Bilder del 2. Farger og fargesyn. Tre-farge syn. Farger og fargerom. Cyganski, kapittel 5. Fargesyn og fargerom. Fargetabeller

Størrelse: px
Begynne med side:

Download "Bilder del 2. Farger og fargesyn. Tre-farge syn. Farger og fargerom. Cyganski, kapittel 5. Fargesyn og fargerom. Fargetabeller"

Transkript

1 Litteratur : Tema i dag: Neste uke : Bilder del 2 Cyganski, kapittel 5 Fargesyn og fargerom Fargetabeller Endre kontrasten i et bilde Histogrammer Terskling Video og grafikk, litt enkel bildebehandling pluss repetisjon lyd og bilder Farger og fargesyn Retina er følsom for lys mellom 35 og 76 nanometer (nm) Fiolett: µm Blå: µm Grønn: µm Gul: µm Oransje: µm Rød: 62-7 µm Ved sterk infrarød stråling kan vi oppfatte stråling helt opp til -5 nm som lys, selv om dette er varmestråling Simultane forskjeller ned til nm i blå-grønt og gult kan sees, mens forskjellen må være minst nm i dyp rødt og fiolett Dette betyr at vi kan skille mellom ca rene farger Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2- Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-2 Tre-farge syn Farger og fargerom Vi har tre typer fargefølsomme tapper i retina: Øyet er dermed følsomt for rødt (7 nm), grønt (546 nm) og blått (436 nm) lys 65% av tappene (cones) er følsomme for rødt lys, 33% for grønt lys og bare 2% for blått lys Det er derfor naturlig å beskrive farger ved hjelp av tre komponenter Ca % av befolkningen har en form for fargeblindhet, dvs at de oppfatter fargene ved hjelp av to komponenter Fargebilder representeres oftest med tre verdier: r, g, b (red, green, blue) Disse tre verdiene bestemmer posisjonen i RGB-rommet Fargekamera: Vi legger et rutenett over bildet, og for hvert piksel måles lysintensitet i tre separate bånd i det elektromagnetiske spekteret Husk at for hvert bånd (red, green, blue) skal vi : beregne gjennomsnittsverdien i hver rute 2 skalere slik at den passer innenfor det tall-området vi skal bruke 3 kvantiserer verdiene til nærmeste heltalls verdi i tall-området r, g, b -bilder kan også genereres med et monokromt kamera ved å bruke tre filtre etter hverandre som bare slipper gjennom henholdsvis røde, grønne og blå bølgelengder (Hvis vi gjør dette, må kameraet stå helt stille!) Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-3 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-4

2 Litt fysikk om lyskilder RGB og primærfarger Tre faktorer beskriver en lyskilde: Radians: den energimengden som lyskilden utstråler Luminans: den energimengden som en observator ser/måler Brightness /lyshet: subjektiv deskriptor som beskriver intensitet og hvor sterk en farge er RGB-modellen brukes til framvisning av bilder på skjerm RGB-modellen er additiv (start med svart, legg til farger) CIE-kommisjonen (The International Commision of Illumination) har definert primærfargene: Blå: 4358 nm Grønt: 546 nm Rødt: 7 nm Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-5 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-6 Fargesyn RGB-kuben Vi kan skille mellom ca rene farger (hue) Når fargene også varierer i intensitet, kan vi skille mellom ca 6 farger (hue+intensity),, blå cyan For hver av disse, kan vi skille mellom ca 6 ulike metningsgrader (saturation) magenta hvit Vi kan altså skille totalt ca 36 farger 36 ulike verdier kan representeres med 9 bit (2 9 = ) Fordi vi lagrer R, G, B komponenter hver for seg, brukes totalt 24 bit (en byte for hver farge) Gråtonebilder: r=g=b,, rød,, svart gul grønn,, Merk: fargene her er normaliserte slik at de ligger mellom og Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-7 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-8

