correlation

Mer om Histogramprosessering og Convolution/Correlation Mer om Histogramprosessering og Convolution/Correlation Lars Vidar Magnusson January 30, 2017 Delkapittel 3.3 Histogram Processing Delkapittel 3.4 Fundementals of Spatial Filtering Lokal Histogramprosessering

Detaljer

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder

Detaljer

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser INF 310 Farger og fargerom Temaer i dag (Hovedfokus på 6.1 og 6.: 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller

Detaljer

Gråtone-transformasjoner Hovedsakelig fra kap i DIP

Gråtone-transformasjoner Hovedsakelig fra kap i DIP INF 31 3..9 - AS Gråtone-transforasjoner Hovedsakeli fra kap. 3.1-3. i DIP Historaer Lineære råtonetransforer Standardiserin av bilder ed lineær transfor Ikke-lineære, paraetriske transforer Hvordan endre

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre

Detaljer

INF 2310 Digital it bildebehandling

INF 2310 Digital it bildebehandling INF 2310 Digital it bildebehandling b dli FARGER OG FARGEROM Temaer i dag : 1. Farge, fargesyn og deteksjon av farge 2. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Obligatorisk oppgave 1 INF2310, vår 2017 Dette oppgavesettet er på 9 sider, og består av 2 bildebehandlingsoppgaver. Besvarelsen av denne og neste obligatoriske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Filter-egenskaper INF Fritz Albregtsen

Filter-egenskaper INF Fritz Albregtsen Filter-egenskaper INF 60-04.03.2002 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 2: - Lineær filtrering - Gradient-detektorer - Laplace-operatorer Linearitet H [af (x, y) + bf 2 (x, y)] ah [f (x, y)]

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal

Detaljer

INF 2310 Digital it bildebehandling. Spredning, absorbsjon, transmisjon FARGER OG FARGEROM

INF 2310 Digital it bildebehandling. Spredning, absorbsjon, transmisjon FARGER OG FARGEROM INF 310 Digital it bildebehandling b dli FARGER OG FARGEROM Temaer i dag : 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder

Detaljer

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling Objekt-bilde relasjonen IN 3 Digital bildebehandling Oppsummering II, våren 7: y f f s s y Avbildning Naboskapsoperasjoner og konvolusjon Segmentering Kompresjon og koding av bilder argerom og bildebehandling

Detaljer

INF 1040 Løsningsforslag til kapittel

INF 1040 Løsningsforslag til kapittel INF 040 Løsningsforslag til kapittel 8 Oppgave : Huffmankoding med kjente sannsynligheter Gitt en sekvens av symboler som er tilstrekkelig lang, og som inneholder de 6 symbolene A, B, C, D, E, F. Symbolene

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling Filtrering INF30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W:.6., 3., 3.4-3.5,

Detaljer

Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS

Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. I de fleste tilfeller

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Filtrering. Konvolusjon. Konvolusjon. INF2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I

Filtrering. Konvolusjon. Konvolusjon. INF2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Filtrering INF30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Andreas Kleppe Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W:.6., 3., 3.4-3.5,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris

Detaljer

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER IN 106, V-2001 PLASS og TID Digitale bilder tar stor plass Eksempler: a 512 512 8 bits 3 farger 63 10 6 bits KOMPRESJON OG KODING 30/4 2001 b 24 36 mm fargefilm digitalisert ( x = y=12µm) 2000 3000 8 3

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 160 Digital bildebehandling Eksamensdag: Mandag 13. mai - mandag 27. mai 2002 Tid for eksamen: 13. mai 2002 kl 09:00 27. mai

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF2310, våren 2009 6. Vi har gitt følgende bilde: kompresjon og koding del I 1 0 1 2 2 2 3 3 3 1 1 1 2 1 1 3 3 3 1 0 1 1 2 2 2 3 3 2 1 2 2 3 2 3 4 4 2 1 2 3 2 2 3 4 4 2

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 4 Farger og fargerom Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom - fargemodeller 4 Overganger mellom fargerom 5 Fremvisning av fargebilder 6 Fargetabeller

Detaljer

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 14 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom - fargemodeller 4. Overganger mellom fargerom 5. Fremvisning av fargebilder 6. Fargetabeller

Detaljer

EKSAMEN. Bildebehandling og mønstergjenkjenning

EKSAMEN. Bildebehandling og mønstergjenkjenning EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet

Detaljer

Hva er segmentering? INF Fritz Albregtsen. Tema: Segmentering av bilder Del 1: - Ikke-kontekstuell terskling

Hva er segmentering? INF Fritz Albregtsen. Tema: Segmentering av bilder Del 1: - Ikke-kontekstuell terskling Hva er segmentering? IN 160-80003 ritz Albregtsen Tema: Segmentering av bilder Del 1: - Ikke-kontekstuell terskling Litteratur: Efford, DIP, kap 101-10 Segmentering er en prosess som deler opp bildet i

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF23, våren 2 6. Vi har gitt følgende bilde: kompresjon og koding del I 2 2 2 3 3 3 2 3 3 3 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen

Detaljer

INF1040-Farger-2. Vite hvilket fargerom vi skal bruke til forskjellige oppgaver

INF1040-Farger-2. Vite hvilket fargerom vi skal bruke til forskjellige oppgaver INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller

Detaljer

Motivasjon. INF 1040 Farger og fargerom. Fargen på et objekt. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 1040 Farger og fargerom. Fargen på et objekt. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 14 Farger og fargerom 1 Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom og overganger mellom dem 4 Fremvisning og utskrift av fargebilder 5 Fargetabeller 6

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / aine transormer Resampling og interpolasjon Samregistrering i av bilder

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / aine transormer Resampling og interpolasjon Samregistrering i av bilder

Detaljer

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom - fargemodeller 4. Overganger mellom fargerom 5. Fremvisning av fargebilder 6.

Detaljer

Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 14 Farger og fargerom 1 Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom - fargemodeller 4 Overganger mellom fargerom 5 Fremvisning av fargebilder 6 Fargetabeller

Detaljer

Viktige begreper. Viktige begreper, illustrasjon. Matematisk representasjon av digitale bilder. INF Introduksjon og Kap.

Viktige begreper. Viktige begreper, illustrasjon. Matematisk representasjon av digitale bilder. INF Introduksjon og Kap. Viktige begreper INF 23. 25 Introduksjon og Kap. 2 Introduksjon - hva er et digitalt bilde Avbildning Det elektromagnetiske spekteret Litt om bildeformater Kamera og optikk Øyet og egenskaper ved synet

Detaljer

RF5100 Lineær algebra Leksjon 10

RF5100 Lineær algebra Leksjon 10 RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

FYS2130 Svingninger og bølger, Obligatorisk oppgave I. Nicolai Kristen Solheim

FYS2130 Svingninger og bølger, Obligatorisk oppgave I. Nicolai Kristen Solheim FYS2130 Svingninger og bølger, Obligatorisk oppgave I Nicolai Kristen Solheim 29.03.2011 UiO Webmail :: Re: Spørsmål om utset Subject Re: Spørsmål om utsettelse oblig I Sender Arnt Inge Vistnes

Detaljer