Masterprogram i geovitenskap prosjekt for søkere høst 2018

Størrelse: px
Begynne med side:

Download "Masterprogram i geovitenskap prosjekt for søkere høst 2018"

Transkript

1 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Sporing av forurensning fra historiske gruvedrift i Norge med Cu isotoper Tracing contamination from historical mining sites in Norway with Cu isotopes Hovedveileder: Desiree Roerdink Med-veileder(e): Cedric Hamelin Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Historiske gruvedrift er en potensiell kilde til forurensning av tungmetall i lokale bekker, elver og innsjøer. Samspill mellom overflatevann med malmavsetninger og avgangsdeponiene kan gi betydelig forhøyede kobber konsentrasjoner som kan være giftige for fisk og i ekstreme tilfeller for mennesker. For å avgjøre hvilke tiltak må tas for å redusere forurensning, er det viktig å spore kilden til kobber i overflatevann: naturlig (malmavsetningen) eller antropogen (avfallet fra tidligere gruvedrift). Nylig arbeid på et svært forurenset område i Kina har vist at stabile kobber isotoper kan gi slik informasjon (Song et al, 2016). Imidlertid er det ukjent om denne metoden også fungerer på mindre sterkt forurensede steder, som for eksempel de gamle kobbergruvene i Norge. Hypotese (vitenskapelig problem): Kan vi spore kilder til kobberforurensning i overflatevann rundt historiske gruvedrift i Norge med stabile kobberisotoper? Finner vi lignende effekter på kobber isotopforholdene i områder med forskjellig grad av forurensning? Test (arbeid): Prosjektet foreslår å måle stabile kobberisotoper i overflatevann (bekker, elver, innsjøer) fra forskjellige historiske gruveplasser i Norge. Studenten må: (1) designe en prøvetakingskampanje for utvalgte steder, (2) samle passende prøver i feltet, (3) preparere prøver for isotopanalyser i ren labben, og (4) måle kobber isotopforholdene ved multcollector ICP-MS (under tilsyn). Motivation (background): Historical mining sites are potential sources of heavy metal contamination in local streams, rivers and lakes. Interaction of surface waters with ore deposits and old mine tailings can produce significantly elevated copper concentrations that can be toxic to fish and in extreme cases to human health. To determine what actions need to be taken to reduce contamination, it is important to trace the source of the copper in surface waters: natural (the ore deposit) or anthropogenic (waste from previous mining activities). Recent work on a highly polluted site in China has shown that stable copper isotopes can provide such information (Song et al, 2016). However, it remains unknown if this method also works in less strongly polluted sites, such as the old copper mines in Norway. Hypothesis (scientific problem): Can we trace sources of copper contamination in surface waters around historical mining sites in Norway with stable copper isotopes? Do we observe similar effects on copper isotope ratios in areas with different degrees of contamination? Test (work): This project proposes to measure stable copper isotopes in surface waters (streams, rivers, lakes) from different historical mining sites in Norway. The student is

2 expected to: (1) design a sampling campaign for selected sites, (2) collect appropriate samples in the field, (3) prepare samples for isotope analyses in the clean lab, and (4) measure copper isotope ratios by multi-collector ICP-MS (under supervision). Krav for opptak/ Prereqesites: Bachelor i geovitenskap med GEOV103 Innføring i mineralogi og petrografi og GEOV109 Innføring i geokjemi, eller lignende. Prosjektet er egnet for en proaktiv student med bakgrunn i geokjemi, som ser frem til å lære teknikker i analytisk geokjemi og ønsker å jobbe med et prosjekt innen miljøgeokjemi. Bachelor in Earth Sciences with introductory courses in mineralogy and geochemistry (GEOV103, GEOV109). The project is suitable for a pro-active student with a background in geochemistry, who is keen to learn techniques in analytical geochemistry and work on a project in environmental geochemistry. Eksterne data? / External data?: Ingen. None. Felt-, lab- og analyse- arbeid: Prøvetaking i felt (2-5 dager), lab arbeid i renlabben (20+ dager) og ICP-labben (5+ dager). Sampling in the field (2-5 days), lab work in the clean lab (20+ days) and ICP-lab (5+ days). Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV243 Aquatic geochemistry (10 sp), GEOV244 Principles of geobiology (10 sp), KJEM202 Environmental Chemistry (10 sp), GEOV342 Radiogenic and stable isotope geochemistry (10 sp), GEOV343 Petrological and geochemical field course (5 sp), GEOV345 Regional geologic excursion to Western Norway (5 sp), GEOV-347 Instrumental methods in analytical geochemistry (5 sp), GEOV-300 Selected topics in geoscience (5 sp).

3 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for fall 2018 Prosjekttittel: Do microbes care about sediments? Testing connections between deep marine sediment geochemistry, pore fluids and microbiology Hovedveileder: Steffen Leth Jørgensen Med-veileder(e): Desiree Roerdink, Willem van der Bilt, Tor Einar Møller Prosjektbeskrivelse/ Project description: Motivation (background): Deep marine sediments represent one of the largest habitats for micro-organisms on Earth, both in areal extent and volume. Microbial communities in these sediments are strongly interconnected with the geochemistry of sediment pore fluids, for example by the consumption of electron acceptors such as oxygen, nitrate and sulfate and addition of dissolved inorganic carbon via organic matter degradation. However, linkages between microbial communities and the geochemistry and mineralogy of sediments are less clear. Recent work on two sediment cores sampled close to a hydrothermal vent field in the Norwegian-Greenland sea demonstrated connections with iron and manganese minerals in the sediments (Jørgensen et al, 2012), but more work remains to be done to obtain insights into links between the microbiology, pore fluid geochemistry and the geochemistry and mineralogy of deep marine sediments. Hypothesis (scientific problem): Is there a correlation between the geochemistry and mineralogy of deep marine sediments in the Norwegian-Greenland sea and their microbial communities? Test (work): This project proposes to analyze the sediment geochemistry of a selection of sediment cores from different settings in the Norwegian-Greenland Sea (mid-ocean ridge rift valleys, ridge flanks, abyssal plains), using X-Ray Fluorescence (XRF) core scanning and X- Ray Diffraction (XRD). An important part of the project includes the statistical comparison of geochemical and mineralogical data with previously collected microbiological and pore fluid data. Krav for opptak/ Prerequisites: Bachelor in Earth Science with GEOV-103 (Introduction to mineralogy), GEOV-109 or equivalent. This project is suitable for a student interested in working on an interdisciplinary project that covers geochemistry, mineralogy, microbiology and sedimentology. Eksterne data? / External data?: No external data. Material to be analyzed was already collected during previous research cruises by the Centre for Geobiology/K.G. Jebsen Centre for Deep Sea Research. Microbiological and pore fluid geochemical data have already been collected/analyzed. Felt-, lab- og analyse- arbeid: Possible participation in 2018 research cruise to the Arctic Mid-Ocean Ridge to assist with sampling of new sediment cores. The project involves laboratory work to analyze sediment geochemistry, including XRF core scanning and XRD mineralogical analyses. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV-243 Aquatic geochemistry (10 sp), GEOV-244 Principles of geobiology (10 sp), GEOV-245 Geomicrobiology (10 sp), GEOV-231 Marine geological field and laboratory course (10 sp), GEOV-342 Radiogenic and stable isotope geochemistry (10 sp), GEOV-300 Selected topics in geoscience (5 sp), GEOV-347 Instrumental methods in analytical geochemistry (5 sp)

4 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Constraining heat and chemical fluxes from in-situ measurements at a deep-sea hydrothermal field Hovedveileder: Thibaut Barreyre Med-veileder(e): Eoghan Reeves Prosjektbeskrivelse/ Project description: Motivation (background): Circulation of hydrothermal fluids through the oceanic crust at mid-ocean ridge (MOR) axes accounts for up to 10% of Earth s internal heat loss, controls the thermo-mechanical state and degree of hydration of newly formed oceanic lithosphere, plays a major role in solute transfer between the sub-surface and the overlying ocean, and supports complex chemosynthetic ecosystems that are likely analogues for possible life in other parts of our solar system. The impact of hydrothermal circulation on each of the above processes or systems is directly linked to the magnitude and variability of volume, heat, and chemical fluxes exiting the seafloor, which are notoriously difficult to quantify. Indeed, errors in flux estimates are often similar in size to the estimates themselves and can differ by more than an order of magnitude depending on the method used. Hypothesis (scientific problem): Constrain heat and chemicals fluxes at deep-sea hydrothermal system Address the spatial scales and integration issues (orifice, mound and field) Quantify diffuse versus focused component Test (work): We specifically propose to measure the thermo-chemical output of an entire hydrothermal vent field, from orifice to field scale leveraging on and integrating pre-existing dataset acquired by ROV. This integration approach will provide constraints on connections between hydrothermal output, crustal structure, biological processes in the subsurface, and geological processes. Krav for opptak/ Prereqesites: - Den faste jordas fysikk - Geofysiske metodar Eksterne data? / External data?: - Data will be provided Felt-, lab- og analyse- arbeid: - Analysis work will consist mainly in estimating fluid flow velocities using Particle Imagery Velocimetry theory and working with temperature time-series data to extract basic statistic among other tasks (e.g., dealing with and performing work on chemical data, digitization using bathymetry and moscais imagery data) - Inversion of results from analysis (velocities) and plume modeling to get heat fluxes and integration with chemical data (i.e., elements concentration) to get chemical fluxes - Possible participation in cruise depending on student motivation for field work and available space on ship not guarantee. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

5 - Geostatistikk - Maringeologisk felt- og laboratoriekurs - Computational Methods in Solid Earth Physics - Geodynamikk og platetektonikk - Any fluid flow / heat transfer classes

6 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Structure and geochronology of the Acuadolce phyllites and metesiltstones and ophiolite melanges, Elba Island, Italy Hovedveileder: Prof. Joachim Jacobs Med-veileder(e): Prof. Sergio Rocchi, University of Pisa, Italy Prosjektbeskrivelse/ Project description: The Oligocene Acuadolce phyllites and metasiltstones in eastern Elba are high-pressure rocks that can be related to the Apennine subduction zone. A new study (Jacobs et al., 2018) shows that detrital zircons of these rocks originated in a volcanic arc, during the convergence/collision of the Adria microplate with Europe. These Alpine volcanic rocks were eroded and the Oligocene zircons of volcanic origin travelled ca. 400 km southward along the Adria margin and the Apennine accretionary prism to present-day Tuscany, where they were subducted to depths of at least 40 km. Shortly thereafter, they were brought to the surface again in the wake of hinge roll back of the Apennine subduction zone and the resulting rapid extensional exhumation. The aim of the thesis is to undertake a field-based structural analyses of the Acuadolce phyllites and metasiltstones and in this way document the complex structural history these rocks underwent during the Apennine subduction exhumation cycle. The project also aims to study so far poorly studied ophiolite melanges in eastern Elba. Jacobs et al., Nature Sci. Report, 8, Krav for opptak/ Prereqesites: Participation in GEOV 252 Feltkurs i geologisk kartlegging (10 stp.). Eksterne data? / External data?: No Felt-, lab- og analyse- arbeid: Field mapping, structural analysis on Elba Island after Geov 252 field course on Elba in Mai 2019 U-Pb zircon geochronology of ophiolite melanges Petrographic and structural description of thin section

7 Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV 241 Mikroskopi (10 stp.), GEOV 242 Magmatisk og metamorf petrologi (10 stp.) GEOV 251 Videregående strukturgeologi (10 stp.), GEOV 252 Feltkurs i geologisk kartlegging (10 stp.) GEOV 342 Radiogen og stabilisotop geokjemi (10 stp.)

8 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Petrography, structure and geochronology of selected rock samples from Dronning Maud Land, East Antarctica. Hovedveileder: Prof. Joachim Jacobs Med-veileder(e): Cheng-Cheng Wang, PhD candidate Prosjektbeskrivelse/ Project description: Norway claims a large region in Antarctica, where the spectacular, 1000 km long, Dronning Maud Land mountains are exposed. Dronning Maud Land is seven times larger than Norway and because of its remote nature it is relatively poorly studied. During a recent geological expedition with participants from the Norwegian Polar Institute, the Norwegian Geological Survey and GEO/UiB, rock samples were collected from a so far poorly studied region in Dronning Maud Land close to Troll Station. In this MSc project, ca selected rock samples will be studied with petrographic, structural and geochronological methods. The mostly high-grade metamorphic rocks are probably of Precambrian age and record at least two phases of mountain building processes. The older history may relate to the greater Grenville-age orogeny during which the Rodinia supercontinent formed. The aim of the project is to reconstruct the geological history of the rock samples and relate them to the global cycles of supercontinent assembly and fragmentation. Krav for opptak/ Prereqesites: Eksterne data? / External data?: No Felt-, lab- og analyse- arbeid: Mineral separation U-Pb zircon geochronology Petrographic and structural description of rock samples and thin sections

9 Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV 241 Mikroskopi (10 stp.), GEOV 242 Magmatisk og metamorf petrologi (10 stp.) GEOV 251 Videregående strukturgeologi (10 stp.), GEOV 252 Feltkurs i geologisk kartlegging (10 stp.) GEOV 342 Radiogen og stabilisotop geokjemi (10 stp.)

10 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Development of a ground motion prediction equation for Norway. Hovedveileder: Mathilde B. Sørensen (GEO) Med-veileder(e): Lars Ottemöller (GEO) Prosjektbeskrivelse/ Project description: Having a reliable method for evaluating the level of earthquake ground shaking as a function of magnitude and distance is an important prerequisite for evaluating the seismic hazard in a region. In many applications, ground motion is evaluated using a ground motion prediction equation (GMPE), which is an empirically derived relation between ground shaking, magnitude, distance and, potentially, other parameters. Deriving a GMPE requires a highquality dataset of earthquake ground motions covering a wide magnitude- and distance range. Norway is a region of low to moderate seismicity, and earthquakes with magnitude larger than 5 are rare. There is thus a lack of ground motion data for high-magnitude events, which makes it challenging to derive a reliable GMPE for Norway. In regions of similar tectonics to Norway (e.g. in Eastern North America), this challenge has been addressed by supplementing the database of recorded ground motions with stochastically simulated ground motions for large magnitude events. The aim of this project is to derive a GMPE for Norway. Stochastic simulation of ground motion will be used to supplement the ground motion database for Norway with largemagnitude events. The joint dataset of recorded and simulated ground motions will then be used to derive a new GMPE through regression analysis. Krav for opptak/ Prereqesites: BSc in geophysics, or similar competence in math, physics and programming. Eksterne data? / External data?: No Felt-, lab- og analyse- arbeid: Stochastic simulation of ground motion using EXSIM (freely available). Some Matlab programming will be required. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV219, GEOV355, GEOV357, GEOV359

11 Masterprogram i geovitenskap prosjekt for søkere høsten 2018 Prosjekttittel: Prosessering og tolkning av SVALEX seismikk Hovedveileder: Rolf Mjelde Medveileder(e): Bent Ole Ruud Prosjektbeskrivelse (norsk og engelsk): Motivasjon (bakgrunn): Vestlige deler av Spitsbergen er et ideelt laboratorium for å studere kompresjon av kontinentalskorpe. Hypotese (vitenskapelig problem): Viktige aspekter ved kompresjon av kontinentalskorpe kan forstås ved prosessering og tolkning av multikanals seismiske data. Test (arbeid): Prosessere og tolke multikanals seismiske data innsamlet i Isfjorden og Van Mijenfjorden, Spitsbergen. Prosesseringen vil involvere alle standard moduler som filtrering, dekonvolusjon, hastighetsanalsyse, stakking og migrasjon, mens tolkningen vil utføres på Petrel. Motivation (background): The western part of Spitsbergen is an ideal laboratory for studies of compression of continental crust. Hypothesis (scientific problem): Important aspects concerning compression of continental crust can be understood by processing and interpretation of multi-channel seismic data. Test (work): Perform processing and interpretation of multi-channel seismic data acquired in Isfjorden and Van Mijenfjorden, Spitsbergen. The processing will involve all standard modules like filtering, deconvolution, velocity analysis, stacking and migration, while the interpretation will be done on Petrel. Krav for opptak: Intet spesielt. Eksterne data Alle data er innsamlet. Felt-, lab- og analyse- arbeid: Prosessering/tolkning på PC. Foreslåtte emner i spesialiseringen (60 sp): GEOV113, GEOV272, GEOV375

12 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Et globalt sett av S-mottaksfunksjoner for å undersøke manteldiskontinuiteter under kontinenter / A global set of S receiver functions to investigate mantle discontinuities beneath continents Hovedveileder: Stéphane Rondenay Med-veileder(e): Lars Ottemöller Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Seismologi-gruppen ved UiB har et unikt sett av digitale verktøy for å laste ned og behandle store mengder av globale teleseismiske data. Resultatet av den digitale bearbeidelsen kalles mottaksfunksjoner (Receiver Functions på engelsk, kort RF), som gir bilder av jordens struktur ned til 800 km dybde. Tidligere arbeid har vist at dette settet av verktøy kan brukes til P-bølger (PRF), men det har ikke blitt brukt på S-bølger (SRF). Hypotese (vitenskapelig problem): Vårt sett av verktøy kan også brukes på S-bølger, og de resulterende SRF kan gi informasjon om jordstrukturer som er komplementære til de som er produsert av PRF. Spesielt bør de globale SRF gi unike opplysninger om hvordan diskontinuiteter i midte litosfære og grensen mellom litosfære og astenosfære varierer fra kanten av kontinenter til deres stabile kratoniske kjerner. Test (arbeid): Tilpass det eksisterende settet av verktøy for å laste ned globale S-bølge teleseismiske data og behandle dem for å produsere SRF. Bruk deretter disse SRF sammen med PRF for å undersøke diskontinuiteter i midte litosfære og grensen mellom litosfære og astenosfære under de nordamerikanske og afrikanske kontinentene. Motivation (background): The seismology team at UiB possesses a unique set of tools to download and process large quantities of global teleseismic data. The outputs are signals called receiver functions (RFs), which provide images of the subsurface down to 800 km depth. Previous work has shown that this set of tools could successfully be applied to P-waves (PRFs), but it has not yet been used on S-waves (SRFs). Hypothesis (scientific problem): Our set of tools can also be applied to S-waves, and the resulting SRFs can provide information about earth structures that are complementary to those obtained by PRFs. In particular, the global SRFs should provide unique information about how the mid-lithospheric discontinuities and Lithosphere-Asthenosphere Boundary vary from the edge of continents to their stable cratonic interiors. Test (work):

13 Adapt the existing set of tools to download global S-wave teleseismic data and process those to generate SRFs. Then use these SRFs in conjunctions to PRFs to investigate the midlithospheric discontinuities and Lithosphere-Asthenosphere Boundary across the North American and African continents. Krav for opptak/ Prereqesites: GEOV112, GEOV113, GEOV254, GEOV276, INF109, MAT112, MAT131, MAT212 Experience with code writing in either fortran, c, matlab, python, and the unix/linux environment is essential. Eksterne data? / External data?: Yes, publicly available data from IRIS and ORFEUS (via websites and/or web services) Felt-, lab- og analyse- arbeid: No Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV219, GEOV255, GEOV350, GEOV355, GEOV357, GEOV359

14 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Structural controls on the performance of deeply buried aeolian reservoirs 2 FIELD BASED PROJECTS IN UTAH Hovedveileder: Atle Rotevatn Med-veileder(e): John Howell (U Aberdeen), David Peacock Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Deformation in porous granular rocks occurs in the form of deformation bands, which are mm-scale tabular features that accommodate strain in such rocks. Deformation bands are known to adversely affect fluid flow, and it is with this in mind that this project will attempt to contribute to adding new knowledge. Specifically, we will aim to address deformation bands occurring in deeply buried Aeolian sandstone reservoirs, and how they affect subsurface fluid flow. Hypotese (vitenskapelig problem): These MSc projects will address the structure and permeability of deformation bands in aeolian sandstones. The students, supported by the supervisory team, will refine research tasks and formulate hypotheses during the first field season. Test (arbeid): The goal of this study is to explore the impact of deformation bands on fluid flow in aeolian sandstone reservoirs, using outcrops from Utah. Structural mapping of faults and deformation band arrays in aeolian sandstones in Utah will form the bulk of the work for the students. Specific issues to address 1. The distribution and width of fault damage zones within aeolian sandstone, specifically related to the throw of faults leading to a predictive model for fault zone width. 2. An improved understanding of the formation of deformation bands and faults with respect to burial and host rock permeability. This project will prepare the students involved for a career in industry or academia. Krav for opptak/ Prereqesites: Intet spesielt

15 Eksterne data? / External data?: nei Felt-, lab- og analyse- arbeid: 3-6 uker feltarbeid i Utah. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV221 Karstgeologi og karsthydrologi (10) GEOV251 Videregående strukturgeologi (10) GEOV260 Petroleumsgeologi (10) GEOV272 (10 stp) Seismisk tolking GEOV352 Petroleumsgeologisk feltkurs (5) GEOV362 Pyrenneene feltkurs i sedimentologi og tektonikk (5) Enten: AG-322 (UNIS) Fold and Thrust Belts and Foreland Basin Systems (10) Eller: AG-336 Rift Basin Reservoirs: From Outcrop to Model (10 ECTS)

16 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Fault evolution, architecture and permeability structure in carbonate rocks 2 FIELD BASED PROJECTS IN MALTA Hovedveileder: Atle Rotevatn Med-veileder(e): Eivind Bastesen, David Peacock, Vilde Dimmen Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Faults, fractures and flow in carbonate rocks are currently hot topics in research as well as in the energy sector. These two field-based structural geology projects will focus on different aspects of fault evolution, fault architecture and permeability structure along extensional faults in carbonate rocks. The projects form part of an ongoing thematic focusing on improving our understanding of how faults and fracture systems in carbonate rocks form, propagate, interact and coalesce, and how their temporal evolution is related to changes in fault architecture and permeability structure. Hypotese (vitenskapelig problem): These MSc projects will address the structure and permeability structure of faults in carbonate rocks. The students, supported by the supervisory team, will refine research tasks and formulate hypotheses during the first field season. Test (arbeid): The projects are largely field based, and field work will be undertaken during 1-2 seasons totaling 3-6 weeks in Malta. Additional components such as laboratory analyses (for example fluid inclusions analysis, cathode luminescence, stable isotope composition), analogue modeling (plaster), thin section analysis and/or subsurface components (seismic data) are options that may be considered during the course of the projects. Our focus on faults and fractures in carbonate rocks covers a wide range of problems, and the specific tasks/aims of each MSc project will be delineated in discussion with the students, accommodating both project needs and the interests of the students. The projects will equip the students with expertise relevant for a career both in the petroleum industry and/or research. Krav for opptak/ Prereqesites:

17 Eksterne data? / External data?: nei Felt-, lab- og analyse- arbeid: 3-6 uker feltarbeid på Malta Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV221 Karstgeologi og karsthydrologi (10) GEOV251 Videregående strukturgeologi (10) GEOV260 Petroleumsgeologi (10) GEOV272 (10 stp) Seismisk tolking GEOV352 Petroleumsgeologisk feltkurs (5) GEOV362 Pyrenneene feltkurs i sedimentologi og tektonikk (5) Enten: AG-322 (UNIS) Fold and Thrust Belts and Foreland Basin Systems (10) Eller: AG-336 Rift Basin Reservoirs: From Outcrop to Model (10 ECTS)

18 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Fjerning av multiple refleksjoner i prestakk seismiske data basert på 3D strålemodellering Removal of multiple reflections in prestack seismic data based on 3D ray modelling Hovedveileder: Einar Iversen Med-veileder(e): Bent Ole Ruud, Morten Jakobsen Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): I seismiske refleksjonsdata er det som regel bare de primære refleksjonene som er av interesse for videre prosessering, tolkning, avbildning, amplitude-mot-offset (AVO) analyse osv. Ofte vil imidlertid seismiske dataopptak ha et stort innslag av såkalte multiple refleksjoner. En typisk multippel hendelse i marin seismikk opptrer når en primær-reflektert bølge, dvs. en bølge som kun har vært reflektert én gang ved havbunnen eller en dypereliggende lag-grense, blir gjenstand for ytterligere refleksjoner i vannlaget, vekselvis ved havoverflaten og havbunnen. Multiplene kan være kraftige og vil da gjøre det vanskelig å observere de primære refleksjonene fra dypereliggende lag. Man ønsker derfor som oftest å få fjernet multiplene. Multippelfjerning er å regne som et eget forskningsfelt innenfor seismisk prosessering. Ofte baserer slik multippelfjerning seg på at den seismiske bølgehastigheten kun varierer med dyp, og at alle lag-grenser, inkludert havbunnen, kan antas flate. I dette masterprosjektet omgår man slike antakelser, ved å bruke gangtidsfunksjoner basert på en 3D jordmodell med generell variasjon i bølgehastighetene og generell form på lag-grensene. Med dette som utgangspunkt vil man gjøre forskjellige tilnærminger for å fjerne multiplene fra dataene, basert på eksisterende metodikk og teknologi. Hypotese (vitenskapelig problem): Målet med arbeidet er å Formulere og implementere en metode for å fjerne multipler i seismiske data, basert på strålemodellering av potensielle multippel-gangtider i en forenklet 3D jordmodell. Demonstrere anvendelser av metoden på syntetiske og reelle data.

19 Test (arbeid): Arbeidet med numeriske eksempler består i følgende hovedpunkter: For et gitt datasett (syntetisk eller reelt) etablerer man en forenklet 3D jordmodell. Ved hjelp av stråleberegninger simuleres multipler i 3D-modellen. De resulterende gangtidene brukes til å gjenkjenne multipler i de seismiske dataene. Når alle relevante multiple ankomster er kjente, prosesseres dataene med mål om kun å beholde de primære refleksjonene. Motivation (background): For seismic reflection data it is usually only the primary reflections that are considered of value for further processing, interpretation, imaging, amplitude-versus-offset (AVO) analysis, etc. However, it is very common that seismic data includes a large number of so-called multiple reflections. A typical multiple event in marine seismic appears when a primary reflected wave, i.e., a wave reflected only once at the water bottom or at a deeper layer boundary, is subjected to additional reflections in the water layer. These additional reflections alternately take place at the sea floor and the sea surface. The multiples can be strong and may mask the primary reflections. As a consequence, one will often want to have the multiples removed. Multiple removal can be considered a separate research field within seismic processing. Removal of multiples is often based on simplified assumptions, e.g. that the seismic wave velocity is to vary only with depth, and that all layer boundaries are horizontal. Such assumptions are circumvented in this MSc project, by using traveltime functions based on a 3D subsurface model with smooth variations in the wave velocities and in the depths of layer boundaries. With this as a starting point one will apply different strategies to remove the multiples from the data, based on existing methods and technology. Hypothesis (scientific problem): The goal of the work is to Formulate and implement a method for removal of multiples in seismic data, based on ray-tracing modelling of potential traveltimes for multiple events in a simplified 3D subsurface model. Show applications of the method using synthetic and real data.

20 Test (work): The work on numerical examples consists of the following main tasks: For a given (synthetic or real) data set, establish a simplified 3D subsurface model. Simulate potential multiples using ray-tracing computations in the 3D model. The resulting traveltimes are used for identification of multiples in the seismic data. When all relevant multiple arrivals are known, process the data with a goal of keeping only the primary reflections. Krav for opptak/ Prerequisites: Geofysikk matematisk retning Eksterne data? / External data?: Ja, det kan bli brukt eksterne data. Felt-, lab- og analyse- arbeid: Studenten vil behøve tilgang til programsystemer for seismisk modellering, tolkning og prosessering. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV219 Computational Methods in Solid Earth Physics GEOV272 Seismisk tolkning GEOV277 Data-analyse og inversjon i geovitenskap GEOV375 Avansert anvendt seismisk analyse AG-335 Arctic Seismic Exploration For øvrig settes emner opp i samråd med veileder; en endelig plan vil avhenge av studentens bakgrunn.

21 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Identifisering av ankomster i prestakk seismiske data ved hjelp av 3D stråleberegninger Identification of arrivals in prestack seismic data using 3D ray computations Hovedveileder: Einar Iversen Med-veileder(e): Bent Ole Ruud, Morten Jakobsen Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Seismiske refleksjonsdata kan inneholde et stort antall ankomster. For å kunne utnytte dataene optimalt er det viktig å få identifisert hva slags type bølgebevegelse de ulike ankomstene representerer. For eksempel vil data tatt opp med mottakere på havbunnen inneholde primære refleksjoner av typene P-P og P-S. Videre vil det kunne forekomme multiple refleksjoner både i vannlaget og internt i lag der grenseflatene mot nabolagene har en stor kontrast i de elastiske parameterne. Som oftest ønsker man å fjerne slike multipler gjennom data-prosesseringen, da de kan gjøre det vanskelig å observere de primære refleksjonene. I den sammenhengen er det avgjørende at multippel-ankomstene kan identifiseres så automatisk som mulig. Å kunne identifisere ankomster er også viktig dersom man senere ønsker å gjøre seismisk tomografi. Dette masterprosjektet baserer seg på at man først gjør en migrasjonshastighetsanalyse og deretter en tidsmigrasjon av de seismiske dataene. Etter migrasjon tolkes noen hovedhorisonter. Gjennom en automatisk prosedyre, som etableres i prosjektet, gjøres det en simultan tid-til-dyp konvertering av migrasjonshastighetsfelt og horisonter. Resultatet er en forenklet tredimensjonal jordmodell, som kan brukes til å forover-modellere potensielle ankomster ved hjelp av stråleberegninger. Ved å sammenstille modellerte gangtidsfunksjoner med prestakk seismiske data vil man kunne gjenkjenne/identifisere ulike ankomster og dermed assosiere disse til en viss type bølgebane. Hypotese (vitenskapelig problem): Målet med arbeidet er å Formulere og implementere en fungerende metode for å identifisere potensielle ankomster i prestakk seismiske data, basert på kombinasjonen av tid-til dyp konvertering, forover-modellering og ankomst-gjenkjenning. Demonstrere anvendelser av metoden på syntetiske og reelle data.

22 Test (arbeid): Arbeidet med numeriske eksempler består i følgende hovedpunkter: For et gitt datasett (syntetisk eller reelt) utføres tidsmigrasjonshastighetsanalyse, tidsmigrasjon, og horisont-tolkning. Det gjøres en simultan tid-til-dyp konvertering av migrasjonshastighetsfelt og horisonter. Dermed beregnes en forenklet 3D jordmodell. I 3D modellen gjøres strålemodellering av gangtider for potensielle typer ankomster man antar vil kunne finnes i de seismiske dataene. Gangtidene brukes så i en prosedyre for å gjenkjenne/identifisere faktiske ankomster i dataene. Motivation (background): Seismic reflection data may include a large number of wave arrivals (events). For optimal utilization of the data it is important to identify the wave type associated with the various events. For example, data recorded by receivers on the sea floor typically include primary reflections of the types P-P and P-S. Furthermore, multiple reflections may occur in the water layer and also internally in a layer with boundaries representing a large contrast in the elastic parameters. In the data processing one will often take actions to remove such multiples, as they tend to mask the more valuable primary reflections. In this context it is highly advantageous if the multiples can be identified automatically. Another motivation for identifying different events is to obtain input for seismic tomography. In this MSc project the seismic data is subjected to a migration-velocity analysis and a subsequent time migration. After time migration a few key horizons are identified. Through an automatic procedure established in the project, one does time-to-depth conversion of the horizons, with a simultaneous estimation of a velocity field in depth. The resulting simplified three-dimensional subsurface model is used for forward ray-tracing modelling of potential events. In an analysis where all generated traveltime functions are tested towards prestack seismic data, the goal is to recognize/identify different events and associate them with a wave path. Hypothesis (scientific problem): The goal of the work is to Formulate and implement a well-functioning method for identification of arrivals (events) in prestack seismic data. The method combines time-to-depth conversion, forward modelling, and a procedure for testing modelled events towards observed data. Show applications of the method using synthetic and real data.

23 Test (work): The work on numerical examples consists of the following main tasks: For a given (synthetic or real) data set, do a time-migration velocity analysis, a time migration, and a horizon interpretation. Do a simultaneous time-to-depth conversion of the migration-velocity field and the horizons, in order to obtain a simplified 3D subsurface model. In the 3D model, do ray-tracing modelling of travel times for potential types of events. Then test these modelled events towards the observed data. Krav for opptak/ Prerequisites: Geofysikk matematisk retning Eksterne data? / External data?: Ja, det kan bli brukt eksterne data. Felt-, lab- og analyse- arbeid: Studenten vil behøve tilgang til programsystemer for seismisk modellering, tolkning og prosessering. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV219 Computational Methods in Solid Earth Physics GEOV272 Seismisk tolkning GEOV277 Data-analyse og inversjon i geovitenskap GEOV375 Avansert anvendt seismisk analyse AG-335 Arctic Seismic Exploration For øvrig settes emner opp i samråd med veileder; en endelig plan vil avhenge av studentens bakgrunn.

24 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Tomography and Full Waveform Inversion in Anisotropic Media Hovedveileder: Henk Keers Med-veileder(e): Mathias Alerini (Statoil) Prosjektbeskrivelse/ Project description: Motivation (background): The quality and quantity of seismic exploration data has increased significantly over the past 10 years. In order to process these data it is important to use high quality processing algorithms. One aspect in seismic processing that has become increasingly important is the efficient incorporation of anisotropy. The main goals of this project are 1. to develop ray-based modelling tools that incorporate anisotropy and 2. Apply these to important processing algorithms such as tomography and/or full waveform inversion. Hypothesis (scientific problem): The modelling of waveforms using anisotropic wave propagation and its application to seismic processing can be done efficiently and accurately using ray-based methods. Test (work): In this project the student will write, modify and improve computer programs that model elastic (anisotropic) wave propagation. These codes, which uses ray tracing and the ray-born approximation, will then be used to compute a synthetic seismic dataset that can be used in tomography and full waveform inversion. These codes will be used to compare the effect of anisotropy on the waveforms by comparison with isotropic wave propagation. They will also be used to develop anisotropic tomography and anisotropic full waveform inversion algorithms, possibly by inclusion of stochastic inversion.the latter can be achieved by computing accurate sensitivity matrices for the inversion. If time allows the algorithms will be applied to a small 2D dataset. Krav for opptak/ Prereqesites: Bachelor in geophysics (mathematics direction); this project requires a strong background and interest in mathematics and programming. Eksterne data? / External data?: No Felt-, lab- og analyse- arbeid: No Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Geov219, Geov274, Geov355, Mat260, Mat265, Mat234

25 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Bruk av forenklet geometrisk framstilling av kollapsede grottesystemer i reservoarmodeller Use of simplified geometric representation of collapsed cave systems in reservoir models Hovedveileder: Isabelle Lecomte (UiB/GEO) Med-veileder(e): Øystein Pettersen (Uni Research), Jan Tveranger (Uni Research) Prosjektbeskrivelse/ Project description: Oppgaven er tilknyttet prosjektet FOPAK (FOrecating architecture, seismic characteristics and flow behaviour in PAleoKarst reservoirs) et tverrfaglig samarbeidsprosjekt mellom Uni Research, UiB og NORSAR, finansiert av Norges forskningsråd (NFR). Motivasjon (bakgrunn): Reservoarer som består av karstifiserte bergarter og kollapsede grottesystemer er kjennetegnet av komplekse geometrier. Detaljert framstilling av slike geometrier i standard reservoarmodelleringsverktøy er teknisk svært utfordrende og tidkrevende, ettersom det ikke finnes noen etablert arbeidsflyt eller dedikerte dataverktøy for å håndtere dette. Bruk av forenklede geometriske framstillinger i flytsimuleringsmodeller er mulig og vil gjøre modellering og simulering betydelig lettere, men slike forenklinger må valideres for å sikre at oppførselen til den forenklede modellen er mest mulig lik originalen. En slik validering har ikke vært gjennomført for modeller som inneholder kollapsede grottesystemer. Hypotese (vitenskapelig problem): Formålet med studien er å undersøke i hvilken grad det er mulig å benytte forenklede framstillingsmåter av komplekse geometrier ved modellering og simulering av paleokarstreservoarer og effekten av ulike modellframstillinger på simuleringsresultatene. Test (arbeid): Oppgaven tar utgangspunkt i felt-skala geo-modeller av paleokarstreservoarer som består av kollapsede grottesystemer. Hver modell bygges i to versjoner, én med en detaljert geometrisk framstiling av paleokarstformer, og èn med en med en forenklet framstilling av de samme strukturene. Testen består av to deler: Første del gjør en direkte sammenligning av simulert produksjons/injeksjonsoppførsel i de komplekse og forenklede modellene. Avhengig av resultatene fra dette kan enten a) den forenklede modellen justeres iterativt for å undersøke om man kan oppnå en bedre match med originalen, eller b) den detaljerte modellen justeres iterativt for å undersøke hvor mye man kan forenkle modellen før produksjonsoppførselen viser signifikante forskjeller fra originalen.

26 The project is linked to the FOPAK project (FOrecating architecture, seismic characteristics and flow behaviour in PAleoKarst reservoirs) a cross disciplinary collaboration between Uni Research, UiB and NORSAR, funded by the Research Council of Norway (RCN). Motivation (background): Reservoirs consisting of karstified rocks and collapsed cave systems (paleokarst reservoirs) are characterized by complex geometries. Detailed rendering of such geometries using standard reservoir modelling software is technically challenging and time-consuming as there are no established workflows or specialized tools available to handle this. Simplified rendering of such reservoirs is, however, possible with existing tools and allows easy handling for modelling and flow simulation purposes, but the validity of these simplifications needs to be verified to ensure that the simplifications do not cause erroneous simulation outcomes Hypothesis (scientific problem): The purpose of the project is to investigate to what extent simplified rendering of complex geometries can be employed when modelling and simulating paleokarst reservoirs, and the effect of such simplifications on simulation results. Test (work): The project will employ existing field-scale models of paleokarst reservoirs consisting of collapsed cave systems. Each model comes in two versions; one including a highly detailed rendering of geometries and one using a simplified rendering. The testing consists of two parts: the first is a direct comparison of simulated injection and production behaviour of the two model versions using a series of production scenarios. The second part depends on the results from the first and can involve either a) an iterative adjustment of the simplified model in order to investigate if a better match with the detailed model can be achieved, or b) an iterative simplification of the detailed model to establish at what point simulation results significantly deviate from the initial model. Krav for opptak/ Prerequesites: Oppgaven krever interesse for tverrfaglig arbeid og bruk av modellering/simuleringsverktøy. The work requires an interest in cross-disciplinary work and the use of modelling and simulation tools. Eksterne data? / External data?: Alle data som vil bli brukt i denne oppgaven vil bli gjort tilgjengelig gjennom FOPAK prosjektet All data that will be used in this project will be made available through the FOPAK project. Felt-, lab- og analyse- arbeid: Ikke relevant. Not relevant.

27 Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV260 Petroleumsgeologi (10 sp) GEOV302 Geostatistikk (10 sp) GEOV366 Anvendt reservoarmodellering (5 sp) MAT254 Strøyming i porøse media (10 sp) Øvrige emner i spesialiseringen tilpasses individuelt.

28 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: «Skaleringseffekter ved fluidsimulering av kollapsede hulesystemer Scaling effects in fluid flow simulation of collapsed cave systems. Hovedveileder: Isabelle Lecomte (UiB/GEO) Med-veileder(e): Jan Tveranger (Uni Research), Øystein Pettersen (Uni Research). Prosjektbeskrivelse/ Project description: Oppgaven er tilknyttet prosjektet FOPAK (FOrecating architecture, seismic characteristics and flow behaviour in PAleoKarst reservoirs) et tverrfaglig samarbeidsprosjekt mellom Uni Research, UiB og NORSAR, finansiert av Norges forskningsråd (NFR). Motivasjon (bakgrunn): Høyoppløslige geo-modeller er komplekse og regnemessig svært tunge å gjøre flytsimuleringer på. Vanligvis oppskaleres derfor geo-modeller før simulering for å kutte CPU kostnader. Oppskaleringsprosessen består i å forenkle geomodeller med høy gridoppløsning til simuleringsmodeller med en lavere oppløsning. Ideelt sett skal den oppskalerte modellen ha samme oppførsel under flytsimulering som utgangsmodellen. Reservoarer som består av karstifiserte bergarter (paleokarstreservoarer) kjennetegnes av en høy grad av lateral og vertikal heterogenitet og markante kontraster i porøsitet og permeabilitet over korte avstander, noe som kan gjøre oppskalering vanskelig. Målsetningen med oppgaven er å undersøke hvordan oppskalering av paleokarst geo-modeller påvirker simulert produksjonsoppførsel. Hypotese (vitenskapelig problem): Nøkkelspørsmål i denne sammenhengen er hvor mye kan man oppskalere slike reservoarmodeller uten å miste essensielle flytkarakteristikker i simuleringsmodellen, og om det er en sammenheng mellom størrelsen på paleokarststrukturene inkludert i geomodellen og optimal cellestørrelse som kan brukes i simuleringsmodellen. Test (arbeid): Oppgaven tar utgangspunkt i felt-skala geomodeller av et reservoar som består av kollapsede grottesystemer, og to eller flere modelloppsett for porositet/permeabilitet. Basert på denne skal det genereres et sett med simuleringsmodeller som gjengir reservoaret med ulik grid-oppløsning. De oppskalerte modellene overføres til en fluidsimulator for å undersøke hvordan grid-oppløsning påvirker modellert produksjonsoppførsel. Resultatene skal analyseres for å undersøke i hvilken grad modellene kan oppskaleres uten at viktige egenskaper mistes. Videre skal det gjøres en analyse av hvorvidt det kan etableres en sammenheng mellom geometriske parametere i det kollapse grottesystemet og optimal gridoppløsning i simuleringsmodellen.

29 The project is linked to the FOPAK project (FOrecating architecture, seismic characteristics and flow behaviour in PAleoKarst reservoirs) a cross disciplinary collaboration between Uni Research, UiB and NORSAR, funded by the Research Council of Norway (RCN). Motivation (background): High-resolution geo-models are complex and difficult to handle when performing fluid flow simulations. Such models are therefore commonly up-scaled in order to save CPU costs. The upscaling process involves simplifying geo-models with high grid-resolution to simulation models with lower resolution. Ideally the upscaled model should exhibit similar behaviour during fluid flow simulation as the initial geo-model. Reservoirs consisting of karstified rock (paleokarst reservoirs) are characterized by significant lateral and vertical heterogeneity and pronounced porosity and permeability contrasts over short distances, which renders upscaling difficult. The aim of the thesis is to investigate how simulated production performance in paleokarst reservoirs is affected by the upscaling. Hypothesis (scientific problem): Key questions in this context are -how far can paleokarst models be upscaled before losing essential flow characteristics? -Is there a relationship between the scale of the paleokarst structures in the geo-model and an optimal resolution in the simulation model? Test (work): The study will employ a series of field-scale geo-models of a reservoir consisting of collapsed cave systems using two or more set-ups for porosity/permeability. These geomodels will provide input to a series of upscaled simulation models rendering the reservoir at different levels of resolution. The upscaled models will run in a fluid-flow simulator in order to investigate the impact of the upscaling on modelled production behaviour. Analysis of the simulation outcome will help to investigate how far the models can be upscaled without losing significant flow characteristics. Furthermore, an analysis will be carried out if there is a relationship between an «optimal» simulation grid resolution and the geometric parameters of the paleokarst system Krav for opptak/ Prerequisites: Oppgaven krever interesse for tverrfaglig arbeid og bruk av modellering/simuleringsverktøy The work requires an interest in cross-disciplinary work and the use of modelling and simulation tools. Eksterne data? / External data?: Alle data som vil bli brukt i denne oppgaven vil bli gjort tilgjengelig gjennom FOPAK prosjektet All data that will be used in this project will be made available through the FOPAK project. Felt-, lab- og analyse- arbeid: Ikke relevant. Not relevant.

30 Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV260 Petroleumsgeologi (10 sp) GEOV302 Geostatistikk (10 sp) GEOV366 Anvendt reservoarmodellering (5 sp) MAT254 Strøyming i porøse media (10 sp) Øvrige emner i spesialiseringen tilpasses individuelt.

31 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: «Convolution modelling of georadar images - application to outcrop models of paleokarsts» Hovedveileder: Isabelle Lecomte (UiB/GEO) Med-veileder(e): Maksim Bano (Univ. Strasbourg, France); Walter Wheeler og Jan Tveranger (Uni Research) Prosjektbeskrivelse/ Project description: The project is linked to the FOPAK project (FOrecating architecture, seismic characteristics and flow behaviour in PAleoKarst reservoirs) a cross disciplinary collaboration between Uni Research, UiB and NORSAR, funded by the Research Council of Norway (RCN). Further cooperation with the University of Strasbourg is established for the georadar expertise. Motivation (background): Reservoirs consisting of karstified rocks and collapsed cave systems (paleokarst reservoirs) are characterized by complex geometries. Outcrop analogues of such complex structures can be used to better understand images produced by geophysical methods, in particular for seismic exploration. But performing seismic acquisition and imaging for outcrops is difficult. An alternative is to use Ground-Penetrating Radar (GPR georadar), which is another wavepropagation method, but using electromagnetic (EM) waves instead of elastic ones. EMwaves do not react to the same properties as the elastic ones, but the overall principles of acquisition, processing and imaging is very similar to seismic. Modelling georadar sections from outcrop structures and comparing with actual data may help better constraining imaging issues faced by seismic on paleokarst reservoirs, especially resolution and illumination effects. A proper scaling can be applied to relate seismic and georadar imaging, as done in earlier studies. The main aim of the present project is to test a convolution modelling developed for seismic and used for outcrop modelling, to simulate georadar images instead. The available reference data set come from the Wordiekammen plateau in the Carboniferous Billefjorden half-graben basin on Spitsbergen, where cliffs bounding the plateau expose breccia pipes. On the plateau top, the collapse pipes are obscured by thick scree, thus kmscale size and spacing data for the pipes and faults were collected in 2011 by mapping the bedrock with 2D GPR. Two pipes were further studied in 3D using high-resolution GPR, seismic tomography and electrical methods. These geophysical data were merged into a comprehensive 3D framework including helicopter-borne lidar and photo scans of the plateau rim geology, thus allowing an integrated visualization and interpretation of the different datasets. Breccia bodies were then identified by steep-sided zones of complex diffraction patterns interrupting bedding-related continuous reflections. Such structures will then be modelled by the convolution modelling mentioned earlier as an application test.

32 Hypothesis (scientific problem): The main aim of the proposed project is to adapt and test a convolution modelling developed for seismic and already used for various outcrop modelling of complex geological features, this to simulate georadar sections instead. The real georadar data will serve as a reference because corresponding to observable structures on the studied outcrops. Test (work): The convolution modelling approach will first be adapted and tested on synthetic models provided by the FOPAK project, this using existing software and based on established equivalences between seismic and georadar. A specific study point (literature study) will be the definition of the proper georadar properties (dielectric constant) to use in the models. The convolution modelling will then be applied to the outcrop models of the Wordiekammen plateau, in comparison to the existing georadar sections. Krav for opptak/ Prerequesites: geofysikk (geologisk eller matematisk retning) Eksterne data? / External data?: Alle data som vil bli brukt i denne oppgaven vil bli gjort tilgjengelig gjennom FOPAK prosjektet eller via samarbeid med Univ. Strasbourg. Felt-, lab- og analyse- arbeid: None. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Gjøres etter avtale med veileder, vil avhenge av studentens bakgrunn og interesse, men følgende emner er anbefalt: PTEK218 - Rock Physics (10 sp) GEOV219 - Computational methods in solid earth physics (10 sp) GEOV274 - Reservoir Geophysics (10 sp) GEOV276 - Theoretical Seismology (10 sp) GEOV375 - Advanced Applied Seismic Analysis (10 sp) Spesialpensum om georadar (undervises ikke på GEO) (5 sp)

33 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Seismic mapping of onshore-offshore transition zones a modelling study Hovedveileder: Isabelle Lecomte, UiB/GEO Med-veileder(e): Tor Arne Johansen og Bent Ole Ruud (UiB/GEO); Marco Brönner (NGU). Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Detaljert kartlegging av geologiske strukturer i overgangen land - sjø er viktig for å forstå geologisk historie og landskapsutvikling. Refleksjonsseismikk er den mest anvendelige geofysiske metoden for å gjøre slik kartlegging. I overgangen land - sjø vil dette være praktisk vanskelig fordi det ofte er grunne områder som vanskeliggjør tradisjonell data innsamling. En måte å gjøre dette på er å bruke luftkanoner til å generere akustiske bølger i vannlaget og å registrere på land. Dette gir mulighet til både å studere reflekterte og refrakterte seismiske bølger. Arbeidet i oppgaven skal hovedsakelig ved seismiske modelleringseksperimenter undersøke mulige eksperimentelle oppsett for denne typen kartlegging. Arbeidet vil basere seg på et konkret data eksempel fra Andøya, som nylig gitt ut av NGU i rapporten «Ramså Basin, Northern Norway: an Integrated Study». Hypotese (vitenskapelig problem): Målet med arbeidet er å undersøke mulige seismiske innsamling oppsett via modellering, for å kunne best avbilde geologiske strukturer i overgangen land-sjø. Test (arbeid): Arbeidet består i å generere syntetiske seismiske data for forskjellige seismisk innsamling oppsett, og bruke disse for å teste deres evne til å avbilde overgangen land-sjø. Motivation (background): Detailed mapping of geological structures on onshore-offshore transition zones is important for a better understanding of geological history and landscape development. Reflection seismic is the most suitable geophysical method for such mapping. In the transition between onshore and offshore, practical issues are however faced because this often corresponds to specific shallow zones making difficult traditional acquisition. One way to approach that problem is to generate acoustic waves offshore in the water layer and record on land. This gives the possibility to both study reflected and refracted waves. The proposed work will mainly consist into investigating possible acquisition survey geometries via seismic modelling to help designing proper seismic experiments. The study will make use of a real case study at Andøya, as newly published in a report from the Geological Survey of Norway, NGU, Ramså Basin, Northern Norway: an Integrated Study. Hypothesis (scientific problem): The aim of the work is to investigate potential seismic acquisition setup via seismic modelling for an optimal seismic imaging of the onshore-offshore geological structures.

34 Test (work): The work consists into generating synthetic seismic data for various seismic acquisition experiences and use them to test their ability to image the onshore-offshore transition zone. Krav for opptak/ Prerequesites: geofysikk (geologisk eller matematisk retning) Eksterne data? / External data?: seismiske data tilgjengelig på UiB/GEO. Andre data fra NGU kan vurderes. Felt-, lab- og analyse- arbeid: ikke nødvendig Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Gjøres etter avtale med veileder, vil avhenge av studentens bakgrunn og interesse, men følgende emner er anbefalt: GEOV219 - Computational methods in solid earth physics (10 sp) GEOV274 - Reservoir Geophysics (10 sp) GEOV276 - Theoretical Seismology (10 sp) GEOV375 - Advanced Applied Seismic (10 sp)

35 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Seismic expression of injectite sands Hovedveileder: Isabelle Lecomte, UiB/GEO. Med-veileder(e): Helge Løseth, Statoil ASA (Trondheim); Christian H. Eide (UiB/GEO); Trond Andersen, Statoil ASA (Bergen). Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): I Nordsjøen har store mengder sand blitt remobilisert etter avsetning. Slike sander har ofte store variasjoner i geometri og tykkelse. En del av disse sandene er reservoar for olje og gass og derfor er det viktig å forstå grensebetingelser for når de kan avbildes på seismiske data. I Granefeltet i Nordsjøen produserer Statoil tung olje fra sander som man mistenker for å være sandinjektitter. Modellering av seismisk avbildning til disse sandene ved systematiske endringer i geometriske parametere kan forhåpentligvis gi en bedre forståelse av hvordan de seismiske refleksjonen fra disse sanden skal tolkes. Hypotese (vitenskapelig problem): Målet med arbeidet er å forstå hvordan sandinjektitter best avbildes på seismiske refleksjonsdata. Oppgaven skal også beskrive grensebetingelser for avbildning med hensyn på tykkelse og geometri (steilhelt) av sandinjeksjonene. Test (arbeid): Arbeidet i denne oppgaven er todelt. I første del skal det kartlegges geometrier og bergartsegenskaper til sand og omliggende skifer i Granefeltet i Nordsjøen i palocene og tidlig eocene bergarter. Andre del er å generere syntetiske seismiske data fra modellene fra Granefeltet. Ved å systematisk variere de petrofysiske og geometriske egenskapene i disse modellene skal man identifisere hvordan ulike parameter i geomodellene påvirker seismisk respons. Krav for opptak/ Prerequesites: Geofysikk (geologisk eller matematisk retning). Eksterne data? / External data?: Ja, seismikk og brønndata frå Granelisensen via Statoil ASA. Felt-, lab- og analyse- arbeid: Ikkje nødvendig.

36 Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Gjøres etter avtale med veileder, vil avhenge av studentens bakgrunn og interesse, men følgende emner er anbefalt: GEOV219 - Computational methods in solid earth physics (10 sp) GEOV272 - Seismic Interpretation (10 sp) GEOV274 - Reservoir Geophysics (10 sp) GEOV276 - Theoretical Seismology (10 sp) GEOV372 - Integrated Interpretation of Seismic and Geophysical Data (5 sp) GEOV375 - Advanced Applied Seismic Analysis (10 sp)

37 Master project in Earth Science: Petroleum Geoscience SEISMIC WAVEFORM INVERSION FOR FRACTURE PARAMETERS Main supervisor: Professor Morten Jakobsen Co-supervisor: Associate Professor Einar Iversen. Project description A large percentage of the worlds remaining hydrocarbon reserves are associated fractures, either in the context of naturally fractured (carbonate or tight sandstone) reservoirs or unconventional resources like gas shales (Ali and Jakobsen, 2011a). Fractures are also relevant for CO2 sequestration and geothermal energy (Ali and Jakobsen, 2011b). There is also an interesting connection fractures and gas hydrates (Lee and Collett, 2011). Fractures can have a significant effect on seismic wave propagation (e.g., Jakobsen and Hudson, 2003; Pilskog et al., 2015; Jakobsen et al., 2015) and fluid flow (e.g., Jakobsen et al., 2007; Nysæther et al., 2013), suggesting that it may be possible to derive information about fracture parameters related to permeability from seismic data alone (e.g., Ali and Jakobsen, 2011a,b; 2012; Ali et al., 2011) or in combination with production data (e.g., Jakobsen et al., 2007b; Shahraini et al., 2012). Since fractures tend to have a preferred orientation, seismic and hydraulic anisotropy effects are important in this context. Conventionally, seismic data are used to characterize subsurface fractures by performing P-wave amplitude versus offset and azimuth (AVOA) analysis. AVOA analysis is normally based on the assumption that the associated reflector is laterally invariant (Bansal and Sen, 2010). However, the conventional AVOA approach may be inaccurate in the presence of complex geological structures. More accurate results can be obtained if one performs a full waveform inversion that makes use of all the information that are contained in the seismic data, including travel times, amplitudes, diffraction and multiple scattering events. The development of methods for FWI in anisotropic media with fractures is a challenging task. However, we have already made significant progress in this direction. In a VISTA project called «waveform inversion for fracture parameter», we have developed a method for ray-born inversion for fracture parameters that can be used in complex media. Also, we have developed a generalized T-matrix approach to seismic modeling in fractured media and related anisotropic systems, including shales (Jakobsen et al., 2003a, 2015). The principal aim of this project is to develop methods for nonlinear seismic waveform inversion in anisotropic media with fractures based on the results we have already obtained in connection with the above VISTA-project and a related PETROMAX2-project. The candidate should give particular attention to the estimation of anisotropic permeability from seismically derived fractured parameters using a consistent stiffness-permeability model that we have derived in a previous project (see Ali et al., 2011).

38 References Ali, A. & Jakobsen, M. (2011): Improved characterization of fault zones by quantitative integration of seismic and production data, Journal of Geophysics and Engineering, 8, Ali, A. & Jakobsen, M. (2011a): On the accuracy of Rüger s approximation for reflection coefficients in HTI media: Implications for the determination of fracture density and orientation from seismic AVAZ data, Journal of Geophysics and Engineering, 8, Ali, A. & Jakobsen, M. (2011b): Seismic characterization of reservoirs with multiple fracture sets using velocity and attenuation anisotropy data, Journal of Applied Geophysics, 75, Bansal, R. and Sen, M.K., Ray-Born inversion for fracture parameters. Geophysical Journal International, 180, Jakobsen, M., Skjervheim, J.A. and Aanonsen, S.I., Characterization of fractured reservoirs by effective medium modelling and joint inversion of seismic and production data, J. Seismic Exloration, 16. Jakobsen, M. and Chapman, M., Unified theory of global flow and squirt flow in cracked porous media. Geophysics, Vol. 74, No. 2, , p. WA65-WA76. Jakobsen, M., T-matrix approach to seismic forward modelling in the acoustic approximation, Studia Geophysica et Geodaetica, 56, Jakobsen, M., Pilskog, I., Lopez, Generalized T-matrix approach to seismic modelling in fractured reservoirs and related anisotropic systems. Peer-reviewed extended abstract, EAGE meeting, Madrid. Jakobsen, M. and Ursin, Full waveform inversion in the frequency domain using direct iterative T-matrix methods. Journal of Geophysics and Engineering, in press. Lee, M. W. and Collett, T. S., Three types of gas hydrate reservoirs in the gulf of Mexico identified in LWD data, Proceedings of the 7th International Workshop on Gas Hydrates, ICGH. Shahraini, A., Ali, A., & Jakobsen, M., 2011, Seismic history matching in fractured reservoirs using a consistent stiffness-permeability model: Focus on the effects of fracture aperture, Geophysical Prospecting, 59, Pilskog, I., Lopez, M., and Jakobsen, M., Linearized waveform inversion for fracture parameters. Expanded abstract, 16th international workshop on seismic anisotropy, Brazil. Pål Næverlid Sævik, Inga Berre, Morten Jakobsen, Martha Lien, A 3D computational study of effective medium models applied to fractured media. Transport in Porous Media, 100,

39 Important information This project requires a strong mathematical background and practical skills within computer (e.g., matlab) programming. The student should also have some background within physics and structural geology. External data: Not relevant Field work: Not relevant Laboratory work: Not relevant Funding: Not relevant Size of project: 60 stp. Suggested courses (60 stp): PTEK218 - Rock physics (10 stp) GEOV276 - Theoretical Seismology (10 stp) GEOV219 - Computational methods in solid earth physics (10 stp) GEOV274 - Reservoir Geophysics (10 stp) GEOV375 - Advanced Applied Seismic Analysis (10 tsp) Special syllabus on signal theory and inversion (10 stp) date/signature main supervisor/project leader

40 Master project in Earth Science - Petroleum Geoscience Full waveform inversion in the Laplace domain Main supervisor: Professor Morten Jakobsen Co-supervisors: Dr. Henk Keers and Professor Emeritus Einar Mæland Formål Full waveform inversion (FWI) is a comprehensive imaging or inversion method that makes use of all information in the seismic data, including travel times, amplitudes, internal multiples and diffractions. Although the FWI method promises velocity (or elastic property) images of the underground that are sharper and of higher resolution than those in conventional migration velocity analysis and travel time tomography, the FWI method was for many years considered to be of limited practical use, due to its huge computational cost. In recent years, however, faster computers, more efficient inversion methods, and a constantly increasing demand for more detailed information about the subsurface (e.g., in connection with reservoir characterization and monitoring) has made the FWI method more and more appealing. FWI is normally based on the minimization of an objective function measuring the difference between predicted and observed data. FWI is mostly formulated in time or Fourier domain. However FWI diverges if the starting model is far from the true model. This is consequence of the lack of low frequency in the seismic sources which limits the recovery of the large-scale structures in the velocity model. Reformulating FWI in the Laplace domain using a logarithmic objective function introduces a fast and efficient method capable to recover long-wavelength velocity structure starting from a very simple initial solution and independent of the frequency content of the data. In this project, the student should first modify an existing (scattering-based) method for waveform inversion in the frequency domain so that it could be used in the Laplace domain. A series of numerical experiments should then be performed in order to compare the performance of the new Laplace domain approach with the more conventional frequency domain to FWI. The numerical experiments should be based on synthetic seismic waveform data generated using the finite difference time domain method. To make the numerical experiments more realistic, the student should also add various amounts of random white and/or colored noise to the computed waveforms. The numerical experiments should focus on problems with convergence toward local minima associated with a lack of high quality low-frequency waveform data, and investigate to what extent the Laplace domain approach could be useful in this context. The project is clearly mathematically oriented but also highly relevant for industry.

41 Important information This project requires a strong background in signal theory as well as wave propagation and inversion. It will also be required to have good skills within computer programming. Eksterne data: Not relevant Feltarbeid: Not relevant Laboratoriearbeid: Not relevant Finansiering: Not relevant Størrelse på oppgaven: 60 stp. Suggested courses(60 stp): GEOV276 - Theoretical Seismology (10 stp). GEOV219 - Computational methods in solid earth physics (10 stp). GEOV274 - Reservoir Geophysics (10 stp). GEOV375 - Advanced Applied Seismic Analysis (10 stp). MAT265/ - Parameter estimation and inverse problems (10 stp). PTEK218 Rock physics (10 spt) Special syllabus on FWI and signal theory (10 stp).

42 Master project in Earth Science Integral equation methods for electromagnetic reservoir monitoring Main supervisor: Professor Morten Jakobsen. Co-supervisor: Forsker Svenn Tveit (CIPR) The seismic method, which is based on wave propagation, provides good structural information about the (petroleum, CO2 or geothermal) reservoir. However, it is often very difficult to recover all the elastic parameters needed for an accurate prediction of both lithology and fluid content in the exploration phase, or to estimate changes in both fluid pressure and saturation changes from from 4D seismic data. In an attempt to improve the sensitivity to fluid saturation, several oil companies have started to use controlled source electromagnetic (CSEM) data as a supplement to seismic data. So far the CSEM method, has mostly been used in the exploration phase, but the results of recent research (see Stav, 2010; Musisi, 2014; Tveit et al., 2016) suggests that the CSEM method can also be very useful within a reservoir monitoring context. The principal aim of this project is to develop integral equation methods for inversion of CSEM data, that may lead to a better fluid and reservoir characterization. The main idea behind the project is that one can use similar integral equation methods for the modelling and inversion of CSEM and seismic waveform data (see Jakobsen and Ursin, 2015; Tveit et al., 2017). Traditionally, workers in the seismic and electromagnetic geophysical communities have not communicated much with each other, although there is a great potential in the modification of methods originally developed for use in seismic geophysics for use in electromagnetic geophysics, and vice-versa. The volume integral equation methods of Jakobsen and Ursin (2015) and Tveit et al.. (2017) we propose to develop in this project will relevant for both exploration and production, although the numerical experiments performed by the master student should be biased towards applications to geophysical reservoir monitoring. The student should first develop direct iterative T-matrix methods for CSEM inversion based on the work of Jakobsen and Ursin (2015), and then perform a series of computer simulations (numerical experiments or inversion tests based on synthetic CSEM data) to investigate how close the inverted models associated with different inversion strategies are to the true model under various conditions of random noise. The main focus should be on the use of deterministic inversion methods, where the goal is to search for a single best-fitting model (e.g., of a complex salt structure), but the student may also consider the use of Bayesian (statistical) inversion methods that also provide uncertainty information (see Tveit et al., 2016), depending on the progress and research interest of the student. It may also be possible to combine this work with rock physics modelling, since we also have significant experience with the development and application of effective medium theories for electrical conductivity of fluid-saturated porous media. In any case, this project represents a natural continuation of two previous master projects within electromagnetic geophysical methods (Stav, 2009; Musisi, 2015) as well as a related research project funded by the Research Council of Norway. References Jakobsen, M. and Ursin, B., Full waveform inversion in the frequency domain using direct iterative T-matrix methods. Journal of Geophysics and Engineering, 12,

43 Musisi, N., Modeling and inversion of CSEM data using Green s function methods. Master thesis, University of Bergen. (Supervised by Jakobsen, M.). Stav, A., Forovermodellering og inversjon av 3D og 4D CSEM-data basert på integralligningsmetoder. Master thesis, University of Bergen (Supervised by Jakobsen, M.). Tveit, S., Mannseth, T. and Jakobsen, M., Discriminating time-lapse saturation and pressure changes in CO2 monitoring from seismic waveform and CSEM data using ensemblebased Bayesian inversion. Expanded abstract, 86th Annual Meeting, Society of Exploration Geophysicists, Dallas. Admission requirements: This project requires a relatively good mathematical background. It is also an advantage if the student have some skills within programming (e.g., in matlab). Eksterne data: Not relevant Felt-, lab- og analyse- arbeid: Not relevant Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: PTEK218 Rock physics (10 stp). GEOV276 - Theoretical Seismology (10 stp) GEOV219 - Computational methods in solid earth physics (10 stp) GEOV274 - Reservoir Geophysics (10 stp) GEOV375 - Advanced Applied Seismic Analysis (10 stp) Special syllabus on electromagnetic geophysical methods (10 stp). Financing: Not relevant

44 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Controls on deep water turbidite sedimentation: Pleistocene of the Corinth Rift, Greece (2 masters projects) Hovedveileder: Prof Rob Gawthorpe Med-veileder(e): Dr Richard Collier (University of Leeds) Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Deep-water deposits in rift basins can provide a record of environmental change (climate, sea-level), and earthquake activity, and are important reservoirs in syn-rift basins around the world. However, controls on deep-water sedimentation in rifts is poorly understood and turbidite deposits could be triggered by slope instability, major river floods or seismic triggering. Furthermore, stratigraphic-scale changes in the percentage of turbidites vs hemipelagic/pelagic deposits is frequently a source of discussion with external forcing (sealevel change, tectonic activity) or autogenic sedimentary processes all commonly cited as dominant controls. Hypotese (vitenskapelig problem): 1. It is possible to identify earthquake induced turbidites from non-earthquake induced turbidites based on detailed sedimentological characteristics of turbidite successions. 2. Stratigraphic variation in the percentage of turbidite deposits is controlled by sediment input which, in turn, is driven by climate change. Test (arbeid): New core data from IODP drilling of the Corinth Rift (IODP Expedition 381) and onshore boreholes drilled by UiB and partners contain detailed records of deep water turbidites within a well-constrained palaeoenvironrmental framework. The project will involve detailed sedimentological analysis of turbidites from marine and non-marine intervlals (e.g. graphic logging, grain size analysis) in order to describe the characteristics of individual turbidites and the stratigraphy of intervals containing alternations of turbidites and related deep water deposits. These data will allow the characteristics of individual turbidite beds to be classified and the processes responsible for their generation to be interpreted. Palynological and micropalaeontological data (derived from separate studies) will be integrated with the sedimentological data derived from the masters study to determine if climate-induced sediment supply variation could be controlling their stratigraphic variability. A field trip to the Corinth Rift, Greece will be undertaken to put the core-based study in context.

45 Krav for opptak/ Prereqesites: GEOV107 Into to Sedimentology (essential) Eksterne data? / External data?: Data from the IODP Expedition will be available, as the main supervisor is a scientist on the expedition Felt-, lab- og analyse- arbeid: 1. Field trip to understand the context of the cores (approx 1-2 weeks) 2. Grain size analysis 3. Analysis of core photographs and integration with core physical property and micropalaeontological data will be undertake no workstations in the 3D seismic lab Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV300 Selected Topics in Earth Science (5 ECTS) GEOV360 Sedimentology and Facies Analysis (10 ECTS) GEOV361 Sequence Stratigraphy (10 ECTS) GEOV352 Field Methods in Petroleum Geology/GEOV362 Pyrenean Tectonics and Sedimentology field course (5 ECTS) GEOV326 Quaternary environments, processes and development (10 ECTS) GEOV372 Integrated Interpretation of Seismic and Geophysical Data (5 ECTS) GEOV366 / Applied Reservoir Modelling (5 ECTS) AG-336 Rift Basin Reservoirs: From Outcrop to Model (10 ECTS)

46 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Rift Margin Deltas: Plio-Pleistocene of the Corinth Rift, Greece Hovedveileder: Prof Rob Gawthorpe Med-veileder(e): Prof Mary Ford (University of Lorraine), Haralambos Kranis (University of Athens) Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Coarse-grained deltaic deposits in the immediate hanging wall of rift margin border faults provide a record of normal fault evolution. However, other external factors, such as sea-level and climate change as well variations in sedimentation due to autogenic controls also affect their sedimentology and stratigraphy. In the Corinth rift such deltas have been well studied in the west of the rift, and have been used to investigate fault migration and the evolution of individual border faults. As part of on on-going Research Council of Norway funded project we have identified a series of coarse-grained depositional systems in the hanging wall of the border fault in the central-eastern part of the Corinth Rift that have not previously been studied in detail. These coarse-grained sedimentary bodies will be the focus of this masters project. Hypotese (vitenskapelig problem): 1. What is the sedimentology of rift margin coarse-grained deposits in the central-eastern part of the Corinth Rift? Are they coarse-grained deltas (similar to those in the west of the rift) or are they different depositional systems. 2. What factors control the location of the coarse-grained rift margin deposits? Could their location be related to fault segmentation or pre-existing drainage/pre-existing topography? 3. Is the stratigraphic evolution consistent with growth and evolution of normal faults? Test (arbeid): The project will involve detailed field studies of the coarse-grained deposits involving the mapping of rift structure and stratigraphy in the central-eastern part of the Corinth Rift. Facies analysis of the deposits (graphic logging, sequence stratigraphy, grain-size analysis) will be used to describe the deposits and their stratigraphy. Drone-based photogrammetry will be used to develop 3D digital outcrop models of the coarse-grained sediment bodies in order to analyse the 3D relationships of facies and their relationship to rift structure. The structural and sedimentary data will be integrated in order to investigate the controls on sedimentation and stratigraphic evolution of the rift margin deposits.

47 Krav for opptak/ Prereqesites: GEOV107 Into to Sedimentology (essential) High level of fieldwork skills and willingness to undertake periods of fieldwork of up to 4 weeks is essential. Eksterne data? / External data?: None. Felt-, lab- og analyse- arbeid: 1. Two periods of fieldwork (3-4 weeks) in the Cornth Rift will be used to collect new field data on the coarse-grained deposits. Fieldwork will be undertaken in autumn 2018 and spring Analysis of digital outcrop models collected during fieldwork (drone photogrammetry) will be undertaken using software on workstations in the 3D seismic lab 3. Structural and sedimentary information collected in the field will be integrated in a GIS project in order to quantify geometry and investigate structural and stratigraphic data in 3D. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV300 Selected Topics in Earth Science (5 ECTS) GEOV360 Sedimentology and Facies Analysis (10 ECTS) GEOV361 Sequence Stratigraphy (10 ECTS) GEOV352 Field Methods in Petroleum Geology/GEOV362 Pyrenean Tectonics and Sedimentology field course (5 ECTS) GEOV326 Quaternary environments, processes and development (10 ECTS) GEOV372 Integrated Interpretation of Seismic and Geophysical Data (5 ECTS) GEOV366 / Applied Reservoir Modelling (5 ECTS) AG-336 Rift Basin Reservoirs: From Outcrop to Model (10 ECTS)

48 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Coupled climate-ice sheet dynamics Hovedveileder: Andreas Born Med-veileder(e): Tobias Zolles, Kerim Nisancioglu Prosjektbeskrivelse/ Project description: Motivation (background): The understanding of earth's climate on time scales longer than 10,000 years critically depends on the build-up and demise of large continental ice sheets. Over the past million years, its number alternated between the two that are present today on Greenland and Antarctica and four, with two additional masses of ice over Nor th America and Eurasia. Among other consequences, this caused sea level to change in excess of 130m. Most of the time it stood below the current level, but occasionally several meters above. Although the basic components of climate and ice sheets interactions are easily understood, the full picture is extremely complex due to the nonlinear nature of the underlying processes and the large difference in relevant time scales. While ice sheets respond on the scale of centuries to millennia, these changes are due to variations in climate that require a faithful description of the seasonal cycle. One of the prime examples of this limited understanding is the so-called '100-kiloyear-problem' (Paillard, 1998; Raymo and Nisancioglu, 2003). It formulates the difficulties in relating the periodicity of 100,000 years in global ice volume to the apparent lack of forcing on those time scales. Studies of this problem must reconcile the need to run very long ice sheet simulations with the limited computational speed of climate models (Abe-Ouchi et al., 2013). We recently developed a new method to compile synthetic transient climate model data that is consistent with proxy reconstructions (Jensen et al., 2017). It identifies fields of climate analogs from the climate model data that best resemble the geological proxy record. Importantly, this method takes advantage of existing climate simulations which makes it computationally efficient enough to create climate fields spanning several glacial cycles. These can then be used to force an ice sheet model. References: Paillard, D. (1998): The timing of Pleistocene glaciations from a simple multi-state climate model, Nature 391, Raymo, M. E. and K. H. Nisancioglu (2003): The 41 kyr world: Milankovitch's other unsolved mystery, Paleoceanography 18, 1011 Jensen et al. (2017): A spatio-temporal reconstruction of sea-surface temperatures in the North Atlantic during Dansgaard-Oeschger events 5 8, Climate of the Past Discussions Abe-Ouchi et al., (2013): Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature 500,

49 Hypothesis (scientific problem): 1) Synthetic climate reconstructions based on climate analogs are robust enough to reliably force an ice sheet model over multiple glacial cycles. 2) The dynamic interaction of climate and ice sheets gives rise to nonlinear phenomena such as hysteresis (memory) and bifurcation points. Test (work): The work consists of two major parts, the implementation of the analog method for which existing python code may be adapted, and the scientific evaluation of the results which involves forcing an ice sheet model with the synthetic climate data. The robustness of the climate analogs will be tested by means of a relatively straightforward Monte Carlo approach and a subsequent statistical evaluation. Special attention will be paid to key periods such as glacial inceptions and terminations. The second part involves preparing the climate data for use in a simple ice sheet model written in FORTRAN, running the model, and analyzing and visualizing its output. Krav for opptak/ Prerequesites : Candidates should have some previous knowledge of computer programing with languages such as python, matlab, R, IDE or similar. Please contact the supervisor before choosing this topic. Eksterne data? / External data? : We may use climate model data from collaborators at the University of Tokyo. Felt-, lab- og analyse- arbeid: none, necessary computational ressources are available Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV222 / Paleoklimatologi GEOV325 / Glasiologi GEOV302 / Geostatistikk

50 Masterprogram i geovitenskap prosjekt for søkere høst 2018 Master project in Earth Science project for autumn 2018 Prosjekttittel: Abrupt climate change in a warm climate: the 8.2 ka event Hovedveileder: Andreas Born Med-veileder(e): Camille Li (GFI), Helga F. Kleiven, Chuncheng Guo (UNI Research) Prosjektbeskrivelse/ Project description: Motivation (background): During the relatively stable conditions of our present interglacial, the 8.2 ka event is the largest climatic signal with a widespread cooling in the North Atlantic region about 8200 years before present. It coincides with a meltwater outburst from North American proglacial lakes (Alley et al., 1997; Alley and Áugústsdóttir, 2005, and references therein). In current understanding, this caused a weakening of the Atlantic meridional overturning circulation (AMOC) and a subsequent reduction in northward heat transport, followed by a recovery of the deep ocean circulation and rising temperatures after a few centuries (Bauer et al., 2004; Hall et al., 2004; Ellison et al., 2006; Wiersma et al., 2006; Kleiven et al., 2008). However, time and spatial resolution of modern proxy reconstructions challenge this original concept as they show a more complex spatial pattern of temperature changes (see figure), and a full three-dimensional change in ocean currents (see summary in Born & Levermann, 2010). Moreover, as more complex models are being used to simulate the 8.2ka event, additional details of the advection of the freshwater flood emerge (Condron & Winsor, 2011). The role of sea ice has not explicitly been taken into account. In this project, we will simulate the 8.2ka event in the Norwegian Earth System Model, a comprehensive coupled climate model of the latest generation. After implementation of several short sensitivity experiments on the CRAY XE6 parallel computer at CSCS, we will perform a detailed analysis of the simulated changes, and compare them with already available data of an unperturbed control simulation. References: Alley et al. (1997): Holocene climatic instability: a prominent, widespread event 8200 years ago, Geology 25, Alley and Áugústsdóttir (2005): The 8k event: cause and consequences of a major Holocene abrupt climate change, Quaternary Science Reviews 24, Bauer et al. (2004): Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz, Paleoceanography 19, PA3014 Born & Levermann (2010): The 8.2 ka event: Abrupt transition of the subpolar gyre toward a modern North Atlantic circulation, Geochemistry, Geophysics, Geosystems 11, Q06011 Condron & Winsor (2011): A subtropical fate awaited freshwater discharged from glacial Lake Agassiz, Geophysical Research Letters 38, L03705 Ellison et al. (2006): Surface and Deep Ocean Interactions During the Cold Climate Event 8200 Years Ago, Science 312, Hall et al. (2004): Centennial to millenial scale Holocene climate-deep water linkage in the North Atlantic, Quaternary Science Reviews 23, Kleiven et al. (2008): Reduced North Atlantic Deep Water Coeval with the Glacial Lake Agassiz Fresh Water Outburst, Science 319, Wiersma et al. (2006): Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model, Climate Dynamics 27,

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Simon Fraser University

Simon Fraser University Simon Fraser University Geoscience Course Equivalent Listing (Updated June 2013) NOTE: This course listing is a reflection of APEGBC s adoption of the Geoscientists Canada Geoscience Knowledge Requirements.

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Masterlinje mineralressurser / økonomisk geologi. Hva lærer du?

Masterlinje mineralressurser / økonomisk geologi. Hva lærer du? Masterlinje mineralressurser / økonomisk geologi Hva lærer du? Du vil lære hvilke geologiske prosesser som fører til at mineralforekomster dannes i naturen, og hvilke mineraler og bergarter som er viktige

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components. Hovedoppgave Masteroppgave ved ved IMM Høsten 2013 Lean Product Development Stability Drivers. Identifying Environmental Factors that Affect Performance. SFI-Norman presents Lean Product Development (LPD)

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Investigating Impact of types of delivery of undergraduate science content courses

Detaljer

Masteroppgave i Geovitenskap Studieretning: Geobiologi og geokjemi

Masteroppgave i Geovitenskap Studieretning: Geobiologi og geokjemi Prosjekttittel: Provenance of metamorphosed clastic sediments in the developing continental rift Veileder: Jiří Konopásek Medveileder: Jan Košler The project is dealing with the study of the Neoproterozoic

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

Opprettelse av studieretningen energi og klima og nedlegging av molekylær kvantemekanikk

Opprettelse av studieretningen energi og klima og nedlegging av molekylær kvantemekanikk FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI INSTITUTT FOR FYSIKK OG TEKNOLOGI SIFT 07-11 Til: Styret ved Institutt for fysikk og teknologi Møtedato: 15. februar 2011 Arkivref.: 2009/3450-17 GAN000 Opprettelse

Detaljer

EN Skriving for kommunikasjon og tenkning

EN Skriving for kommunikasjon og tenkning EN-435 1 Skriving for kommunikasjon og tenkning Oppgaver Oppgavetype Vurdering 1 EN-435 16/12-15 Introduction Flervalg Automatisk poengsum 2 EN-435 16/12-15 Task 1 Skriveoppgave Manuell poengsum 3 EN-435

Detaljer

Improving Customer Relationships

Improving Customer Relationships Plain Language Association International s 11 th conference Improving Customer Relationships September 21-23, 2017 University of Graz, Austria hosted by Klarsprache.at Copyright of this presentation belongs

Detaljer

Software applications developed for the maritime service at the Danish Meteorological Institute

Software applications developed for the maritime service at the Danish Meteorological Institute Software applications developed for the maritime service at the Danish Meteorological Institute Anne Marie Munk Jørgensen (ammj@dmi.dk), Ove Kjær, Knud E. Christensen & Morten L. Mortensen Danish Meteorological

Detaljer

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014) Satellite Stereo Imagery Synthetic Aperture Radar Johnson et al., Geosphere (2014) Non-regular sampling Missing data due to lack of correlation, shadows, water, Potentially 3D as opposed to purely 2D (i.e.

Detaljer

Emnedesign for læring: Et systemperspektiv

Emnedesign for læring: Et systemperspektiv 1 Emnedesign for læring: Et systemperspektiv v. professor, dr. philos. Vidar Gynnild Om du ønsker, kan du sette inn navn, tittel på foredraget, o.l. her. 2 In its briefest form, the paradigm that has governed

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

European Crime Prevention Network (EUCPN)

European Crime Prevention Network (EUCPN) European Crime Prevention Network (EUCPN) The EUCPN was set up by Council Decision 2001/427/JHA in May 2001 to promote crime prevention activity in EU Member States. Its principal activity is information

Detaljer

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION 2011-2014 FORD EXPLORER PARTS LIST Qty Part Description Qty Part Description 1 Bull Bar 2 12mm x 35mm Bolt Plates 1 Passenger/Right Mounting Bracket 2 12mm Nut Plate 1 Driver/Left Mounting Bracket 2 12mm

Detaljer

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo, Den europeiske byggenæringen blir digital hva skjer i Europa? Steen Sunesen Oslo, 30.04.2019 Agenda 1. 2. CEN-veileder til ISO 19650 del 1 og 2 3. EFCA Guide Oppdragsgivers krav til BIMleveranser og prosess.

Detaljer

TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE:

TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE: TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE: Kjære , hovedveileder for Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør

Detaljer

Presisjonsseismologi: Nøyaktig lokalisering av Nord-Koreas prøvesprengninger

Presisjonsseismologi: Nøyaktig lokalisering av Nord-Koreas prøvesprengninger NGFs 100-års Jubileumssymposium, Geilo, 20. 22. september 2017 Presisjonsseismologi: Nøyaktig lokalisering av Nord-Koreas prøvesprengninger Tormod Kværna Steven Gibbons NGFs 100-års Jubileumssymposium,

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

CAMES. Technical. Skills. Overskrift 27pt i to eller flere linjer teksten vokser opad. Brødtekst 22pt skrives her. Andet niveau.

CAMES. Technical. Skills. Overskrift 27pt i to eller flere linjer teksten vokser opad. Brødtekst 22pt skrives her. Andet niveau. CAMES Overskrift 27pt i to eller flere linjer Technical Skills Leizl Joy Nayahangan, RN, MHCM Leizl.joy.nayahangan@regionh.dk IMPORTANCE Challenges Brødtekst 22pt of patient skrives her care Increasing

Detaljer

Issues and challenges in compilation of activity accounts

Issues and challenges in compilation of activity accounts 1 Issues and challenges in compilation of activity accounts London Group on environmental accounting 21st meeting 2-4 November 2015 Statistics Netherlands The Hague Kristine E. Kolshus kre@ssb.no Statistics

Detaljer

04.11.2014. Ph.d-utdanningen. Harmonisering av krav i Norden

04.11.2014. Ph.d-utdanningen. Harmonisering av krav i Norden Ph.d-utdanningen Harmonisering av krav i Norden 2 1 Nasjonalt forskningsdekanmøte i Tromsø, oktober 2014 Nordic Medical Research Councils (NOS-M), november 2014 Prodekanmøte våren 2015 Dekanmøte våren

Detaljer

Tor Haakon Bakken. SINTEF Energi og NTNU

Tor Haakon Bakken. SINTEF Energi og NTNU Tor Haakon Bakken SINTEF Energi og NTNU Plan for lynforedrag Energi-indikatorer Vannforbruk Sammenligning stort, smått og vind Multi-kriterieanalyse Sammenligning mellom prosjekter og teknologier Verktøy

Detaljer

Guidance. CBEST, CSET, Middle Level Credential

Guidance. CBEST, CSET, Middle Level Credential Guidance CBEST, CSET, Middle Level Credential Liberal Studies for Teachers, 2009 CBEST California Basic Educational Skills Test Measures basic educational skills needed for teachers Reading Writing Math

Detaljer

Øystein Haugen, Professor, Computer Science MASTER THESES Professor Øystein Haugen, room D

Øystein Haugen, Professor, Computer Science MASTER THESES Professor Øystein Haugen, room D Øystein Haugen, Professor, Computer Science MASTER THESES 2015 Professor Øystein Haugen, room D1-011 1 Hvem er jeg? Øystein Haugen, nytilsatt professor i anvendt informatikk på Høyskolen i Østfold, avdeling

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Ravi Varadhan, Ganesh Subramaniam Johns Hopkins University AT&T Labs - Research 1 / 28 Introduction Goal:

Detaljer

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University Estimating Peer Similarity using Distance of Shared Files Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University Problem Setting Peer-to-Peer (p2p) networks are used by millions for sharing content

Detaljer

Utvikling av voksnes ferdigheter for optimal realisering av arbeidskraft (SkillsREAL)

Utvikling av voksnes ferdigheter for optimal realisering av arbeidskraft (SkillsREAL) Utvikling av voksnes ferdigheter for optimal realisering av arbeidskraft (SkillsREAL) Utvikling av voksnes ferdigheter for optimal realisering av arbeidskraft Tarja Tikkanen Hva betyr PIAAC-resultatene

Detaljer

Data harmonisation. Theme Geology Webinar

Data harmonisation. Theme Geology Webinar Data harmonisation Theme Geology Webinar 20141014 Participants (accepted) Anders Rydén (Sweden) Kicki Wasström (Sweden) Tomas Lindberg (Sweden) Uffe Larsen (Denmark) Koistinen Kai (Finland) Bo Nordahl

Detaljer

E-Learning Design. Speaker Duy Hai Nguyen, HUE Online Lecture

E-Learning Design. Speaker Duy Hai Nguyen, HUE Online Lecture E-Learning Design Speaker Duy Hai Nguyen, HUE Online Lecture Design Educational Design Navigation Design Educational Design Some Important Considerations: 1. Authentic learning environment: For effective

Detaljer

Forskningsrådets rolle som rådgivende aktør - innspill til EUs neste rammeprogram, FP9 og ERA

Forskningsrådets rolle som rådgivende aktør - innspill til EUs neste rammeprogram, FP9 og ERA Forskningsrådets rolle som rådgivende aktør - innspill til EUs neste rammeprogram, FP9 og ERA Workshop Kjønnsperspektiver i Horisont 2020-utlysninger Oslo, 31. august 2016 Tom-Espen Møller Seniorådgiver,

Detaljer

TriCOM XL / L. Energy. Endurance. Performance.

TriCOM XL / L. Energy. Endurance. Performance. TriCOM XL / L Energy. Endurance. Performance. L and XL - the new generation Sample charging station with chargers TriCOM L / XL Innovative charging technology The new TriCOM L - XL chargers are controlled

Detaljer

Hva slags AAR-krav i framtida? Begrunnelse for Felt/Lab Performance. COIN fagdag 20. mai 2008 Terje F. Rønning, Norcem AS

Hva slags AAR-krav i framtida? Begrunnelse for Felt/Lab Performance. COIN fagdag 20. mai 2008 Terje F. Rønning, Norcem AS Hva slags AAR-krav i framtida? Begrunnelse for Felt/Lab Performance COIN fagdag 20. mai 2008 Terje F. Rønning, Norcem AS Rilem forslag til CEN Level of Precaution P2: A normal level of precaution against

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: KJB 492 Bioinformatikk Eksamensdag: Fredag 14. desember 2001 Tid for eksamen: Kl.: 9.00 13.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Capturing the value of new technology How technology Qualification supports innovation

Capturing the value of new technology How technology Qualification supports innovation Capturing the value of new technology How technology Qualification supports innovation Avanserte Marine Operasjoner - Fra operasjon til skip og utstyr Dag McGeorge Ålesund, 1 Contents Introduction - Cheaper,

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

BPS TESTING REPORT. December, 2009

BPS TESTING REPORT. December, 2009 BPS TESTING REPORT December, 2009 Standardized Testing BPS SAT Reasoning Test SAT Subject Tests Advanced Placement ACT Massachusetts Comprehensive Assessment System (MCAS) MCAS Growth Data 2 SAT Reasoning

Detaljer

INTPART. INTPART-Conference Survey 2018, Key Results. Torill Iversen Wanvik

INTPART. INTPART-Conference Survey 2018, Key Results. Torill Iversen Wanvik INTPART INTPART-Conference 2019 Survey 2018, Key Results Torill Iversen Wanvik INTPART Scope of the survey 65 projects, 2015-2017 Different outset, different countries Different needs Different activities

Detaljer

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår Kurskategori 2: Læring og undervisning i et IKT-miljø vår Kurs i denne kategorien skal gi pedagogisk og didaktisk kompetanse for å arbeide kritisk og konstruktivt med IKT-baserte, spesielt nettbaserte,

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Forskerseminar Havet og kysten PROOFNY & OLF. Toril Røe Utvik Einar Lystad

Forskerseminar Havet og kysten PROOFNY & OLF. Toril Røe Utvik Einar Lystad Forskerseminar Havet og kysten PROOFNY & OLF Toril Røe Utvik Einar Lystad Rapportering av utslipp Rapporteringsfrist 1. mars Felles tall for Klif, OD og OLF Viser statistikk for: Produsert olje, kondensat

Detaljer

NORSI Kappe workshop - introduction

NORSI Kappe workshop - introduction NORSI Kappe workshop - introduction Aim of workshop Main aim: Kick-starting the work of the dissertation «kappe» Other aims: Learn from each other Test a modell for an intensive workshop Discussion feedback

Detaljer

Climate change and adaptation: Linking. stakeholder engagement- a case study from

Climate change and adaptation: Linking. stakeholder engagement- a case study from Climate change and adaptation: Linking science and policy through active stakeholder engagement- a case study from two provinces in India 29 September, 2011 Seminar, Involvering ved miljøprosjekter Udaya

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Public roadmap for information management, governance and exchange. 2015-09-15 SINTEF david.norheim@brreg.no

Public roadmap for information management, governance and exchange. 2015-09-15 SINTEF david.norheim@brreg.no Public roadmap for information management, governance and exchange 2015-09-15 SINTEF david.norheim@brreg.no Skate Skate (governance and coordination of services in egovernment) is a strategic cooperation

Detaljer

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS 2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS SPECIAL SECTION TO IN BUSINESS LAS VEGAS 3A September 23, 2005 SEE, PAGE 8A Businesses seek flexibility. It helps them compete in a fast-paced,

Detaljer

Kjell Arne Mork, Francisco Rey, Henrik Søiland

Kjell Arne Mork, Francisco Rey, Henrik Søiland Argo data in the Norwegian Sea Kjell Arne Mork, Francisco Rey, Henrik Søiland Institute of Marine Research, Norway Euro-Argo User Workshop, Paris June 21 Outline Institute Marine Research s monitoring

Detaljer

Midler til innovativ utdanning

Midler til innovativ utdanning Midler til innovativ utdanning Hva ser jeg etter når jeg vurderer et prosjekt? Utdanningsseminar Onsdag 10 Januari 2018 Reidar Lyng Førsteamanuensis Institutt for pedagogikk og livslang læring, NTNU/ Leder

Detaljer

Independent Inspection

Independent Inspection Independent Inspection Odd Ivar Johnsen Vidar Nystad Independent Inspection Mål: Felles forståelse og utøvelse av "Independent Inspection" i forbindelse med "Critical Maintenance Task". Independent Inspection

Detaljer

Kartleggingsskjema / Survey

Kartleggingsskjema / Survey Kartleggingsskjema / Survey 1. Informasjon om opphold i Norge / Information on resident permit in Norway Hvilken oppholdstillatelse har du i Norge? / What residence permit do you have in Norway? YES No

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning ISO 41001:2018 «Den nye læreboka for FM» Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning ISO 41001:2018 Kvalitetsverktøy i utvikling og forandring Krav - kapittel 4 til

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

Q2 Results July 17, Hans Stråberg President and CEO. Fredrik Rystedt CFO

Q2 Results July 17, Hans Stråberg President and CEO. Fredrik Rystedt CFO Q2 Results 2007 July 17, 2007 Hans Stråberg President and CEO Fredrik Rystedt CFO Q2 Highlights EBIT (SEKb) EBIT margin (%) 2.5 2 1.5 1 0.5 0 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 8% 7% 6% 5% 4% 3% 2% 1% 0% Group

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

Bostøttesamling

Bostøttesamling Bostøttesamling 2016 Teresebjerke@husbankenno 04112016 2 09112016 https://wwwyoutubecom/watch?v=khjy5lwf3tg&feature=youtube 3 09112016 Hva skjer fremover? 4 09112016 «Gode selvbetjeningsløsninger» Kilde:

Detaljer

Examples and experience from restorations along Tana river on the norwegian side. Knut Aune Hoseth Head of northern region

Examples and experience from restorations along Tana river on the norwegian side. Knut Aune Hoseth Head of northern region Examples and experience from restorations along Tana river on the norwegian side Knut Aune Hoseth Head of northern region Mapping of migration barriers 1998-2000 Interreg project Better understanding of

Detaljer

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: (Fornavn, etternavn) Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør instituttene og fakultetene

Detaljer

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)

Detaljer

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI2034 - Community ecology - Faglig kontakt under eksamen/contact person/subject

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kuldehypersensitivitet og konsekvenser for aktivitet En tverrsnittsstudie av pasienter med replanterte/revaskulariserte fingre Tone Vaksvik Masteroppgave i helsefagvitenskap Institutt for sykepleievitenskap

Detaljer

Risikofokus - også på de områdene du er ekspert

Risikofokus - også på de områdene du er ekspert Risikofokus - også på de områdene du er ekspert - hvordan kan dette se ut i praksis? - Ingen er for gammel til å begå nye dumheter Nytt i ISO 9001:2015 Vokabular Kontekst Dokumentasjonskrav Lederskap Stategi-politikk-mål

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

PIM ProsjektInformasjonsManual Tittel: REDUKSJON AV FLUORIDEKSPONERING I ALUMINIUMINDUSTRIEN INKLUDERT GRUNNLAG FOR KORTTIDSNORM FOR FLUORIDER

PIM ProsjektInformasjonsManual Tittel: REDUKSJON AV FLUORIDEKSPONERING I ALUMINIUMINDUSTRIEN INKLUDERT GRUNNLAG FOR KORTTIDSNORM FOR FLUORIDER SLUTTRAPPORT Innhold 1. Innledning 1.1 Deltakere 1.2 Bakgrunn 1.3 Mål 1.4 Organisasjon 2. Oppsummering 3. Summary in English 4. Referanser/References 1. INNLEDNING 1.1 Deltakere Alcan á Ísland Alcoa Fjarðaál

Detaljer

Utvikling av skills for å møte fremtidens behov. Janicke Rasmussen, PhD Dean Master Tel

Utvikling av skills for å møte fremtidens behov. Janicke Rasmussen, PhD Dean Master Tel Utvikling av skills for å møte fremtidens behov Janicke Rasmussen, PhD Dean Master janicke.rasmussen@bi.no Tel 46410433 Skills project results Background for the project: A clear candidate profile is defined

Detaljer

Innovasjonsvennlig anskaffelse

Innovasjonsvennlig anskaffelse UNIVERSITETET I BERGEN Universitetet i Bergen Innovasjonsvennlig anskaffelse Fredrikstad, 20 april 2016 Kjetil Skog 1 Universitetet i Bergen 2 Universitetet i Bergen Driftsinntekter på 4 milliarder kr

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

Nærings-PhD i Aker Solutions

Nærings-PhD i Aker Solutions part of Aker Motivasjon og erfaringer Kristin M. Berntsen/Soffi Westin/Maung K. Sein 09.12.2011 2011 Aker Solutions Motivasjon for Aker Solutions Forutsetning Vilje fra bedrift og se nytteverdien av forskning.

Detaljer

Examination paper for TDT4252 and DT8802 Information Systems Modelling Advanced Course

Examination paper for TDT4252 and DT8802 Information Systems Modelling Advanced Course Department of Computer and Information Science Examination paper for TDT4252 and DT8802 Information Systems Modelling Advanced Course Academic contact during examination: Phone: Examination date: Examination

Detaljer

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål Eksamen 22.11.2012 ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel Eksamen varer i 5 timar. Alle hjelpemiddel

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Education 436. September 14, 2011

Education 436. September 14, 2011 Education 436 September 14, 2011 Outline Review of Class 2 The Program Planning Process: The Basics The Program Planning Process: Putting Theory into Action Working with Program Assistants The Program

Detaljer

Nasjonalt kvalifikasjonsrammeverk og læringsmål i forskerutdanningen

Nasjonalt kvalifikasjonsrammeverk og læringsmål i forskerutdanningen Nasjonalt kvalifikasjonsrammeverk og læringsmål i forskerutdanningen Roger Strand Senterleder, Senter for vitenskapsteori, UiB Medlem, Dannelsesutvalget Styreleder, Vestnorsk nettverk forskerutdanninga

Detaljer

of color printers at university); helps in learning GIS.

of color printers at university); helps in learning GIS. Making a Home Page Why a Web Page? Easier to submit labs electronically (lack of color printers at university); Easier to grade many labs; Provides additional computer experience that helps in learning

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Masterprosjekt i petroleumsgeofag:

Masterprosjekt i petroleumsgeofag: Masterprosjekt i petroleumsgeofag: 17 projects: Geology: 11 Geophysics: 2 Geology AND Geophysics: 4 Oversikt som viser en grov skisse for innhold i de 17 prosjektene: Masterprosjekt til materopptaket høst

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

AAR4620 Architectural Design with Light and Colour - autumn 2016

AAR4620 Architectural Design with Light and Colour - autumn 2016 AAR4620 Architectural Design with Light and Colour - autumn 2016 Simple programs with focus on the interaction of light, colour and material. Credits 15. Main teachers are Barbara Matusiak and Kine Angelo.

Detaljer

C13 Kokstad. Svar på spørsmål til kvalifikasjonsfasen. Answers to question in the pre-qualification phase For English: See page 4 and forward

C13 Kokstad. Svar på spørsmål til kvalifikasjonsfasen. Answers to question in the pre-qualification phase For English: See page 4 and forward C13 Kokstad Svar på spørsmål til kvalifikasjonsfasen Answers to question in the pre-qualification phase For English: See page 4 and forward Norsk Innhold 1. Innledning... 2 2. Spørsmål mottatt per 28.11.12...

Detaljer

Assessing second language skills - a challenge for teachers Case studies from three Norwegian primary schools

Assessing second language skills - a challenge for teachers Case studies from three Norwegian primary schools Assessing second language skills - a challenge for teachers Case studies from three Norwegian primary schools The Visions Conference 2011 UiO 18 20 May 2011 Kirsten Palm Oslo University College Else Ryen

Detaljer

IPCC, From emissions to climate change

IPCC, From emissions to climate change IPCC, 2007 From emissions to climate change Increased greenhouse effect Global temperature change Warming during the period 1880-2012 is 0.85 C The first decade this century is the warmest in the period

Detaljer