3 Mer om farger Eksempel RGB-bilde r,g,b lagres ofte ved 3x8 bit=24 bit Vi sier at bildet har 3 bånd Bånd : R Bånd 2: G Det første båndet representerer styrken/intensiteten til rødt lys, det andre styrken til grønt lys, og det tredje styrken til blått lys Fargen til et piksel representeres ved talltrippelet (r,g,b) Svart tilsvarer (,,,), og hvit tilsvarer (255,255,255) Gråtoner ligger på diagonalen mellom svart og hvit Merk: her er fargene IKKE normaliserte Bånd 3: B RGB-bilder vist på skjerm Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-9 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2- CMYK-fargemodellen CMYK-modellen er subtraktiv (start med hvitt, trekk fra farger) Alternativ til r,g,b som basisfarger er cyan, magenta, yellow (CMY-modeller) C = - R eller R hvis 8-bits ikke-normaliserte bilder M = - G G Y = - B B RGB er vanlig på display, men CMYK er vanlig på fargeprintere (K er ekstra komponent for svart) Egen komponent for svart fordi full verdi av C, M og Y gir mørk brunt og ikke svart På ulike printere ser også de rene fargene ulike ut når de skrives ut, så fargebilder forvrenges ofte ved utskrift Men bildet mitt ser ikke likt ut på to skjermer? RGB-farger på en skjerm avhenger av skjermens egenskaper, dvs det samme bilde vist på to skjermer kan se ulikt ut Det samme bildet skrevet ut på to fargeprintere kan se HELT forskjellig ut, fargen avhenger av bla skriveren, fargepatronene, papiret, etc En skjerm kan vise flere farger en en CMYK-printer kan skrive ut (og en CMYK-skriver kan skrive noen farger en RGB-skjerm ikke kan vise) Vi sier at RGB og CMYK er utstyrs-avhengige fargerom Det finnes internasjonale standarder for fargerom som er utstyrsuavhengige Et slikt system er CIEs XYZ-fargerom Antall stabile, gjenkjennbare farger på en skjerm er ganske lite! Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2- Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-2

4 Hue, Saturation, Intensity (HSI) hvit Hue: ren farge - gir bølgelengden i det elektromagnetiske spektrum Mer om HSI Saturation: metning hvor mye grått inneholder fargen Hvis S=, blir fargen grå uavhengig av hvilken verdi H har (det vil si at vi ligger et sted på diagonalen i RGB-kuben) S ligger normalisert mellom og, eller mellom og 255 hvis 8-bits unsigned verdier pr piksel cyan H grønn gul rød blå S magenta I H er vinkel og ligger mellom og 2π: Rød: H=, grønn: H= 2π/3, blå= 4π/3, gul: H=π/3, cyan= π, magenta= 5π/3, Hvis vi skalerer H-verdiene til 8-bits verdier vil Rød: H=, grønn: H= 85, blå= 7, gul: H=42, cyan= 27, magenta= 23 H og S tilsammen beskriver fargen og kalles kromatisitet I: intensitet, ligger mellom og eller og 255 HSI-modellen egnet til å beskrive farge RGB-modellen egnet til å generere farger Konverering fra HSI til RGB: formler finnes svart Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-3 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-4 Varianter av HSI Eksempler på RGB, CMYK, HSI Det finnes ulike varianter av HSI: HSV (Hue, Saturation, Value) HSL (Hue, Saturation, Lightness) Rød Gul Grønn RGB (255,,) (255,255,) (,255,) CMYK (,255,255) (,,255) (255,,255) HSI (, 255, 255) (42,255,255) (85,255,255) Forskjellen er stort sett intensitet eller brightness-komponenter Blå (,,255) (255,255,) (7,255,255) Hvit (255,255,255) (,,) (,,255) Grå (92,92,92) (63,63,63) (,,92) (27,27,27) (28,28,28) (,,27) Svart (,,) (255,255,255) (,,) Merk: hvis S=, spiller det ingen rolle hva H er Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-5 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-6

5 Fargebilder og fargetabeller RGB kan lagres med like mange bit for r, g, b, feks (8+8+8) Selv =9 bits gir oss 8x8x8=52 kombinasjoner, men bare 8 forskjellige nivåer av rødt, grønt og blått, og dermed også bare 8 forskjellige gråtoner Det er ikke sikkert at alle de 52 fargene finnes i bildet Et scene med mange nyanser av en farge vil da se ille ut! Hvorfor? Jo fordi den bare får 8 forskjellige farger! Alternativt kan man bruke 8 bit og fargetabeller Hver rad i tabellen beskriver en r, g, b-farge med 24 bits, og tabellen inneholder de 256 fargene som best beskriver bildet I bilde-filen ligger pikselverdiene som tall mellom og 255, men når vi skal vise bildet, slår vi bare opp i samme rad som pikselverdien, og finner r, g, b-verdiene til pikselet Fargetabell / oppslagstabell (LUT) Gråtone/fargeavbildningen utføres som oppslag i en tabell LUT - Look Up Table Innholdet i bildefilen endres ikke, LUT-operasjonen utføres på datastrømmen mellom hukommelsen (databufferet) og skjermen v out =LUT(v in ) Kontrastendring i bildet: oppdater G verdier i LUT (ikke n x m verdier i bildet) Q: Kan vi lage et negativt fra et positiv på denne måten? Brukes både til gråtoner og farger, også pseudo-farger (tilordning av liksom-farger til gråtoner) og transformasjoner mellom fargerom Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-7 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-8 Fargetabell Framvisning av bilder Relatert til framvisning av fargebilder snakker vi også om: Pikselverdi Disse verdiene ligger lagret på bildefilen RGB-verdi,, 255,, 255,255,,255, 255,,,, ,255,255 Disse verdiene vises på skjermen Vise RGB-verdier på 8 bits skjerm Eller vise pseudofarger fra et gråtonebilde Pikselverdiene fra til 255 tilordnes et RGB-triplet Ved framvisning leses pikselverdien, som brukes til å indeksere tabellen for å finne den RGB-fargen som vises Gamma-korreksjon: ulineær korreksjon for kompensasjon av display-effekter Alpha-kanal: fargene er transparante, slik at objektene i bakgrunn synes der alpha-kanalen er satt Monitorer har ulineær mapping av intensiteten Ulineariteten beskrives vha en gamma-funksjon Kompromiss mellom antall farger og antall piksler 24x768 piksler x 3 farger krever minst 235 MB grafikkkort Må da bruke fargetabell hvis høy romlig oppløsning ønskes Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-9 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-2

6 Stereobilder Utskrift av gråtonebilder Ved hjelp av spesielle briller kan vi se dybdeinformasjon fra to bilder av nesten samme område tatt fra to litt ulike posisjoner Eks: stereobilder fra fly tatt fra to ulike posisjoner i luften For å SE bildet i 3D trenger vi stereoskop, polariserte briller, shutter glasses eller briller med ulik fargefilm for hvert øye Høydeinformasjonen kan også beregnes vha et program fra stereobildene Dette brukes til å lage høydekart eller digitale terrengmodeller Problem: printere er binære, skriver svart eller ingenting Løsning: printeren jobber på et finere grid (bruker halvtoner) Virker fordi: øyet gjør en glatting av intensitetsverdier, slik at et gjennomsnitt vises Utfordring: hvordan lage mønstere av binære piksler som utgjør en gråtone Patterning Dithering Error diffusion Et piksel Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-2 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-22 CMYK-modell brukes Utskrift av fargebilder Halvtonemønstre i bestemte vinkler (ulik for hver farge) må brukes til å lage fargemønstere Prinsipp: øyet kombinerer de fire fargene slik at ingen brå fargeoverganger ses Hver farge skrives ut i et spesielt symmetrisk mønster Vanligvis: Bildeformater Header kan være både ascii eller binære verdier <magic number> <tittel> <bredde=n> <høyde=h> <#bånd> <bildetype> Pikselverdier binære verdier (som oftest) x x2 xn linje bånd x x2xn linje h x x2 xn linje bånd 2 x x2xn linje h Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-23 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-24

7 Kompresjon Formattyper Software-spesifikke Bildet komprimeres for å lagre det mer kompakt Tapsfri kompresjon: originalbildet kan rekonstrueres eksakt fra det komprimerte bildet Ikke-tapsfri kompresjon: originalbildet kan ikke rekonstueres eksakt XITE BIFF-format, ENVI, MacPaint, Windows BMP, HIPS-format Utvekslingsformater GIF (Graphic Interchange Format) PNG (Portable Network Graphics) JFIF (JPEG File Interchange Format) TIFF (Tagged Image File Format) PGM (Portable Grey Map) FITS (Flexible Image Transport System) MPEG: standard for video Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-25 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-26 PBM, PGM, PPM PNG-formatet PortableBitMap (binære) binær eller ascii PortableGreyMap (gråtoner) - binær eller ascii Laget pga patentproblemene med GIF PortablePixelMap (RGB) binær eller ascii Støtter: Eksempel- ascii gråtonebilder med max 6 bit P2 # A simple PGM image bits fargebilder med fargetabeller RGB med opptil 6 bit pr kanal Har kompresjon (koding) Alpha-bånd Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-27 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-28

8 Hvordan endre kontrasten i et bilde? Implementasjon av gråtoneoperasjoner Matematisk verktøykasse? Direkte implementasjon: for x=:width for y=:height g(x,y)=a*f(x,y) Ved bruk av Look-up table (LUT): for g=:nofgreylevels table[g]=a*g for x=:width for y=:height g(x,y)=table[f(x,y)] Her endres bare fargetabell, ikke selve bildet MERK: de fleste framvisningsprogram har fargetabeller og lar deg endre kontraster via disse Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-29 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-3 Histogrammer Gitt et gråtonebilde med n m piksler og G gråtoner Gå gjennom bildet og se på pikselverdien i alle pikslene Tell opp hvor mange piksler det finnes for hver pikselverdi Lag et histogram h(v) = tabell over antall piksler med pikselverdi v Hvis vi dividerer alle h(v) med antall piksler i bildet, får vi et normalisert histogram Dette gir oss den relative forekomsten av hver pikselverdi Det kommer vi til å bruke når vi skal kode og komprimere bilder Eksempel - histogram Bilde: Histogram: # piksler #piksler Pikselverdi gråtone Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-3 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-32

9 Terskling av bilder Eksempel terskling Terskling er en enkel operasjon som brukes mye bildeanalyse Eksempel: finne objekter, feks tall og bokstaver i et bilde Terskling består i å sette alle piksler med pikselverdi mindre enn en terskel T til, og alle piksler med pikselverdi større eller lik T til 255 Sammenhengende piksler med samme binære verdi danner nå et objekt, og objektene kan beskrives ved form-egenskaper, slik at de kan gjenkjennes automatisk (OCR) T kan velges manuelt, eller man kan bestemme T automatisk (vi vil bare bruke manuell terskling) Originalbilde Tersklet bilde Histogram etter terskling (terskel T ca 2) Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-33 Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-34 RGB og klassifikasjon Terskling er et veldig enkelt spesialtilfelle av klassifikasjon Automatisk sortering av frukt og grønnsaker er et stort felt Farge-feil på produkter kan lett detekteres av et RGB-kamera Klassifikasjon basert på flerkanals bilder Areal-klassifikasjon fra satellitt-bilder 2 Vevsklassifikasjon fra MR-bilder Finne kvist, margstriper og misfarging i parkett-produksjon Finne fargefeil (og andre feil) under produksjon av takstein Fra et stort sett med bilder kan vi f eks finne typiske r, g, b - verdier for hud, slik at vi kan avgjøre om et objekt i et bilde er kandidat for ansiktsgjenkjenning Internett er fullt av sites og sider med uønskede bilder Klassifikasjon av sider og sites ut fra andelen objekter med bar hud er et mer effektivt filter enn filtrering på navn og tekst Osv Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde En klasse svulst, kornåker, motorvei beskrives ved pikselverdier i et flerdimensjonalt rom Institutt for informatikk Fritz Albregtsen 2 oktober 24 INF4-Bilde 2-36

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 14 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom - fargemodeller 4. Overganger mellom fargerom 5. Fremvisning av fargebilder 6. Fargetabeller

Detaljer

Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 4 Farger og fargerom Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom - fargemodeller 4 Overganger mellom fargerom 5 Fremvisning av fargebilder 6 Fargetabeller

Detaljer

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller

Detaljer

Motivasjon. INF 1040 Farger og fargerom. Fargen på et objekt. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 1040 Farger og fargerom. Fargen på et objekt. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 14 Farger og fargerom 1 Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom og overganger mellom dem 4 Fremvisning og utskrift av fargebilder 5 Fargetabeller 6

Detaljer

INF 1040 Farger og fargerom. Motivasjon. Litt fysikk om lyskilder. Fargen på lyset. Vi oppfatter bare ca 50 gråtoner samtidig

INF 1040 Farger og fargerom. Motivasjon. Litt fysikk om lyskilder. Fargen på lyset. Vi oppfatter bare ca 50 gråtoner samtidig INF 4 Farger og fargerom Temaer i dag : Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom - fargemodeller 4 Overganger mellom fargerom (se kompendiet) 5 Fremvisning av fargebilder

Detaljer

INF 1040 Farger og fargerom

INF 1040 Farger og fargerom INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller

Detaljer

Viktige begreper. Viktige begreper, illustrasjon. Matematisk representasjon av digitale bilder. INF Introduksjon og Kap.

Viktige begreper. Viktige begreper, illustrasjon. Matematisk representasjon av digitale bilder. INF Introduksjon og Kap. Viktige begreper INF 23. 25 Introduksjon og Kap. 2 Introduksjon - hva er et digitalt bilde Avbildning Det elektromagnetiske spekteret Litt om bildeformater Kamera og optikk Øyet og egenskaper ved synet

Detaljer

INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser

INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser INF 2310 Farger og fargerom Temaer i dag (Kapittel 6: Hovedfokus på 6.1 og 6.2): 1. Litt fysikk: sollys og reflektivitet 2. Farge, fargesyn og deteksjon av farge 3. Fargerom - fargemodeller 4. Overganger

Detaljer

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Spredning, absorbsjon, transmisjon. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Spredning, absorbsjon, transmisjon. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 310 Farger og fargerom 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller 6. Utskrift av

Detaljer

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser Temaer i dag : INF 310 Farger og fargerom 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller 6. Utskrift av

Detaljer

INF 2310 Digital it bildebehandling

INF 2310 Digital it bildebehandling INF 2310 Digital it bildebehandling b dli FARGER OG FARGEROM Temaer i dag : 1. Farge, fargesyn og deteksjon av farge 2. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder

Detaljer

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser

Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset fra sola. Vi kan skille mellom tusenvis av fargenyanser INF 310 Farger og fargerom Temaer i dag (Hovedfokus på 6.1 og 6.: 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller

Detaljer

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6 Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk

Detaljer

INF 2310 Digital it bildebehandling. Spredning, absorbsjon, transmisjon FARGER OG FARGEROM

INF 2310 Digital it bildebehandling. Spredning, absorbsjon, transmisjon FARGER OG FARGEROM INF 310 Digital it bildebehandling b dli FARGER OG FARGEROM Temaer i dag : 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder

Detaljer

Repetisjon av histogrammer

Repetisjon av histogrammer Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING IN 06, V-200 DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. BILDE-DANNING SAMPLING og KVANTISERING BILDE-FORBEDRING I BILDE-DOMENET 2/3 200 Fritz Albregtsen. Trinn: Legg

Detaljer

INF 1040 løsningsforslag til kapittel 17

INF 1040 løsningsforslag til kapittel 17 INF 1040 løsningsforslag til kapittel 17 Oppgave 1: Bilder og histogrammer Her ser du pikselverdiene i et lite bilde. Kan du regne ut histogrammet til bildet, dvs. lage en tabell over hvor mange piksler

Detaljer

Skanning og avfotografering v/jim-arne Hansen. Grand Nordic Hotell, Tromsø 14. mai 2009

Skanning og avfotografering v/jim-arne Hansen. Grand Nordic Hotell, Tromsø 14. mai 2009 v/jim-arne Hansen Grand Nordic Hotell, Tromsø 14. mai 2009 Innhold: Innledning Tekniske begreper og faguttrykk Formater krav til formater Skanneteknologi: Flatbedskanner Trommelskanner Filmskanner Digitaliseringsbord

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER

INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

Kantdeteksjon og Fargebilder

Kantdeteksjon og Fargebilder Kantdeteksjon og Fargebilder Lars Vidar Magnusson April 25, 2017 Delkapittel 10.2.6 More Advanced Techniques for Edge Detection Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Marr-Hildreth

Detaljer

INF februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3)

INF februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3) 8. februar 2017 Ukens temaer (Hovedsakelig fra kap. 3.1 og 3.2 i DIP) (Histogrammer omtales i kap. 3.3) Histogrammer Lineære gråtonetransformer Standardisering av bilder med lineær transform Ikke-lineære,

Detaljer

Fargetyper. Forstå farger. Skrive ut. Bruke farger. Papirhåndtering. Vedlikehold. Problemløsing. Administrasjon. Stikkordregister

Fargetyper. Forstå farger. Skrive ut. Bruke farger. Papirhåndtering. Vedlikehold. Problemløsing. Administrasjon. Stikkordregister Skriveren gir deg mulighet til å kommunisere i farger. Farger tiltrekker seg oppmerksomhet og gir trykt materiale og informasjon større verdi. Bruk av farger øker lesbarheten, og dokumenter med farger

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD INF 040 høsten 2009: Oppgavesett 2 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 6 og 7) 3. Lagring av video på DVD a) Med en bitrate på 250 Mbit/s, hvor lang tidssekvens av en digital

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

Digitale bilder. Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter) og vektorgrafkk (linjer og fater).

Digitale bilder. Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter) og vektorgrafkk (linjer og fater). Høgskolen i Østfold Digital Medieproduksjon Oppgave T4/Digitale bilder Uke 38/23.09.10 Jahnne Feldt Hansen Digitale bilder Det er i hovedsak to måter å representere digitale bilder på: rastergrafkk (punkter)

Detaljer

Modul 12 - Photoshop

Modul 12 - Photoshop Modul 12 - Photoshop Når man vil benytte Photoshop som verktøy i en arbeidsprosess som skal resultere i trykksaker eller nettsider må man ha kunnskap innen følgende temaer: farger/fargerom, størrelse/oppløsning,

Detaljer

PhotoShop Grunnleggende ferdigheter

PhotoShop Grunnleggende ferdigheter PhotoShop Grunnleggende ferdigheter Kurs for ansatte DMMH februar/mars 2009 Versjon 2 Svein Sando Åpne og lagre Åpne: to varianter File Open Ctrl+O Lagre: to varianter File Save Ctrl+S Lagre som: to varianter

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Olaf Christensen 27.09.2010. Digitale Bilder

Olaf Christensen 27.09.2010. Digitale Bilder Olaf Christensen Digitale Bilder 27.09.2010 1) Vi har to måter å fremstille grafikk på. Den ene er ved hjelp av rastergrafikk (bildepunkter). Den andre er ved hjelp av vektorgrafikk (koordinater). Disse

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

1.Raster(bitmap) versus vektorer

1.Raster(bitmap) versus vektorer 1.Raster(bitmap) versus vektorer Raster er oftest brukt ved fotografier. Det er et rutenett bestående av små ruter, pixler, hvor hver pixel består av en fargekode. Når man forstørrer et bitmap bilde vil

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 2310 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Temaer i dag Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

Grafisk pakke dataseminar ARK6 12.feb 2008

Grafisk pakke dataseminar ARK6 12.feb 2008 Farger Fonter Raster og vektor Filtyper Komprimering Programmer FARGER : RGB-SKJERM - additiv fargemodell beregnet for bruk i skjerm, scanner og digitalkamera - Ulikt forhold mellom Rød, Grønn og Blå skaper

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 2310 Digital bildebehandling Eksamensdag: Tirsdag 18. mai - tirsdag 1. juni 2004 Tid for eksamen: 18. mai 2004 kl 09:00 1.

Detaljer

Oppgave T4 Digitale Bilder

Oppgave T4 Digitale Bilder Oppgave T4 Digitale Bilder 1) Det er i hovedsak to måter å representere digitale bilder, raster (punkter) og vektorer (linjer og flater). Redegjør for disse to typene, diskuter fordeler og ulemper. Rastergrafikk:

Detaljer

Ulike bildeformater og komprimering. Ferdighet 7. trinn Produsere og bearbeide

Ulike bildeformater og komprimering. Ferdighet 7. trinn Produsere og bearbeide Ulike bildeformater og komprimering Ferdighet 7. trinn Produsere og bearbeide I korte trekk Det finnes mange ulike typer bildeformater, og man må kjenne til noen av dem for å gjøre gode valg når man skal

Detaljer

Temaer i dag. Repetisjon av histogrammer I. Gjennomgang av eksempler. INF2310 Digital bildebehandling. Forelesning 5. Pensum: Hovedsakelig 3.

Temaer i dag. Repetisjon av histogrammer I. Gjennomgang av eksempler. INF2310 Digital bildebehandling. Forelesning 5. Pensum: Hovedsakelig 3. emaer i dag Digital bildebehandling Forelesning 5 Histogram-transformasjoner Ole Marius Hoel Rindal omrindal@ifi.uio.no Etter orginale foiler av Fritz Albregtsen. Histogramtransformasjoner Histogramutjevning

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

SCANNING OG REPARASJON AV GAMLE BILDER Jessheim bibliotek 21. august 2007. Minikurs. Adobe Photoshop Elements. v/ Randi Lersveen - Krem reklame

SCANNING OG REPARASJON AV GAMLE BILDER Jessheim bibliotek 21. august 2007. Minikurs. Adobe Photoshop Elements. v/ Randi Lersveen - Krem reklame 1 Minikurs v/ Randi Lersveen - Krem reklame Adobe Photoshop Elements Viktige begrep for digitale bilder 2 FARGER (mode) Bitmap: Grayscale: RGB-color: CMYK: Bildet inneholder kun sorte og hvite punkter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (kapittel 16 og 17)

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (kapittel 16 og 17) Fasitoppgaver INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (kapittel 16 og 17) Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet.

Detaljer

Veiledning om fargekvalitet

Veiledning om fargekvalitet Side 1 av 6 Veiledning om fargekvalitet Veiledningen om fargekvalitet hjelper brukerne med å forstå hvordan funksjoner som er tilgjengelige på skriveren, kan brukes til å justere og tilpasse fargene på

Detaljer

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder 3/8/29 Digitale bilder med spesielt fokus på medisinske bilder Karsten Eilertsen Radiumhospitalet Neste to forelesninger Torsdag 29/: Enkel innføring i digitale bilder Eksempler på noen enkle metoder for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Malin Milder 06hbmeda Fargestyring våren 2008. Fargestyring. Malin Milder 06hbmeda Våren 2008

Malin Milder 06hbmeda Fargestyring våren 2008. Fargestyring. Malin Milder 06hbmeda Våren 2008 Fargestyring 1 Malin Milder 06hbmeda Våren 2008 Fargestyring Innledning Fargestyring er et viktig tema som lett blir glemt. De fleste har nok opplevde at de sitter bak skjermen og er veldig fornøyd med

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 27.08.2013 20.08.13 Revidert Log GKS 22.08.12

Detaljer

Merombilderogvideo. Fra bilder til video. Fra Edison til moderne kino. Luminans-variasjon

Merombilderogvideo. Fra bilder til video. Fra Edison til moderne kino. Luminans-variasjon Merombilderogvideo Fra bilder til video Når vi lukker øynene, tar det litt tid før etter - bildet forsvinner, spesielt hvis intensiteten er høy (i deler av) bildet. Bildet forsvinner gradvis (eksponensielt)

Detaljer

RF5100 Lineær algebra Leksjon 10

RF5100 Lineær algebra Leksjon 10 RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser

Detaljer

VTK - The Visualization Toolkit. Del 1 Introduksjon til VTK VTK. Objektorientering (OO) i C++ Objekt-orientert bibliotek for visualisering Fordeler:

VTK - The Visualization Toolkit. Del 1 Introduksjon til VTK VTK. Objektorientering (OO) i C++ Objekt-orientert bibliotek for visualisering Fordeler: VTK - The Visualization Toolkit Del Introduksjon til VTK Objekt-orientert bibliotek for visualisering Fordeler: Fritt tilgjengelig Stor brukergruppe Godt designet, testet og dokumentert (se VTK brukermanual

Detaljer

2) Redegjør for de mest brukte filformater for digitale fotografier. Diskuter fordeler, ulemper og bruksområder for de ulike formatene.

2) Redegjør for de mest brukte filformater for digitale fotografier. Diskuter fordeler, ulemper og bruksområder for de ulike formatene. Magnus Over-Rein / 28.09.2010 T4: Digitale bilder 1) Det er i hovedsak to måter å representere digitale bilder, raster (punkter) og vektorer (linjer og flater). Redegjør for disse to typene, diskuter fordeler

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Grunnleggende om Digitale Bilder (ITD33515)

Grunnleggende om Digitale Bilder (ITD33515) Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og

Detaljer

Triangle Colorscale. Created for design CMYK GUIDE. Intuitiv, nøyaktig og praktisk

Triangle Colorscale. Created for design CMYK GUIDE. Intuitiv, nøyaktig og praktisk Created for design CMYK GUIDE Intuitiv, nøyaktig og praktisk «Det er lett å finne en farge i CMYK GUIDE. Og den fargen du velger, blir nøyaktig lik på trykk!» INTUITIV Et hurtig verktøy for designere CMYK

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 24.08.2010 23.08.10 Revidert Log GKS 20.08.09

Detaljer

Denne veiledningen hjelper deg med å forstå hvordan du kan bruke skriverens funksjoner til å justere og tilpasse fargene på utskriftene.

Denne veiledningen hjelper deg med å forstå hvordan du kan bruke skriverens funksjoner til å justere og tilpasse fargene på utskriftene. Side 1 av 5 Fargekvalitet Denne veiledningen hjelper deg med å forstå hvordan du kan bruke skriverens funksjoner til å justere og tilpasse fargene på utskriftene. Quality (Kvalitet), meny Print Mode (Utskriftsmodus)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Digitale verktøy Mina Gulla 28/09/10. Grafikk og bilder. Oppgave T4: Digitale bilder

Digitale verktøy Mina Gulla 28/09/10. Grafikk og bilder. Oppgave T4: Digitale bilder Digitale verktøy Mina Gulla 28/09/10 Grafikk og bilder. Oppgave T4: Digitale bilder 1) Det er i hovedsak to måter å representere digitale bilder, raster (punkter) og vektorer (linjer og flater). Redegjør

Detaljer

EUROPEAN COMPUTER DRIVING LICENCE BILDEBEHANDLING FAGPLAN VERSJON 2.0

EUROPEAN COMPUTER DRIVING LICENCE BILDEBEHANDLING FAGPLAN VERSJON 2.0 EUROPEAN COMPUTER DRIVING LICENCE BILDEBEHANDLING FAGPLAN VERSJON 2.0 Copyright 2009 The European Computer Driving Licence Foundation Ldt Dette dokumentet er en norsk oversettelse av den europeiske fagplan

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

Dette er vakre farger du aldri får se på mobilen

Dette er vakre farger du aldri får se på mobilen Viten BLI ABONNENT LOGG INN ANNONSE Dette er vakre farger du aldri får se på mobilen ARNT INGE VISTNES FØRSTEAMANUENSIS, FYSISK INSTITUTT, UNIVERSITETET I OSLO OPPDATERT: 23.NOV. 2015 15:28 PUBLISERT:

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Har du styring på fargene?

Har du styring på fargene? Har du styring på fargene? erling smemo 04hbmeda fargestyring høgskolen i gjøvik våren 2006 Sammendrag av øvelse del A og B Del A Først brukte vi fotospektrometeret GretagMacbeth SpectroScan og programvaren

Detaljer

Farger Introduksjon Processing PDF

Farger Introduksjon Processing PDF Farger Introduksjon Processing PDF Introduksjon På skolen lærer man om farger og hvordan man kan blande dem for å få andre farger. Slik er det med farger i datamaskinen også; vi blander primærfarger og

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin INF Digital representasjon, høsten 25 Hvordan telle binært? Binære tall Skal

Detaljer

PRAKTISK FARGESTYRING

PRAKTISK FARGESTYRING PRAKTISK FARGESTYRING Rapport 2 Malin Milder Mediedesign Vår 2008 1 Praktisk fargestyring Fargestyring er et viktig aspekt når det kommer til design, og noe som alle burde benytte seg av for å få best

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

Litteratur : I dag og neste uke: Cyganski kap. 5-6

Litteratur : I dag og neste uke: Cyganski kap. 5-6 Bilder Litteratur : I dag og neste uke: Cyganski kap. 5- -dimensjonal virkelighet Kamera og optikk fokallengde f Bildet blir en 2-dimensjonal projeksjon av objektet Temaer : Hvordan dannes bilder? Hvordan

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF23, våren 2 6. Vi har gitt følgende bilde: kompresjon og koding del I 2 2 2 3 3 3 2 3 3 3 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen

Detaljer

Komponenter til Fargestyring

Komponenter til Fargestyring Fargestyring Profiler - oppskrift PCS - referansfargerommet Fargetilpasningsmetode (rendering intents) CMM - fargekalkulator Utgangspunktet er den kjensgjerning at menneskets hjerne kan oppfatte ca. 160

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Hvor mye informasjon inneholder en melding? 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

T4: Digitale bilder. I denne oppgaven skal du jobbe med ulike aspekter av digitale bilder. Bruk rikelig med eksempler og illustrasjoner!

T4: Digitale bilder. I denne oppgaven skal du jobbe med ulike aspekter av digitale bilder. Bruk rikelig med eksempler og illustrasjoner! T4: Digitale bilder I denne oppgaven skal du jobbe med ulike aspekter av digitale bilder. Bruk rikelig med eksempler og illustrasjoner! 1. Det er i hovedsak to måter å representere digitale bilder, raster

Detaljer

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER IN 106, V-2001 PLASS og TID Digitale bilder tar stor plass Eksempler: a 512 512 8 bits 3 farger 63 10 6 bits KOMPRESJON OG KODING 30/4 2001 b 24 36 mm fargefilm digitalisert ( x = y=12µm) 2000 3000 8 3

Detaljer

Valg av PC-skjerm til fotobruk

Valg av PC-skjerm til fotobruk Valg av PC-skjerm til fotobruk De fleste har nok skiftet ut de svære kassene som CRT-skjermene var med flatskjermer av LCD-typen. Så jeg tenkte kjapt i gå igjennom litt om de ulike teknologiene som brukes

Detaljer

21.09.2015. Mer enn bare et kamera (Publisert versjon, inneholder bare FFIs egne bilder.) Bilder kommer fra mange kilder

21.09.2015. Mer enn bare et kamera (Publisert versjon, inneholder bare FFIs egne bilder.) Bilder kommer fra mange kilder Bilder kommer fra mange kilder Mer enn bare et kamera (Publisert versjon, inneholder bare FFIs egne bilder.) Torbjørn Skauli og Trym Haavardsholm Optisk avbildning - et felt i forandring Hva kan et kamera

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

Hva er farger? A B C FARGELÆRE

Hva er farger? A B C FARGELÆRE 1. Fargelære FARGELÆRE Hva er farger? Figur 1.1 Eplet reflekterer rødt lys til øyet. Øyet omformer det innfallende lyset til signaler som går til hjernens synssenter og vi oppfatter at eplet er rødt. UV

Detaljer

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 Utlevering: fredag 3. november 2006, kl. 12:00 Innlevering: fredag 17. november 2006, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder

Detaljer

Ordliste. Adaptiv filtrering (adaptive filtering) Et filter som endrer oppførsel etter det lokale innholdet i bildet eller signalet.

Ordliste. Adaptiv filtrering (adaptive filtering) Et filter som endrer oppførsel etter det lokale innholdet i bildet eller signalet. Ordliste Dette er et forsøk på å gi forklaringer til ord og uttrykk som brukes i forbindelse med lyd, bilder og kompresjon i kurset INF1040 høsten 2004. En del av nøkkelordene er IKKE brukt i kurset INF1040,

Detaljer

Primus Brukerveiledning for masseimport av bilder. Primus 5.6.5

Primus Brukerveiledning for masseimport av bilder. Primus 5.6.5 Primus Brukerveiledning for masseimport av bilder Primus 5.6.5 Primus Brukerveiledning for masseimport av bilder 2 Innholdsfortegnelse Innholdsfortegnelse... 2 Brukerveiledning for masseimport av bilder

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin Hvordan telle binært? Binære tall For å bruke bit (0 og 1) som tall, må vi

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Sarpsborg 13.01.2005 12.01.05 Ny oppgave Log LMN Log,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 7. desember 2007 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer