Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014
Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like stor verdi for tettheten Generelt: Tettheten til en uniform fordelt variabel X er f(x) = 1/(b-a), a x b f(x) = 0 ellers E(X) = (a + b)/2 Var(X) = (b a) 2 /12 Den uniforme fordelingen er et eksempel på en bestemt sannsynlighetsmodell
En sannsynlighetsmodell definerer hele sannsynlighetsfordelingen til en bestemt s.v. (eller den simultane fordelingen til flere s.v. er samtidig). Kan gis enten i form av en tabell (diskret s.v.) eller en formel (både diskret og kontinuerlig s.v.). Sannsynlighetsfordelingen i form av en tabell er ofte (men ikke alltid) empirisk (erfaringsmessig, databasert). Da gjelder den bare den ene situasjonen. Fordelinger i form av en formel er mer anvendelige, større bruksområde. 3
Eksempel (jfr. oppgave 4.3): antall seksere i tre kast s.v. X Tabell: x P(X=x) 0 (5/6) 3 = 125/216 1 3.(1/6).(5/6) 2 = 75/216 2 3.(1/6) 2.(5/6) = 15/216 3 (1/6) 3 = 1/216 Formel: P(X=x) = 3 x (sjekk selv) 1 6 x 5 6 3 x, 0 x 3 Formel kortere enn tabell, men uklart hva sannsynlighetene blir med 2, eller 4, eller 5, eller n kast. Sannsynlighetsmodell for antall seksere i n kast: P(X=x) = n 1 x 5 n x, x = 0, 1, 2,, n x 6 6 Mer generell, fordi antall kast n kan velges fritt 4
Enda mer generell: sannsynlighet p på suksess i istedenfor 1/6. F. eks. myntkast, p=½ for kron/mynt Kaster n ganger. Hvor ofte kron? S.v. X P(X=x) = n x p x 1 p n x, n= 1, 2, 3, ; x = 0, 1, 2, n, 0 < p < 1 Dette er et eksempel på en binomisk sannsynlighetsmodell. X har en binomisk fordeling. n og p er parametere, som er avhengige av situasjonen. X er en s.v. Leddet n k kalles for binomialkoeffisient. 5
Definisjon binomisk modell En binomisk modell beskriver sannsynligheten for et bestemt antall vellykkete forsøk («suksess») i en såkalt binomisk forsøksrekke - Forsøket kan deles opp i n delforsøk - Hvert forsøk har bare to utfall: A og ikke-a - Sannsynligheten P(A) er den samme i alle delforsøkene - Delforsøkene er statistisk uavhengige av hverandre Hvis X er antall ganger at A inntreffer, er X binomisk fordelt P(X=x) = n p x x 1 p n x, n= 1, 2, 3, ; x = 0, 1, 2, n, 0 < p < 1, der n er antall delforsøk, p=p(a) Kortform: X ~ bin(n,p) tegnet ~ står for «har sannsynlighetsfordeling:» 6
To eksempler 1) Antall jenter X i en familie med 4 barn. p = 0,485 X ~ bin(4, 0,485) P(X=x) = 4 x 0,485 x 0,515 4 x, x = 0, 1, 2, 3, 4 2) Antall personer som stemmer Høyre blant 1000 tilfeldig valgte personer. p=0,268 fra Stortingsvalg 2013 P(X=x) = 1000 x 0,268 x 0,732 1000 x, x = 0, 1, 2,, 1000 Forutsetningene? 7
Egenskaper for binomisk fordelt s.v. Anta at X ~ bin(n,p) Regel 5.3 sier at E(X) = n.p, Var(X) = n.p.(1-p) Bevis på s. 488 X er antall jenter i en 4-barnsfamilie (p=0,485). Forventet antall jenter E(X) blir lik 4 x 0,485 = 1,940 jenter Varians til X blir 4 x 0,485 x 0,515 = 0,999 SD(X) = 1,000 jente Når n og p varierer får vi en hel rekke fordelinger. For noen av disse er P(X x) blitt tabellert: kumulert binomisk fordeling. 8
Tabell over binomisk fordeling (tabell E1, s. 534) Kaster en mynt 10 ganger P(minst 4 ganger kron)? X s.v. antall ganger kron X ~ bin(10, ½). n=10, p=½ P(X 4) = 1 P(X 3) = 1 0,172 = 0,828 = 83% 9
Tabell over binomisk fordeling (tabell E1, s. 534) Kaster en mynt 10 ganger X s.v. antall ganger kron X ~ bin(10, ½). P(eksakt 4 ganger kron)? P(X=4) =P(X 4) P(X 3) = = 0,377 0,172 = 0,205 = 21% NB Vanlig triks for diskret s.v.: fra kumulert til punktsannsynlighet!! 10
Tabellen viser P(X x) bare for n 10 og noen få verdier for p. For stor n brukes Excel jfr. side 176, eller en tilnærming (regel 5.20 senere). 11
Hypergeometrisk fordeling Forutsetning binomisk forsøk: samme sannsynlighet på «suksess» i hvert delforsøk Henger sammen med at delforsøkene er basert på trekning med tilbakelegging Mange delforsøk men trekning uten tilbakelegging? 12
Damenes 3 mil under Vinter-OL Salt Lake City 2002 N = 50 deltakere. Anta at M = 10 av disse var dopet. Det ble trukket n=6 deltakere for dopingtest. To av disse var positive: Olga Danilova og Larissa Lazutina. Hva er sannsynligheten for at vi skulle trekke to som var dopet? s.v.x - Antall mulige utvalg 6 fra 50 er lik 50 6 kombinasjonsregelen - Antall «gunstige» utvalg: 2 som er dopet kan trekkes på 10 2 ulike måter, mens de øvrige 4 kan trekkes på 50 10 6 2 ulike måter Dermed blir sannsynligheten for at vi trekker 2 som har dopet seg lik P X=2 = 10 2 50 10 6 2 50 6 = 0,259 = 26% 13
På samme måte P X=1 = 10 1 50 10 6 1 50 6 =0,414 > P(X=2)!! Og P X=0 = 10 0 40 6 50 6 =0,242 Sannsynlighet for at ingen blir avslørt er hele 24%! For alle x: P X=x = 10 x 40 6 x 50 6, x=1,2,3,,10 Eksempel på en hypergeometrisk fordeling 14
Hypergeometrisk fordeling Populasjon på N enheter M av disse er merket n blir trukket X er s.v.: antall trukne enheter blant de n som er merket P X=x = M x N M n x N n, x=1,2,3,,n, x M Andelen p = M/N er merket E(X) = n.p = n.m/n Også: Var(X) = n.p. 1 p. N n N 1 bevis på side 488 15
Eksempel: Kortstokk 52 kort, 13 av disse er spar. Du får utdelt 13 kort. Hvor stor er sjansen på eksakt 5 spar? N = 52, M = 13, n = 13 Antall spar du får er en s.v. X P X = 5 = 13 39 5 8 52 13 = 0,125 16
Dopingeksemplet n=6, M=10, N=50 p=0,2 Vi fant P(X = 0) = 0,242 P(X = 1) = 0,414 P(X = 2) = 0,259 Hva om vi (feilaktig) hadde antatt en binomisk fordeling? X~ bin(6, 0,2) P(X=0) = 6 0 0,2 0 0,8 6 = 0,262 (hypergeometrisk 0,242) P(X=1) = 6 1 0,2 1 0,8 5 = 0,393 (hypergeometrisk 0,414) P(X=2) = 6 2 0,2 2 0,8 4 = 0,246 (hypergeometrisk 0,259) I praksis kan vi bruke binomisk fordeling istedenfor hypergeometrisk fordeling, så snart N > 10n. Her hadde vi N/n = 50/6 = 8,3 17
Hypergeometrisk vs. binomisk fordeling Samme forventning: E(X) = n.p Variansene er forskjellige Binomisk: Var(X) = n.p.(1-p) Hypergeometrisk: Var(X) = n.p. 1 p. N n, mindre enn binomisk N 1 Faktor N n N 1 = 1 n N går mot 1 for stor N og liten n/n 1 1 N Dopingeksemplet: Var(X) = 6 x 0,2 x 0,8 = 0,96 (binomisk) Var(X) = 0,96 x (50-6)/(50-1) = 0,86 (hypergeometrisk) ca 10% lavere 18