PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER"

Transkript

1 IN 106, V-2001 PLASS og TID Digitale bilder tar stor plass Eksempler: a bits 3 farger bits KOMPRESJON OG KODING 30/ b mm fargefilm digitalisert ( x = y=12µm) bits bits c røntgenbilde ( x = y=50µm) bits bits d LANDSAT TM, 6 ikke-termiske kanaler bits bits Fritz Albregtsen Overføring av digitale bilder tar tid FA 30/04/2001 FA/IN106/kompr-01 ANVENDELSER METODER Kompresjon og koding benyttes for å redusere antall bits som skal til for å beskrive bildet (eller en god approksimasjon til bildet) Anvendelser innen data-lagring og data-overføring: - televideo-konferanser - fjernanalyse / meteorologi - overvåking / fjern-kontroll - telemedisin / PACS - dokumenthåndtering / FAX - multimedia / nettverk - Tidsforbruket ved kompresjon er ikke særlig viktig Dekompresjons-tiden er langt viktigere Ved sanntids data-overføring er tidsforbruket kritisk Anta at vi har piksler pr bilde Med 8 bits/piksel for hver farge (RGB) og 30 bilder pr sekund får vi ca bits/sek Det er flere opplagte måter å redusere denne data-raten på; 8 bits kromatisitet + 8 bits luminositet gir 3:2 kompresjon (tidl forelesning) kvantisering (færre gråtoner) sub-sampling (færre piksler) interlacing kompresjon og koding Vi bruker koding for kompresjon, ikke for kryptering FA/IN106/kompr-02 FA/IN106/kompr-03

2 INTERLACING INTERLACING - 2 For å unngå flimrende TV-bilder må viha en oppfrisknings-rate på 50-60Hz For å fange opp bevegelse trenger vi bilder pr sekund Vi oppnår en 2:1 kompresjon ved å filme (og overføre) i 30 Hz, og så ha en refresh -rate på 60Hz Repetisjon av hvert bilde krever lokal lagring ( frame store ) Man vil observere hopp i bildet, men ikke flimmer Interlacing gir bedre resultat Hvert bilde deles i to felter, bestående av hhv like og odde linjer Hvert felt vises så fram i halv refresh-rate (30Hz) Får ca 37% kompresjon i forhold til et non-interlaced system med samme subjektive visuelle kvalitet Metoden virker fordi vi har dårlig respons for simultan høy frekvens i rom og tid Bruker også vertikal linje- interlacing innenfor hvert felt Virker bra hvis vi ikke har simultan høy frekvens horisontalt og vertikalt Bruk ikke fiskebeins-dress på TV! Høy-kvalitets bilder bør vises i 60 Hz non-interlaced FA/IN106/kompr-04 FA/IN106/kompr-05 KOMPRESJON BILDE-KVALITET Kompresjon kan deles inn i tre steg transform (mapping) kvantisering koding Hvis vi velger en irreversibel kompresjonsmetode må vi kontrollere at kvaliteten på resultat-bildet er god nok Gitt et N M inn-bilde f(x, y) oget komprimert/dekomprimert ut-bilde g(x, y) = ˆf(x, y) Feilen vi har introdusert er e(x, y) =g(x, y) f(x, y) RMS-avviket mellom de to bildene er da Vi skiller mellom Feilfri, lossless, reversibel kompresjon Irreversibel, lossy kompresjon Det finnes en mengde metode-varianter og metode-kombinasjoner Teknikkene er ofte problem-orienterte 1/2 1 N M e rms = e 2 (x, y) N M x=1 y=1 Vi kan også betrakte feilen som støy Midlere kvadratisk signal-støy-forhold (SNR) er N [ M (SNR) ms = x=1 y=1 g 2 (x, y) ] N M x=1 y=1 [e 2 (x, y)] Mange representasjons-metoder er egentlig transformer feks kjedekode, run-length kode, y-linje kode Koding bygger ofte på sannsynlighetsfordeling RMS-verdien av SNR er da (SNR) RMS = N M x=1 y=1 [g 2 (x, y)] N M x=1 y=1 [e 2 (x, y)] FA/IN106/kompr-06 FA/IN106/kompr-07

