MAT1030 Forelesning 6

Like dokumenter
Kapittel 4: Logikk (utsagnslogikk)

MAT1030 Diskret Matematikk

Kapittel 4: Logikk. MAT1030 Diskret Matematikk. Oppsummering. En digresjon. Forelesning 6: Utsagnslogikk og predikatlogikk.

Sammensatte utsagn, sannhetsverditabeller. MAT1030 Diskret matematikk. Sammensatte utsagn, sannhetsverditabeller

Vi var midt i et eksempel, som vi tar opp igjen her, da tiden var ute.

Det betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F.

MAT1030 Diskret matematikk

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel ((p q) r) Eksempel (p (q r))

MAT1030 Forelesning 5

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p

MAT1030 Forelesning 5

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk

Vi startet forelesningen med litt repetisjon fra forrige uke: Det omvendte, kontrapositive og inverse utsagnet. La p og q være to utsagn, og p -> q

INF1800 LOGIKK OG BEREGNBARHET

INF1800 Forelesning 6

MAT1030 Diskret Matematikk

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

INF1800 LOGIKK OG BEREGNBARHET

Kapittel 4: Logikk (predikatlogikk)

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet.

INF1800 Forelesning 4

INF1800 LOGIKK OG BEREGNBARHET

MAT1030 Diskret Matematikk

I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser

Oppsummering av Kapittel 3. MAT1030 Diskret matematikk LOGIKK. Logikk. Forelesning 5: Logikk

MAT1030 Diskret matematikk

Emne 13 Utsagnslogikk

Obligatorisk oppgave 2 i MAT1140, Høst Løsninger og kommentarer

MAT1030 Diskret Matematikk

MAT1030 Forelesning 10

MAT1030 Forelesning 19

MAT1030 Forelesning 8

MAT1030 Diskret Matematikk

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk

Kapittel 4: Logikk (fortsettelse)

INF1800. Logikk og Beregnbarhet

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008

MAT1030 Forelesning 4

Kapittel 5: Mengdelære

Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand.

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Kapittel 4: Mer predikatlogikk

Kapittel 4: Logikk (predikatlogikk)

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk

Matematikk for IT, høsten 2016

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Chapter 1 - Discrete Mathematics and Its Applications

INF3170 Forelesning 2

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Kapittel 4: Mer predikatlogikk

Løsningsforslag for 1. obligatoriske oppgave høsten 2014

Utsagnslogikk. Kapittel Hva er et utsagn?

Prøveeksamen 2016 (med løsningsforslag)

TMA 4140 Diskret Matematikk, 2. forelesning

Ukeoppgaver fra kapittel 3 & 4

Matematikk for IT, høsten 2015

MAT1030 Diskret matematikk

MAT1030 Forelesning 7

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Sekventkalkyle for utsagnslogikk

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

3.1 Hva har mengdealgebra og utsagnslogikk felles?

Noen løsningsforslag/fasitsvar

Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand.

Matematikk for IT, høsten 2017

MAT1030 Diskret matematikk

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

MAT1030 Diskret Matematikk

MAT1030 Diskret matematikk

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3).

TMA 4140 Diskret Matematikk, 1. forelesning

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen

Disjunktiv normalform, oppsummering

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008

Kalles p for premissen og q for konklusjonen. Utsagnet kan uttrykkes på mange forskjellige måter:

MAT1030 Diskret Matematikk Forelesningsnotater Våren 2010

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

UNIVERSITETET I OSLO

Repetisjonsforelesning

MAT1030 Diskret Matematikk

Deduksjon i utsagnslogikk

Sekventkalkyle for utsagnslogikk

INF1800 LOGIKK OG BEREGNBARHET

INF3170 Logikk. Ukeoppgaver oppgavesett 6

Forelesning 10. Mengdelære. Dag Normann februar Venn-diagrammer. Venn-diagrammer. Venn-diagrammer. Venn-diagrammer

MAT1030 Diskret Matematikk

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo

Venn-diagrammer. MAT1030 Diskret matematikk. Venn-diagrammer. Venn-diagrammer. Eksempel. Forelesning 10: Mengdelære

UNIVERSITETET I OSLO

Transkript:

MAT1030 Forelesning 6 Logikk, predikatlogikk Roger Antonsen - 28. januar 2009 (Sist oppdatert: 2009-01-28 12:23) Kapittel 4: Logikk (utsagnslogikk) Mer om parenteser Eksempel. (p q r) (p r) (q r) Her mangler det noen parenteser, og for å kunne sette opp sannhetsverditabellen, må vi vite hvilke parenteser som mangler, eller, som er underforstått. Vi har tidligere sagt at og skiller mer enn. Vi skal også la og skille mer enn og. Det betyr at utsagnet over egentlig skal være noe som ikke akkurat er lettere å lese. (((p q) r) ((p r) (q r))) Vi skriver ut trestrukturen til dette sammensatte utsagnet på tavlen og fortsetter med å skrive ut sannhetsverditabellen. Vi oppdager at høyre kolonne vil inneholde T i alle linjer. Det betyr at utsagnet er sant uansett hvilke grunnutsagn vi setter inn for p, q og r. Da må (p r) (q r) være en logisk konsekvens av p q r. (Vi skal snart definere begrepet om logisk konsekvens helt presist.) La p stå for Jeg betaler semesteravgift. La q stå for Jeg får godkjent obligene. La r stå for Jeg kan gå opp til eksamen. Da er Hvis jeg betaler semesteravgiften kan jeg gå opp til eksamen eller hvis jeg får godkjent obligene kan jeg gå opp til eksamen. en logisk konsekvens av Hvis jeg betaler semesteravgiften og får godkjent obligene kan jeg gå opp til eksamen. Er det noe galt her, og i så fall hva? Hvordan skal vi forstå utsagn som p q r 1

og p q r I slike tilfeller vil vi få den samme høyrekolonnen i sannhetsverditabellen uansett hvordan vi setter parentesene, så vi kan like godt la det være. Tautologier og kontradiksjoner Definisjon. La A være et sammensatt utsagn i utsagnsvariablene p 1,..., p n. A er en tautologi hvis A får verdien T for alle fordelinger av sannhetsverdier på p 1,..., p n, det vil si hvis sannhetsverditabellen til A har bare T i høyre kolonne. Vi kunne brukt ordene selvoppfyllende eller selvforklarende på norsk, men holder oss til det internasjonalt brukte tautologi. Hvis sannhetsverdien til A derimot alltid blir F, kaller vi A en kontradiksjon eller en selvmotsigelse. En tautologi er, med andre ord, et utsagn som alltid er sant, og en kontradiksjon er et utsagn som alltid er usant. Eksempel. p p er en tautologi. p p er en kontradiksjon. p (q p) er en tautologi. (p q) ((q r) (p r)) er en tautologi. (p q) p q er en kontradiksjon. p (p q) er en tautologi. Logisk ekvivalens Eksempel ( p q). p q p q p q T T F F F T F F T F F T T F F F F T T T 2

Eksempel ( (p q)). p q p q (p q) T T T F T F T F F T T F F F F T Vi ser at høyrekolonnene er identiske. Definisjon. La A og B være to utsagnslogiske uttrykk. Vi sier at A og B er logisk ekvivalente hvis A og B har samme sannhetsverdi uansett hvilke verdier vi gir til utsagnsvariablene. Vi skriver når A og B er logisk ekvivalente. A B Eksempel. p q (p q) p q (p q) p p p q p q p (q p) T Logisk konsekvens Logisk ekvivalens er et viktig begrep. Logisk konsekvens er et minst like viktig begrep: Definisjon. La A og B være sammensatte utsagn. B er en logisk konsekvens av A dersom A B er en tautologi. Vi skriver ofte A B når B er en logisk konsekvens av A. 3

Merk at uttrykk som A B og A B ligger på utsiden av den formelle utsagnslogikken. Logiske lover Tabell 4.12 på side 55 i læreboka lister opp en rekke regneregler for utsagnslogikk, kalt laws of logic. Poenget er at man kan regne på et uttrykk ved å bruke disse reglene på deluttrykk, for derved å prøve å forenkle det. Det er et faktum (vi ikke skal bevise nå) at vi kan regne oss frem til T fra enhver tautologi. At disse lovene virkelig kan brukes som regneregler, bør bevises, og det skal vi gjøre nå. Noen av de viktigste regnereglene for logikk i boken er: DeMorgans lover: (p q) p q (p q) p q Distributive lover: p (q r) (p q) (p r) p (q r) (p q) (p r) Vi skal snart se på et eksempel på hvordan vi kan vise at et sammensatt utsagn er en tautologi ved å bruke disse regnereglene. Vi henviser til betegnelsene i tabellen på side 55. Teorem. La A være et sammensatt utsagn, og la B være et delutsagn av A. La C være et annet utsagn slik at B C og la D komme fra A ved at vi erstatter en eller flere forekomster av B med C. Da er A D. Bevis. I sannhetsverditabellen for A har vi en kolonne for B, og det er bare verdiene i denne kolonnen vi bruker videre. Vi ville fått samme sluttresultat om vi hadde brukt en kolonne for C i stedet for. Dette svarer til å sette opp sannhetsverditabellen for D. 4

Strategier Det finnes flere metoder eller strategier for å bestemme om et sammensatt utsagn er en tautologi eller ikke. Bruk av sannhetsverditabeller er en sikker, men tidkrevende metode. Vi skal ikke legge vekt på bruk av regnereglene for logikk her, men hvis man vil bruke den, kan man gjøre det målrettet, ved å eliminere og, flytte alle forekomster av så langt inn som mulig og så bruke distributive lover og forkortningsregler. Hvis A er et sammensatt utsagn, kan vi løse likningen A = F med hensyn på utsagnsvariablene. Hvis likningen ikke har løsning, så er A en tautologi. Hva som er mest hensiktsmessig avhenger av hvordan det sammensatte utsagnet ser ut. Bruk av regneregler Eksempel ((p q) (p q) p). (p q) (p q) p ((p q) (p q)) p [Eliminasjon av ] (p q) (p q) p [Bruk av DeMorgan] ( p q) ( p q) p [To gangers bruk av DeMorgan] ( p ( q q)) p [Distributiv lov] ( p T) p [Invers lov] p p [Identitetsloven] T [Invers lov] Vi antydet også at det er mulig å vise at et sammensatt utsagn A er en tautologi ved å vise at likningen A = F ikke holder. Vi skal gi ett eksempel på hvordan vi kan løse slike likninger. Metoden kan være nyttig når A har mange forekomster av. Programmeringsspråket PROLOG er basert på en systematisering av denne metoden, koblet med predikatlogikk. Eksempel ((p q) ((q r) (p r))). 1. (p q) ((q r) (p r)) = F 2. p q = T (Fra 1.) 3. (q r) (p r) = F (Fra 1.) 4. q r = T (Fra 3.) 5. p r = F (Fra 3.) 5

6. p = T (Fra 5.) 7. r = F (Fra 5.) 8. q = F (Fra 4 og 7.) 9. p = F (Fra 2 og 8) 10. p p (Fra 6 og 9.) En oppgave Oppgave. a) Vis at hvis A, B og C er sammensatte utsagn, så vil (A B) C A (B C) og at (A B) (B A). b) Forklar hvorfor dette betyr at rekkefølge og parentessetting ikke betyr noe i et utsagnslogisk uttrykk som bare bruker bindeordet c) [Vanskelig] Hvordan kan vi lett avgjøre om et slikt uttrykk er en tautologi eller ikke? Oppsummering Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel og de utsagnslogiske bindeordene,,, og. Vi har sett hvordan vi kan undersøke egenskapene til et sammensatt utsagn A ved å skrive ut sannhetsverditabellen til A. Et sammensatt utsagn A er en tautologi om A alltid får verdien T og A er en kontradiksjon om A alltid får verdien F. To sammensatte utsagn A og B er logisk ekvivalente om de alltid får den samme sannhetsverdien når vi gir sannhetsverdier til utsagnsvariablene. Dette er det samme som at A B er en tautologi. Vi skriver A B når A og B er logisk ekvivalente. Vi har diskutert konvensjoner for å sette parenteser. Rekkevidden til er det nærmeste deluttrykket som kan oppfattes som et utsagn. Vil vi at skal rekke lenger enn til nærmeste utsagnsvariabel, må vi bruke parenteser. Rekkevidden til og går til nærmeste symbol som ikke er Rekkevidden til og går frem til neste forekomst av eller, det vil si, forbi, og. Vi kan sette mellom mer enn to delutsagn uten å bruke parenteser, og vi kan sette mellom mer enn to delutsagn uten å bruke parenteser, men bruker vi både og må vi bruke parenteser for å bestemme hvilket som er hovedkonnektivet. 6

Vi må alltid bruke parenteser hvis vi bruker flere eller etter hverandre, f.eks. p q r. Eksempel (p (q r)). Dette utsagnet får verdien F når p = T og q r = F. Det betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F. Eksempel ((p q) r). Dette utsagnet får verdien F når p q = T og r = F. Dette utsagnet får altså verdien F når det første utsagnet får det, men også når p = F og r = F (uansett verdi på q.) Utsagnene er altså ikke logisk ekvivalente. Vi må bruke parentesene for å skille dem. 7