Forelesning 3. april, 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Forelesning 3. april, 2017"

Transkript

1 Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler

2 MGF for følger av uavhengige identisk fordelte variable FRA FORELESNINGEN 28/3: Anta at X 1,..., X n er uavhengige identisk fordelte variable med E[X i ] = 0 og E[X 2 i ] = V[X i ] = 1, i = 1,..., n. Vi innfører så: Y = 1 n (X X n ) = n X Da holder: lim M Y (t) = e 1 2 t2. n Dette er MGF for N(0, 1)-fordelingen!!

3 MGF for følger av uavhengige identisk fordelte variable Anta mer generelt at X 1,..., X n er uavhengige identisk fordelte variable med E[X i ] = µ og V[X i ] = σ 2, i = 1,..., n. Vi innfører så: Y = X µ σ/ n = 1 n n i=1 n [ X i µ ] σ = n 1 n n [ X i µ ] = n σ W, i=1 der W i = (X i µ)/σ, i = 1,..., n. Dette medfører at: E[W i ] = 0, og E[W 2 i ] = V[W i ] = 1, i = 1,..., n. og dermed igjen at: lim M Y (t) = e 1 2 t 2. n

4 Sentralgrenseteoremet Anta at X 1,..., X n er uavhengige identisk fordelte variable med E[X i ] = µ og V[X i ] = σ 2, i = 1,..., n, og innfør: Da holder: Y = X µ σ/ n lim P(Y y) = lim P( X µ n n σ/ < y) = Φ(y), n der Φ( ) er den kumulative fordelingsfunksjonen for standard normalfordelingen. For n stor er altså Y tilnærmet standard normalfordelt!

5 Sentralgrenseteoremet Eksempler La X Bin(n, p). Da vet vi at: E[X] = np, V[X] = np(1 p), SD[X] = np(1 p). Av dette følger det at: E[X/n] = p, V[X/n] = p(1 p)/n, SD[X/n] = p(1 p)/n. BEMERK: Vi kan skrive: X n = 1 n n B i = B, i=1 der B 1,..., B n er uavhengige Bernoulli(p)-fordelte.

6 Sentralgrenseteoremet Eksempler Vi har da også: E[ B] = p, V[ B] = p(1 p)/n, SD[ B] = p(1 p)/n. Dermed følger det av sentralgrenseteoremet at: Y = X np np(1 p) = X n p p(1 p) n = B E[ B] SD[ B] N(0, 1).

7 Sentralgrenseteoremet Eksempler Anta at X Bin(n, p), der n = 100 og p = 0.7. Ved å benytte MATLAB kan vi finne P(X 70): >> binocdf(70,100,0.7) ans = Vi kan også beregne den tilsvarende sannsynligheten ved å benytte normaltilnærmingen: X np 70 np P(X 70) = P( ) = Φ( ) = 0.5 np(1 p) np(1 p) 21

8 Sentralgrenseteoremet Eksempler Anta at X Bin(n, p), der n = 500 og p = 0.6. Ved å benytte MATLAB kan vi finne P(X 300): >> binocdf(300,500,0.6) ans = Vi kan også beregne den tilsvarende sannsynligheten ved å benytte normaltilnærmingen: X np 300 np P(X 300) = P( ) = Φ( ) = 0.5 np(1 p) np(1 p) 120

9 Histogram Anta at vi har et datasett X 1,..., X n. Vi deler så tallinjen inn i k disjunkte intervaller av lengde δ > 0, betegnet I 1,..., I k, og teller opp hvor mange av X i -ene som faller innenfor hvert av intervallene. Vi innfører så: J j = Antall X i -er innenfor intervallet I j, j = 1,..., k. Vi antar at intervallene dekker hele utfallsrommet til datasettet slik at k j=1 J j = n. Et histogram er et søylediagram der arealet av hver søyle representerer den relative andelen av data som faller innenfor intervallet som søylen er plassert over. Høyden på j-te søyle, h j velges gjerne slik at det samlede arealet av søylene blir 1: h j δ = J j n P(X i I j ), j = 1,..., k.

10 Histogram HISTOGRAM MED TOTALT AREAL 1: % % % % 90.0 % 75.0 % 60.0 % 45.0 % 30.0 % 15.0 % 0.0 %

11 Histogram FREKVENSSPLOT DER SUMMEN AV HØYDENE ER 1: 27.5 % 24.8 % 22.0 % 19.3 % 16.5 % 13.8 % 11.0 % 8.3 % 5.5 % 2.8 % 0.0 %

12 S-kurver Anta igjen at vi har et datasett X 1,..., X n. Vi innfører så funksjonen ˆF(x) gitt ved: ˆF(x) = 1 n n I(X i x) i=1 = Andel X i -ene som er mindre enn eller lik x P(X i x) Funksjonen ˆF(x) kalles den empiriske kumulative fordelingsfunksjonen, og refereres ofte til som en S-kurve.

13 S-kurver S-KURVE: 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,50-2,70-0,90 0,90 2,70 4,50

14 Q-Q-plot For et gitt datasett X 1,..., X n, lar vi Y 1 Y 2 Y n være ordningsobservatorene. Vi antar at vi har observert at Y i = y i, i = 1,..., n. Vi bemerker da at: ˆF(y i ) = [Andel X i y i ] = i/n P(X i y i ) La så ˆµ = X 1 og ˆσ = n n 1 i=1 (X i X) 2 være anslag for hhv. forventning og standardavvik i fordelingen til X i -ene. La videre z 1,..., z n være slik at P(Z z i ) = i/n, i = 1,..., n, der Z N(ˆµ, ˆσ). I et Q-Q-plot plotter vi y i -ene mot z i -ene. Hvis plottet er en tilnærmet rett linje, så er fordelingen tilnærmet normalfordelt.

15 Q-Q-plot Q-Q-plot: 4,50 2,70 0,90-0,90-2,70-4,50-3,25-1,55 0,15 1,85 3,55 5,25

16 Sentralgrenseteoremet Eksempel 1 EKSEMPEL 1: Anta X 1,..., X n er uavhengige Bernoulli(0.5)-fordelte. Vi ser så på: Y = X E[ X] SD[ X]. I dette tilfellet er: Dette betyr at: E[ X] = E[X i ] = p = 0.5 SD[ X] = SD[X i ]/ n = p(1 p)/ n = 0.5/ n. Y = n( X 0.5)/0.5. Ved å benytte simulering, kan vi igjen anslå forelingen til Y for ulike verdier av n ved å tegne histogrammer. I de etterfølgende beregningene har vi benyttet N = simuleringer, og sett på tilfellene der n = 6 2 = 36, n = 12 2 = 144, n = 24 2 = 576.

17 Sentralgrenseteoremet Eksempel 1 Histogram for normalisert gjennomsnitt av n = 36 Bernoulli(0.5)-fordelte variable mot normaltettheten 55,0 % Histogram 49,5 % 44,0 % 38,5 % 33,0 % 27,5 % 22,0 % 16,5 % 11,0 % 5,5 % 0,0 % -4,50-2,80-1,10 0,60 2,30 4,00

18 Sentralgrenseteoremet Eksempel 1 Histogram for normalisert gjennomsnitt av n = 144 Bernoulli(0.5)-fordelte variable mot normaltettheten 42,5 % Histogram 38,3 % 34,0 % 29,8 % 25,5 % 21,3 % 17,0 % 12,8 % 8,5 % 4,3 % 0,0 % -4,75-2,85-0,95 0,95 2,85 4,75

19 Sentralgrenseteoremet Eksempel 1 Histogram for normalisert gjennomsnitt av n = 576 Bernoulli(0.5)-fordelte variable mot normaltettheten 40,0 % Histogram 36,0 % 32,0 % 28,0 % 24,0 % 20,0 % 16,0 % 12,0 % 8,0 % 4,0 % 0,0 % -4,50-2,75-1,00 0,75 2,50 4,25

20 Sentralgrenseteoremet Eksempel 1 S-kurve for normalisert gjennomsnitt av n = 36 Bernoulli(0.5)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,50-2,70-0,90 0,90 2,70 4,50

21 Sentralgrenseteoremet Eksempel 1 S-kurve for normalisert gjennomsnitt av n = 144 Bernoulli(0.5)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,75-2,85-0,95 0,95 2,85 4,75

22 Sentralgrenseteoremet Eksempel 1 S-kurve for normalisert gjennomsnitt av n = 576 Bernoulli(0.5)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,50-2,70-0,90 0,90 2,70 4,50

23 Sentralgrenseteoremet Eksempel 1 Q-Q-plot for normalisert gjennomsnitt av n = 36 Bernoulli(0.5)-fordelte variable mot normalfordelingen 4,50 Scatter plot 2,70 0,90-0,90-2,70-4,50-4,50-2,80-1,10 0,60 2,30 4,00

24 Sentralgrenseteoremet Eksempel 1 Q-Q-plot for normalisert gjennomsnitt av n = 144 Bernoulli(0.5)-fordelte variable mot normalfordelingen 4,50 Scatter plot 2,70 0,90-0,90-2,70-4,50-4,75-2,85-0,95 0,95 2,85 4,75

25 Sentralgrenseteoremet Eksempel 1 Q-Q-plot for normalisert gjennomsnitt av n = 576 Bernoulli(0.5)-fordelte variable mot normalfordelingen 4,50 Scatter plot 2,70 0,90-0,90-2,70-4,50-4,50-2,75-1,00 0,75 2,50 4,25