3 BILDE-KVALITET - 2 TRANSFORMER Alternativt kan vi angi peak -verdien av SNR: (SNR) p = [max(g(x, y)) min(g(x, y))] 2 N x=1 M y=1 [e 2 (x, y)] Run-length kode (løpe-lengde kode) Er tidligere omtalt under bilderepresentasjon Dette er i vårt begreps-apparat en reversibel transformasjon SNR uttrykkes ofte i decibel Λ = 10 log 10 (SNR) Eksempel (24 byte) (3,6)(5,10)(4,2)(7,6) (8 byte) (gråtone, antall) Objektive mål slår ofte sammen alle feil over hele bildet Vårt syns-system har forskjellig toleranse for feil (støy) i flate, homogene områder og feil (støy) nær kanter/linjer i bildet Setter gjerne en maksimal-verdi M =2 m 1 på run-lengden I to-nivå bilder trenger vi bare å angi run-lengden Fler-komponent feil-mål er bedre (Del opp bildet etter lokal aktivitet) Run-lengde histogrammet er oftest ikke flatt Benytter da en kode som gir et kort kode-ord til de hyppigste run-lengdene FA/IN106/kompr-08 FA/IN106/kompr-09 LINEÆR TRANSFORMER Gitt lineær-transformasjonen y = Ax ; y 1 y n = a 11 a n1 a 1n a nn x 1 x n Denne kan være nyttig hvis elementene (x 1,, x n ) er sterkt korrelerte, og A er valgt slik at (y 1,, y n ) blir mindre korrelerte Da kan y kodes mer effektivt enn x Det er viktig at A har en invers KVANTISERING - 1 Vi vet at øyet oppfatter gråtoner 2:1 kompresjon ved å redusere fra 256 til 16 gråtoner (fra 8 til 4 bits) Enkleste (og dårligste) løsning er å heltallsdividere alle pikselverdier med 16 (uniform kvantisering) Dette introduserer ofte falske konturer Bedre løsning å re-kvantisere slik at vi får omtrent like mange piksler for hver gråtone i ut-bildet Vi får en differanse-transform hvis A = dvs y 1 = x 1, y i = x i x i 1 for i [2,, n] Dette er en reversibel transform y får da dobbelt så mange mulige verdier som x, men histogrammet er mer konsentrert Anta at vi har et 4-bits 8 8 bilde med histogram: 2, 2, 9, 10, 9, 4, 5, 8, 9, 6 Vi ønsker 2 bits 1625 piksler/gråtone De beste verdiene blir da: piksler, median = piksler, median = piksler, median = piksler, median = 8 FA/IN106/kompr-10 FA/IN106/kompr-11

4 KVANTISERING - 2 Denne teknikken er irreversibel Den gir alltid et informasjons-tap Den ligner på histogram-utjevning Flere varianter finnes Anvendes også på fler-kanals bilder se på colorquant ixshow KVANTISERING - 3 Anta at vi har benyttet en lineær transform y 1 y n = a 11 a n1 a 1n a nn y i = n a ij x j j=1 x 1 x n Hvis x j kan ha 2 m forskjellige verdier (m bits), så kan nå y i ha(2 m ) n =2 mn forskjellige verdier Denne transformen kan være reversibel Siden vi ønsker kompresjon, kan vi bli nødt til å avrunde y i til færre enn 2 mn lovlige verdier (irreversibelt!) Vi skiller mellom uniform kvantisering (like store bins ), og ikke-uniform kvantisering (feks like mange piksler pr bin ) Bruker vi differanse-transform, dropper vi ofte kvantiseringen, benytter feks Huffman-kode, og får en reversibel kompresjon FA/IN106/kompr-12 FA/IN106/kompr-13 KODING Koding skal være reversibel Naturlig bit-koding er et eksempel på koder der alle kode-ord er like lange (eks: 8 mulige verdier) SYMBOL-FREKVENS It isn t ETAOIN SHRDLU; it s ETAONI RSHDLC, or ETANOI SRHLDC! i w i c i 1 w w w Unikt dekodbare koder har den egenskap at en mottatt sekvens av kode-ord kan dekodes på én og bare én måte Anta c 1 =0,c 2 =1,c 3 = 01, c 4 =10 Hva betyr {0011}? Er det {c 1 c 1 c 2 c 2 } eller {c 1 c 3 c 2 }? Naturlig bit-kode er optimal bare hvis alle verdiene i inn-bildet er like sannsynlige For ulike sannsynligheter er koder med variabel lengde på kode-ordene bedre hyppige symboler får korte kode-ord (feks Morse-alfabetet) FA/IN106/kompr-14 FA/IN106/kompr-15

5 Data og informasjon ENTROPI Vi vil lagre / overføre informasjon ved bruk av færre data Redundante data må bort Kompresjonsrate angis som CR = i c i=bits i original, c=bits i komprimert bilde Relativ redundans R D =1 1 CR =1 c i percentage removed = 100(1 c/i) Bits per piksel : Gitt et M N bilde med G gråtoner, der grånivå r k finnes n k ganger, og representeres med l(r k ) bits Sannsynligheten for r k (norm histogram): P r (r k )= n k, k =0,1,, G 1 NM Gjennomsnittlig antall bits per piksel L avg = G 1 l(r k )P r (r k ) k=0 Et b-bits bilde består av piksler med gråtoner fra et alfabet med 2 b symboler For et gitt bilde kan vi finne sannsynligheten for hvert tegn i alfabetet: p i = h(i) NM, 2b 1 i=0 p i =1 Vi er interessert i gjennomsnittlig informasjon pr piksel Intuitivt har vi at en mindre sannsynlig hendelse gir mer informasjon enn en mer sannsynlig hendelse Definerer informasjons-innholdet I(s i ) i hendelsen s i ved 1 I(s i ) = log p(s i ) Basis for logaritmen gjenspeiler den enheten som vi uttrykker informasjonsmengden i log 2 (1/p(s i )) gir informasjons-innholdet i bits FA/IN106/kompr-19 FA/IN106/kompr-20 ENTROPI - 2 ENTROPI - 3 Midler vi over alle symboler s i i bildets alfabet, får vi gjennomsnittlig informasjon pr symbol 1 ordens entropi: H(s) = 2b 1 i=0 p(s i )I(s i )= 2b 1 i=0 p(s i ) log 2 (p(s i )) Hvis hvert symbol s i har en sannsynlighet p i,og vi konstruerer en kode c = {c 1,, c i,, c m } såer det gjennomsnittlige antall bits pr piksel etter koding gitt ved R = m β i p i i=1 Hvis alle gråtoner er like sannsynlige: der β i er lengden (i bit) av kodeordet c i H(s) = 2b 1 1 i=0 2 log 2( 1 b 2 b)=b Hvis bare én verdi (α) forekommer: H(s) = 2b 1 0 log 2 (0) 1 log 2 (1) = 0 i=0,i α Entropien representerer en nedre grense for hvor kompakt et bilde kan komprimeres hvis vi bare ser på pikslene hver for seg H er en nedre grense for R Eksempel: w i p(w i ) c i β i p i log 2 (p i ) β i p i w w w w w w Vi ser her at R = m β i p i >H i=1 FA/IN106/kompr-21 FA/IN106/kompr-22

6 HUFFMAN-KODING - 1 Gitt et bilde med m gråtoner 1) Sortér gråtonene etter sannsynlighet 2) Slå sammen de to minst sannsynlige gråtonene i én gruppe, og sortér igjen 3) Gjenta 2) inntil det bare er to grupper igjen - Gi kodene 0 og 1 til de to gruppene - Traversér bakover, og legg til 0 og 1 i kodeordet for de to minst sannsynlige gruppene i hvert steg Et eksempel: HUFFMAN-KODING - 2 EKSEMPEL 1 si pi ci s i p i c i s i p i c i s i p i c i s i p i c i s s s s s s s s s s s s s s s s s s s s Gjennomsnittlig antall bits pr piksel blir her R = ( ) = 22 Mens vi for dette bildet har H=21543 FA/IN106/kompr-23 FA/IN106/kompr-24 HUFFMAN-KODING - 3 EKSEMPEL 2 Ingen kode-ord danner prefiks i en annen kode Dette sikrer at en sekvens av kodeord kan dekodes entydig, uten at man trenger ende-markører I eksemplet nedenfor vil bli delt opp til og tolkes til eiaiouoou HUFFMAN-KODING - 4 Vi ser at den ideelle binære kode-ord lengden for symbol s i er β i = log 2 (p(s i )) Siden bare heltalls ord-lengder er mulig, er det bare p(s i )= 1 2 k som tilfredsstiller dette kravet Eksempel: Hvis vi har s i p i c i s 1 05 o s s s s s så blir gjennomsnittlig antall bits pr piksel R = H =19375 FA/IN106/kompr-25 FA/IN106/kompr-26

7 SHIFT - KODER Sortér gråtone-verdier etter sannsynlighet Hvis vi bruker 2 bits kan vi lage 4 distinkte 2 bits kode-ord {c 1,c 2,c 3,c 4 } (S 2 -kode) Tre av disse tilordnes symbolene s 1,s 2,s 3 c 4 benyttes til åangi at s i ligger utenfor dette området Hvis dette er tilfelle, shifter vi de tre kode-ordene 3 plasser opp i s, og bruker c 4 som prefiks Eksempel: c(s 9 )=c 4 c 4 c 3 Med samme eksempel-valg som tidligere får vi nå s i p i S 2 c i s 1 04 c 1 00 s 2 03 c 2 01 s 3 01 c 3 10 s c 4 c s c 4 c s c 4 c og gjennomsnittlig antall bits pr piksel blir DIFFERANSE - KODING Gitt en scan-linje i et bilde med intensiteter x i {0,, 2 m 1} Transformér (reversibelt) til x 1,x 2 x 1,x 3 x 2,, x n x n 1 Vi trenger nå (m+1) bits hvis vi skal tilordne like lange binære koder til alle mulige verdier I differanse-histogrammet vil de fleste verdiene samle seg om 0, feks mellom -8 og +8 Lag feks en 16 ords naturlig kode c 1 = 0000,, c 16 = 1111 Tilordne 14 av disse ordene til differansene 7, 6,, 1, 0, 1,, 5, 6 c 1 og c 16 brukes til å indikere at x < 7og x>+7 (to-sidet shift-kode) x =22 c 16 c 16 c 3 x = 22 c 1 c 1 c 15 R = β i p i = =24 FA/IN106/kompr-27 FA/IN106/kompr-29 DIFFERANSE - KODING LEMPEL - ZIV Alle kode-ord brukes ikke like hyppig En ulik-lengde kode er da bedre Premierer mønstre i dataene Bygger opp en symbolstreng-liste både under kompresjon og dekompresjon Denne listen skal ikke lagres eller sendes Det eneste man trenger er et standard alfabet Mottaker kjenner bare alfabetet, og lager nye fraser i sin liste ved å ta nest siste streng pluss første symbol i sist tilsendte streng, inntil listen er full Eks: Anta at alfabetet er {a, b, c} {1,2,3}, og la dataene være {ababcbababaaaaabab} Merk at c 1 og c 16 forekommer relativt hyppig, og har forholdsvis korte kode-ord ser sender liste mottar tolker liste a =1 a=1 b=2 b=2 c=3 c=3 a 1 ab =4 1 a b 2 ba =5 2 b ab =4 ab 4 abc =6 4 ab ba =5 c 3 cb =7 3 c abc =6 ba 5 bab =8 5 ba cb =7 bab 8 baba =9 8 bab bab =8 a 1 aa =10 1 a baba =9 aa 10 aaa =11 10 aa aa =10 aa 10 aab =12 10 aa aaa =11 bab 8 8 bab aab =12 FA/IN106/kompr-30 FA/IN106/kompr-31

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER PLASS og TID INF 60-30042002 Fritz Albregtsen Tema: komprimering av bilder Litteratur: Efford, DIP, kap 2 Digitale bilder tar stor plass Eksempler: a 52 52 8 bits 3 farger 63 0 6 bits b 24 36 mm fargefilm

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF2310, våren 2009 6. Vi har gitt følgende bilde: kompresjon og koding del I 1 0 1 2 2 2 3 3 3 1 1 1 2 1 1 3 3 3 1 0 1 1 2 2 2 3 3 2 1 2 2 3 2 3 4 4 2 1 2 3 2 2 3 4 4 2

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Hvor mye informasjon inneholder en melding? 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

INF 1040 Løsningsforslag til kapittel

INF 1040 Løsningsforslag til kapittel INF 040 Løsningsforslag til kapittel 8 Oppgave : Huffmankoding med kjente sannsynligheter Gitt en sekvens av symboler som er tilstrekkelig lang, og som inneholder de 6 symbolene A, B, C, D, E, F. Symbolene

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF23, våren 2 6. Vi har gitt følgende bilde: kompresjon og koding del I 2 2 2 3 3 3 2 3 3 3 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen

Detaljer

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 11 Kompresjon og koding I Andreas Kleppe Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m. 18.7.2

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

INF 1040 Digital video digital bildeanalyse. Noen begreper. Kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Digital video digital bildeanalyse. Noen begreper. Kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Digital video digital ildeanalyse Tema i dag :. Hvor mye informasjon inneholder en melding?. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

da INF 2310 Digital bildebehandling

da INF 2310 Digital bildebehandling Ulike typer redundans da INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i

Detaljer

Kompresjon. Noen begreper. Plass og tid. Kompresjon. Digitale data kan ta stor plass. Eksemper : Overføring av data tar tid: Dekompresjonsalgoritme

Kompresjon. Noen begreper. Plass og tid. Kompresjon. Digitale data kan ta stor plass. Eksemper : Overføring av data tar tid: Dekompresjonsalgoritme Kompresjon Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Litteratur : Cyganski kap. 7 Compressing Information kap. 8 Image Compression kap. 9 Digital Video Data Kompresjon Lagring eller oversending

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

Anvendelser. Noen begreper. Kompresjon

Anvendelser. Noen begreper. Kompresjon Anvendelser INF 30 Digital it ildeehandling dli 7.04.0 Kompresjon og koding Del I Tre steg i kompresjon Redundans Bildekvalitet Transformer Koding og entropi Shannon-Fano og Huffman GW: Kap. 8 unntatt

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING IN 06, V-200 DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. BILDE-DANNING SAMPLING og KVANTISERING BILDE-FORBEDRING I BILDE-DOMENET 2/3 200 Fritz Albregtsen. Trinn: Legg

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF2310 Digital bildebehandling FORELESNING 11 KOMPRESJON OG KODING II Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 11 Kompresjon og koding II Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.4, 18.7.3

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon INF2310 Digital bildebehandling Ole Marius Hoel Rindal, foiler av Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.4, 18.7.3

Detaljer

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (løsningsforslag) (kapittel 18) Tenk selv -oppgaver

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (løsningsforslag) (kapittel 18) Tenk selv -oppgaver IN høsten : Oppgavesett Kompresjon og koding (løsningsforslag) (kapittel ) Tenk selv -oppgaver. Heksadesimal Sudoku Vi har en kvadratisk matrise med * elementer som igjen er delt opp i * blokker på * elementer.

Detaljer

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (kapittel 18)

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (kapittel 18) asitoppgaver IN høsten : Oppgavesett Kompresjon og koding (kapittel ) enne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. et er ikke nødvendigvis meningen

Detaljer

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Kompresjon og koding Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Tema i dag :. Noen egreper. Redundans Data Kompresjon Lagring eller oversending Dekompresjon Data. Differanse- og løpelengdetransformer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 12 Kompresjon og koding II Andreas Kleppe LZW-koding Aritmetisk koding JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.7.3-18.7.4 og 18.8-18.8.1 F12

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Kompresjon og koding Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Tema i dag :. Noen egreper. Redundans Data Kompresjon Lagring eller oversending Dekompresjon Data. Differanse- og løpelengdetransformer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF230 Digital bildebehandling Forelesning Kompresjon og koding II Ole Marius Hoel Rindal, foiler av Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon

Detaljer

For J kvantiseringsnivåer er mean square feilen:

For J kvantiseringsnivåer er mean square feilen: Slide 1 Slide 2 Kap. 6 Bilde kvantisering Kap. 6.1 Skalar kvantisering Desisons og rekonstruksonsnivåer velges ved å minimalisere et gitt kvantiseringsfeilmål mellom f og ˆf. Kvantisering: Prosessen som

Detaljer

INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER

INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

Anvendelser. Noen begreper. Kompresjon. INF 2310 Digital bildebehandling

Anvendelser. Noen begreper. Kompresjon. INF 2310 Digital bildebehandling Anvendelser INF 30 Digital ildeehandling Kompresjon og koding Del I Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m. 8.7. + Appendiks B Kompresjon

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Repetisjon av histogrammer

Repetisjon av histogrammer Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner

Detaljer

FORELESNING 12. KOMPRESJON OG KODING II Andreas Kleppe

FORELESNING 12. KOMPRESJON OG KODING II Andreas Kleppe Repetisjon: Kompresjon INF2310 Digital bildebehandling FORELESNING 12 KOMPRESJON OG KODING II Andreas Kleppe LZW-koding Aritmetisk koding JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.7.3-18.7.4

Detaljer

Anvendelser. Kompresjon. Noen begreper. INF 2310 Digital bildebehandling

Anvendelser. Kompresjon. Noen begreper. INF 2310 Digital bildebehandling Anvendelser IF 3 Digital ildeehandling Kompresjon og koding Del I Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman GW: Kap. 8 unntatt 8..7, 8.., 8..6, 8.., 8.3 Kompresjon

Detaljer

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6 Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

KOMPRESJON OG KODING

KOMPRESJON OG KODING KOMPRESJON OG KODING Et kapittel fra boken Fritz Albregtsen & Gerhard Skagestein Digital representasjon av tekster, tall former, lyd, bilder og video 2. utgave Unipub 2007 - Med enkelte mindre endringer

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 2310 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Temaer i dag Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

FORELESNING 11. KOMPRESJON OG KODING I Andreas Kleppe. Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman

FORELESNING 11. KOMPRESJON OG KODING I Andreas Kleppe. Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Anvendelser INF30 Digital ildeehandling FORELESNING KOMPRESJON OG KODING I Andreas Kleppe Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m.

Detaljer

Hovedsakelig fra kap. 3.3 i DIP

Hovedsakelig fra kap. 3.3 i DIP Repetisjon av histogrammer INF 231 1.2.292 29 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

INF2810: Funksjonell Programmering. Huffmankoding

INF2810: Funksjonell Programmering. Huffmankoding INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Huffmankoding Erik Velldal Universitetet i Oslo 20. februar 2015 Tema I går Trær som lister av lister Trerekursjon Mengder som trær

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

INF februar 2017 Ukens temaer (Kap 3.3 i DIP)

INF februar 2017 Ukens temaer (Kap 3.3 i DIP) 15. februar 2017 Ukens temaer (Kap 3.3 i DIP) Kjapp repetisjon av gråtonetransformasjon Histogramtransformasjoner Histogramutjevning Histogramtilpasning/histogramspesifikasjon Standardisering av histogram

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD INF 040 høsten 2009: Oppgavesett 2 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 6 og 7) 3. Lagring av video på DVD a) Med en bitrate på 250 Mbit/s, hvor lang tidssekvens av en digital

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling Objekt-bilde relasjonen IN 3 Digital bildebehandling Oppsummering II, våren 7: y f f s s y Avbildning Naboskapsoperasjoner og konvolusjon Segmentering Kompresjon og koding av bilder argerom og bildebehandling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Ole Marius Hoel Rindal Gråtonetrasformasjoner Histogramtransformasjoner 2D diskret Fourier-transform (2D DFT Filtrering i Fourierdomenet Kompresjon og koding Segmentering

Detaljer

Filter-egenskaper INF Fritz Albregtsen

Filter-egenskaper INF Fritz Albregtsen Filter-egenskaper INF 60-04.03.2002 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 2: - Lineær filtrering - Gradient-detektorer - Laplace-operatorer Linearitet H [af (x, y) + bf 2 (x, y)] ah [f (x, y)]

Detaljer

INF1040 Digital representasjon. Oppsummering. Glyfer og tegn. Den endelige løsning UNICODE og ISO bit ulike tegn!

INF1040 Digital representasjon. Oppsummering. Glyfer og tegn. Den endelige løsning UNICODE og ISO bit ulike tegn! INF040 Digital representasjon Oppsummering Glyfer og tegn Tegn: Det bakenforliggende begrep for bestemte visualiseringer ( strektegninger ) på papir, skjerm, steintavler Et tegn kan vises fram med ulike

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

Repetisjon av histogrammer. Repetisjon av histogrammer II. Repetisjon av gråtonetransform. Tommelfingerløsning

Repetisjon av histogrammer. Repetisjon av histogrammer II. Repetisjon av gråtonetransform. Tommelfingerløsning 2017.02.10. Repetisjon av histogrammer Foreløbig versjon! 15. februar 2017 Ukens temaer h(i) = antall piksler i bildet med pikselverdi i, og følgelig er (Kap 3.3 i DIP) Kjapp repetisjon av gråtonetransformasjon

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 10 Kompresjon og koding I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Tre steg i kompresjon Redundanser Koding og entropi Shannon-Fano-koding Huffman-koding

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

Temaer i dag. Repetisjon av histogrammer I. Gjennomgang av eksempler. INF2310 Digital bildebehandling. Forelesning 5. Pensum: Hovedsakelig 3.

Temaer i dag. Repetisjon av histogrammer I. Gjennomgang av eksempler. INF2310 Digital bildebehandling. Forelesning 5. Pensum: Hovedsakelig 3. emaer i dag Digital bildebehandling Forelesning 5 Histogram-transformasjoner Ole Marius Hoel Rindal omrindal@ifi.uio.no Etter orginale foiler av Fritz Albregtsen. Histogramtransformasjoner Histogramutjevning

Detaljer

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt.

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt. Side 1 av 5 + 2 sider vedlegg NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 94314 KONTINUASJONSEKSAMEN

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

INF Kap og i DIP

INF Kap og i DIP INF 30 7.0.009 Kap..4.4 og.6.5 i DIP Anne Solberg Geometriske operasjoner Affine transformer Interpolasjon Samregistrering av bilder Geometriske operasjoner Endrer på pikslenes posisjoner o steg:. Finn

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: John Torjus Flåm Tlf.: 957602 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder. 1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Prosjekt 2, Diskret kosinus-transformasjon.

MIK 200 Anvendt signalbehandling, 2012. Prosjekt 2, Diskret kosinus-transformasjon. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Prosjekt 2, Diskret kosinus-transformasjon. Vi skal i dette miniprosjektet se litt på bruk av

Detaljer

Oblig 4 - Mathias Hedberg

Oblig 4 - Mathias Hedberg Oblig 4 - Mathias Hedberg Oppgave nr. 1 En ser for QPSK skal overføre data: [0,1,1,0,0,1,1,1,1,0] 1. Tegn datasignalet for I(t) y = [0,1,0,1,1,9];figure; stairs(0:length(y)-1,y); ylim([-.5 1.5]); h = gcf;set(h,'position',

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

DV - CODEC. Introduksjon

DV - CODEC. Introduksjon DV - CODEC EN KORT PRESENTASJON I INF 5080 VED RICHARD MAGNOR STENBRO EMAIL: rms@stenbro.net 21. April 2004 Introduksjon Dv-codecen ble utviklet spesielt for bruk i både profesjonelle og konsumer kamera.

Detaljer

Informasjonsteori Skrevet av Joakim von Brandis, 18.09.2003

Informasjonsteori Skrevet av Joakim von Brandis, 18.09.2003 Informasjonsteori Skrevet av Joakim von Brandis, 18.09.200 1 Bits og bytes Fundamentalt for informasjonsteori er at all informasjon (signaler, lyd, bilde, dokumenter, tekst, etc) kan representeres som

Detaljer

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP)

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP) 25. januar 2017 Ukens temaer (Kap 2.3-2.4 med drypp fra kap. 4. i DIP) Romlig oppløsning Sampling av bilder Kvantisering av pikselintensiteter 1 / 27 Sampling av bilder Naturen er kontinuerlig (0,0) j

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10)

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet:

Detaljer

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder

Detaljer

INF1040 Oppgavesett 6: Lagring og overføring av data

INF1040 Oppgavesett 6: Lagring og overføring av data INF1040 Oppgavesett 6: Lagring og overføring av data (Kapittel 1.5 1.8) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende oppgaver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 2310 Digital bildebehandling Eksamensdag: Tirsdag 18. mai - tirsdag 1. juni 2004 Tid for eksamen: 18. mai 2004 kl 09:00 1.

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk

Detaljer

INF februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3)

INF februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3) 8. februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3) Histogrammer Lineære gråtonetransformer Standardisering av bilder med lineær transform Ikke-lineære,

Detaljer

Kapittel 3. Basisbånd demodulering/deteksjon. Avsnitt 3.1-3.2

Kapittel 3. Basisbånd demodulering/deteksjon. Avsnitt 3.1-3.2 Kapittel 3 Basisbånd demodulering/deteksjon Avsnitt 3.1-3.2 Basisbånd demodulering & deteksjon Basisbånd: Ingen bærebølgefrekvens Også en modell med ideell oppkonvertering av frekvens i senderen, og ideell

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder

Detaljer

Generelle Tips. INF Algoritmer og datastrukturer. Åpen og Lukket Hashing. Hashfunksjoner. Du blir bedømt etter hva du viser at du kan

Generelle Tips. INF Algoritmer og datastrukturer. Åpen og Lukket Hashing. Hashfunksjoner. Du blir bedømt etter hva du viser at du kan Generelle Tips INF2220 - lgoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo Du blir bedømt etter hva du viser at du kan Du må begrunne svar Du må ikke skrive av bøker

Detaljer

KAPITTEL 10 Flerskala-analyse og kompresjon av lyd

KAPITTEL 10 Flerskala-analyse og kompresjon av lyd KAPITTEL 10 Flerskala-analyse og kompresjon av lyd Vi kan lagre dokumenter av mange forskjellige typer på en datamaskin. Vi kan for eksempel ha en datafil der innholdet er tall, vi kan ha en tekstfil,

Detaljer