26 Sentralgrenseteoremet Eksempel 2 EKSEMPEL 2: Anta X 1,..., X n er uavhengige Eksp(1)-fordelte. Vi ser så på: Y = X E[ X] SD[ X]. I dette tilfellet er: Dette betyr at: E[ X] = E[X i ] = 1 SD[ X] = SD[X i ]/ n = 1/ n = 1/ n. Y = n( X 1). Ved å benytte simulering, kan vi igjen anslå forelingen til Y for ulike verdier av n ved å tegne histogrammer. I de etterfølgende beregningene har vi benyttet N = simuleringer, og sett på tilfellene der n = 6 2 = 36, n = 12 2 = 144, n = 24 2 = 576.

27 Sentralgrenseteoremet Eksempel 2 Histogram for normalisert gjennomsnitt av n = 36 Eksp(1)-fordelte variable mot normaltettheten 42.5 % 38.3 % 34.0 % 29.8 % 25.5 % 21.3 % 17.0 % 12.8 % 8.5 % 4.3 % 0.0 %

28 Sentralgrenseteoremet Eksempel 2 Histogram for normalisert gjennomsnitt av n = 144 Eksp(1)-fordelte variable mot normaltettheten 40.0 % 36.0 % 32.0 % 28.0 % 24.0 % 20.0 % 16.0 % 12.0 % 8.0 % 4.0 % 0.0 %

29 Sentralgrenseteoremet Eksempel 2 Histogram for normalisert gjennomsnitt av n = 576 Eksp(1)-fordelte variable mot normaltettheten 40.0 % 36.0 % 32.0 % 28.0 % 24.0 % 20.0 % 16.0 % 12.0 % 8.0 % 4.0 % 0.0 %

30 Sentralgrenseteoremet Eksempel 2 S-kurve for normalisert gjennomsnitt av n = 36 Eksp(1)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,50-2,55-0,60 1,35 3,30 5,25

31 Sentralgrenseteoremet Eksempel 2 S-kurve for normalisert gjennomsnitt av n = 144 Eksp(1)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,50-2,55-0,60 1,35 3,30 5,25

32 Sentralgrenseteoremet Eksempel 2 S-kurve for normalisert gjennomsnitt av n = 576 Eksp(1)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -4,50-2,70-0,90 0,90 2,70 4,50

33 Sentralgrenseteoremet Eksempel 2 Q-Q-plot for normalisert gjennomsnitt av n = 36 Eksp(1)-fordelte variable mot normalfordelingen

34 Sentralgrenseteoremet Eksempel 2 Q-Q-plot for normalisert gjennomsnitt av n = 144 Eksp(1)-fordelte variable mot normalfordelingen

35 Sentralgrenseteoremet Eksempel 2 Q-Q-plot for normalisert gjennomsnitt av n = 576 Eksp(1)-fordelte variable mot normalfordelingen

36 Sentralgrenseteoremet Eksempel 3 EKSEMPEL 3: Anta X 1,..., X n er uavhengige Unif( 1, +1)-fordelte. Vi ser så på: Y = X E[ X] SD[ X]. I dette tilfellet er: Dette betyr at: E[ X] = E[X i ] = 0 SD[ X] = SD[X i ]/ n = (1/ 3)/ n = 0.58/ n. Y = n X Ved å benytte simulering, kan vi igjen anslå forelingen til Y for ulike verdier av n ved å tegne histogrammer. I de etterfølgende beregningene har vi benyttet N = simuleringer, og sett på tilfellene der n = 6 2 = 36, n = 12 2 = 144, n = 24 2 = 576.

37 Sentralgrenseteoremet Eksempel 3 Histogram for normalisert gjennomsnitt av n = 36 Unif( 1, +1)-fordelte variable mot normaltettheten 40.0 % 36.0 % 32.0 % 28.0 % 24.0 % 20.0 % 16.0 % 12.0 % 8.0 % 4.0 % 0.0 %

38 Sentralgrenseteoremet Eksempel 3 Histogram for normalisert gjennomsnitt av n = 144 Unif( 1, +1)-fordelte variable mot normaltettheten 40.0 % 36.0 % 32.0 % 28.0 % 24.0 % 20.0 % 16.0 % 12.0 % 8.0 % 4.0 % 0.0 %

39 Sentralgrenseteoremet Eksempel 3 Histogram for normalisert gjennomsnitt av n = 576 Unif( 1, +1)-fordelte variable mot normaltettheten 40.0 % 36.0 % 32.0 % 28.0 % 24.0 % 20.0 % 16.0 % 12.0 % 8.0 % 4.0 % 0.0 %

40 Sentralgrenseteoremet Eksempel 3 S-kurve for normalisert gjennomsnitt av n = 36 Unif( 1, +1)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -2,50-1,50-0,50 0,50 1,50 2,50

41 Sentralgrenseteoremet Eksempel 3 S-kurve for normalisert gjennomsnitt av n = 144 Unif( 1, +1)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -2,50-1,50-0,50 0,50 1,50 2,50

42 Sentralgrenseteoremet Eksempel 3 S-kurve for normalisert gjennomsnitt av n = 576 Unif( 1, +1)-fordelte variable (rød kurve) mot S-kurve for N(0,1)-fordelingen (grønn kurve) 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % -2,50-1,45-0,40 0,65 1,70 2,75

43 Sentralgrenseteoremet Eksempel 3 Q-Q-plot for normalisert gjennomsnitt av n = 36 Unif( 1, +1)-fordelte variable mot normalfordelingen

44 Sentralgrenseteoremet Eksempel 3 Q-Q-plot for normalisert gjennomsnitt av n = 144 Unif( 1, +1)-fordelte variable mot normalfordelingen

45 Sentralgrenseteoremet Eksempel 3 Q-Q-plot for normalisert gjennomsnitt av n = 576 Unif( 1, +1)-fordelte variable mot normalfordelingen

Forslag til endringar

Forslag til endringar Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20). Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Forelesning 27. mars, 2017

Forelesning 27. mars, 2017 Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014

Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014 Ekstreme bølger Geir Storvik Matematisk institutt, Universitetet i Oslo 5. mars 2014 Bølger Timesvise max-bølger ved bøye utenfor østkyst av USA (17/12/1991-23/2-1992) Størrelse på bølger varierer sterkt

Detaljer

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96 Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger.

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger. Høgskoleni Øs fold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Deleksameni statistikk Dato: 3. januar 2014 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Faglærer:

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer

Denne uken: Kapittel 4.3 og 4.4

Denne uken: Kapittel 4.3 og 4.4 Sist: Kapittel 4.1, 4.2, 4.5 Tilfeldighet Sannsynlighetsmodeller Regler for sannsynlighet Denne uken: Kapittel 4.3 og 4.4 Tilfeldige variable Forventning og varians til tilfeldige variable Litt repetisjon:

Detaljer

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emnenavn: Metodekurs 1: statistikk, deleksamen Dato: Eksamenstid: 4. januar 2017 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling m/tabeller Faglærer:

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Kap. 7 - Sannsynlighetsfordelinger

Kap. 7 - Sannsynlighetsfordelinger Oppgaver: Kap. 7 - Sannsynlighetsfordelinger Oppgaver fra kapitlet Lærebok: 7.0-0-0-,7.--7, 7.-, 7., 7., 7.7 Oppgavesamling: 7.00, 7.0, 7.09, 7., 7.9, 7., 7.0, 7.0, 7.0 7.0-0-0-0- Stokastisk variabel:

Detaljer

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Andre obligatoriske oppgave stk 1100

Andre obligatoriske oppgave stk 1100 Andre obligatorise oppgave st 11 John Miael Modin 17. april 8 Oppgave 1 X er årsinteten til en tilfeldig valgt person i en befolningsgruppe. Sansynlighetstettheten til X er gitt ved { θ f X (x) = θ x θ

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(, populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Løsningsskisse Matlabøving Beskrivende analyse Oppgave 1 a) Finn, for hvert datasett,

Detaljer

Eksempel på data: Karakterer i «Stat class» Introduksjon

Eksempel på data: Karakterer i «Stat class» Introduksjon Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).

Detaljer

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Galton-brett og sentralgrenseteorem

Galton-brett og sentralgrenseteorem Halvor Aarnes, IBV, 2014 Galton-brett og sentralgrenseteorem På et Galton-brett (Sir Francis Galton) beveger kuler for eksempel erter eller klinkekuler seg som følge av tyngdekraften på et skråstilt brett

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) HG April 010 Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) Innledende merknad. De fleste oppgavene denne uka er øvelser i bruk av den viktige regel 5.0, som er sentral i dette kurset,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer

STK1100 Oblig 2. Øyvind Kolbu Gruppe februar 2007

STK1100 Oblig 2. Øyvind Kolbu Gruppe februar 2007 STK1100 Oblig 2 Øyvind Kolbu Gruppe 3 oyvink@math.uio.no 16. februar 2007 Oppgave A Vis at E(X n ) = µ: X n = 1 n n X i = 1 n (X 1 + X 2 +... + X n ) i=1 ( n ) E(X n ) = 1 n E X i = 1 n E (X 1 + X 2 +...

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Løsningsforslag oblig 1 STK1110 høsten 2014

Løsningsforslag oblig 1 STK1110 høsten 2014 Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE

Detaljer

Repetisjon av histogrammer

Repetisjon av histogrammer Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner

Detaljer

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Dagens tekst Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer