Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015



Like dokumenter
Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk

Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013

Løysingsframlegg øving 1

Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: August 6, r L2. r r. h 2 r 2 ) sin 2 θ φ.

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2014

Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2012

FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar

1 Stokastisk variabel

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2013

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom

FY1006/TFY Øving 12 1 ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l = 0, 1, ; m = l,, l.

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY4215 Innføring i kvantefysikk - Løysing øving 2 1 LØYSING ØVING 2. a) For grunntilstanden for den harmoniske oscillatoren har vi

ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar. h2 + V (x). (0.1) 2m dx 2

FY1006/TFY Løysing øving 4 1 LØYSING ØVING 4. Vibrerande to-partikkelsystem. = k(x l) og F 2 = V = V. k (x l) dvs ω 1 =,

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

NORSK TEKST Side 1 av 5

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

FY1006/TFY Øving 4 1 ØVING 4

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

B.1 Generelle egenskaper til energiegenfunksjoner

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

UNIVERSITETET I OSLO

Samandrag TFY 4215/FY1006 Innføring i kvantemekanikk Vår 2014

A.3.e: Ortogonale egenfunksjonssett

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Hermiteske og ikke-hermiteske operatorer, kommutatorer,

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

Løysingsforslag for øving 13

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl

UNIVERSITETET I OSLO

Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

Løsningsforslag Matematisk fysikk, 28. mai 2001

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl

ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

Eksamensoppgave i TFY4210 Kvanteteorien for mangepartikkelsystemer

Eksamen FY1006/TFY mai løsningsforslag 1

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

Eksamen TFY 4104 Fysikk Hausten 2009

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Transkript:

Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl. 09.00-13.00 Tillatne hjelpemiddel: Godkjend kalkulator Rottmann: Matematisk Formelsamling Rottmann: Matematische Formelsammlung Barnett & Cronin: Mathematical Formulae Angell og Lian: Fysiske størrelser og enheter: navn og symboler Oppgåve 1 a) For ein symmetrisk bølgjefunksjon har vi ψ( x). I området a < x < 0 er den generelle løysinga difor gjeve ved A sin kx + B cos kx. (1) b) Randkravet ψ(a) = 0 gjev A sin ka + B cos ka = 0 og difor tan ka = B. A Vidare har vi Ak cos kx Bk sin kx a < x < 0 ψ (x) = Ak cos kx Bk sin kx 0 < x < a, (2) 1

Dette gjev ψ (0 + ) ψ (0 ) = 2Ak og difor 2Ak = 2mα B. Dersom vi definerer β = h2 kan vi skrive B = βk. Dette gjev tilslutt maα A tan ka = β(ka) (3) Den grafiske løysinga for eit par verdiar av β er plotta i figur. 1 8 6 4 2 2 1 2 3 4 Β 1 2 ka 4 Β 1 6 Figure 1: tan ka som funksjon av ka og den rette linja βka for β = 1 2 og β = 1. c) I grensa β 0 (α ) får ein eller sin ka = 0. Dette gjev tan ka = 0, (4) k = nπ a 1, 2, 3.... (5) Merknad: Ein kan og ha n = 1, 2, 3..., men dette gjev dei same løysingane som over opp til eit forteikn. Dette tilsvarer at ein vel fasen lik 1 = e iπ. Bølgjetalet for ein partikkel i boks med breidde 2a er k = nπ 2a (n = 1, 2, 3...). Effekten av eit uendeleg sterkt δ-funksjonspotensial er såleis a halvere breidda til boksen: Når δ-funksjonspotensialet er uendeleg sterkt, blir B = β = 0 (for k 0) og difor ψ(0) = 0. Systemet er nå to boksar med breidde a og ein skillevegg i x = 0 (med randkravet ψ(0) = 0). I grensa β (α 0) får vi eller cos ka = 0. Dette gjev tan ka =, (6) k = (n + 1)π 2 n = 0, 1, 2... a (2n + 1)π =, (7) 2a

Dette tilsvarer energinivåa til dei symmetriske tilstandane til ein partikkel i boks med breidde L = 2a. Dette er naturleg sidan β = tilsvarer α = 0 slik at vi i denne grensa har ein partikkel i boks. d) Dei antisymmetriske bølgjefunksjonane er på forma A sin kx B cos kx a < x < 0 A sin kx + B cos kx 0 < x < a, (8) e) Kontinuitet til ψ(x) i x = 0 gjev B = 0. Randkravet ψ(a) = 0 gjev A sin ka = 0 og difor k = nπ a = mπ 2a n = 1, 2... m = 2, 4, 6.... (9) Dette er dei kjende energinivåa til dei antisymmetriske tilstandane til ein partikkel i boks med breidde L = 2a, uavhengig av styrken på δ-funksjonspotensialet. f) Vi skal nå sjå på spesialtilfellet E = 0. Schro dingerliknkinga for x 0 er då Den symmetriske løysinga er h2 2m ψ 0(x) = 0. (10) ψ 0 (x) = A x + B, x 0, (11) der A og B er konstantar. Randkravet ψ 0 (a) = 0 gjev B = Aa. Vidare har vi ψ 0(0 + ) ψ 0(0 ) = 2A og difor A = mα B. Konstanten A kansellerer og vi får a mα = 1 eller α = h2 ma. (12) Dette svarer til β = 1. Bølgjefunksjonen er nå på forma ψ 0 (x) = A( x a). Normeringsintegralet er a A 2 ( x a) 2 dx = 2 3 A 2 a 3. (13) a Dersom vi vel A reell, får vi tilslutt den normerte bølgjefunksjonen 3 ψ 0 (x) = ( x a). (14) 2a3 g) Vi veit at grunntilstanden er symmetrisk og kan skrivast på forma A sinh Kx + B cosh Kx a < x < 0, A sinh Kx + B cosh Kx 0 < x < a, (15)

der K = 2mE 0. h) Randkravet ψ(a) = 0 gjev A sinh Ka + B cosh Ka = 0 og difor tanh Ka = B. Vidare har vi A AK cosh Kx + BK sinh Kx a < x < 0 ψ (x) =, (16) AK cosh Kx + BK sinh Kx 0 < x < a Dette gjev ψ (0 + ) ψ (0 ) = 2AK og difor 2AK = 2mα B. Altså er B = h2 K. A mα Kombinerer ein dette med randkravet ser vi at tanh Ka = h2 K mα = βka, (17) 3.0 Β 1 2.5 2.0 1.5 Β 1 2 1.0 0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Ka Figure 2: tanh Ka som funksjon av Ka og den rette linja βka for β = 1 2 og β = 1. i) Utrekninga i h) gjeld for ein vilkårleg symmetrisk tilstand med E < 0. Likning (17) har berre ei løysing for β 1 og to løysingar for 1 < β < 1 2. Løysinga K = 0 gjev B, men randkravet gjev då B = 0 slik at dette ikkej er ei fysisk løysing. Det finst altså berre ei symmetrisk løysing for E < 0 (grunntilstanden) og difor er det ingen eksiterte tilstandar med E < 0 som er symmetriske. Anta at det finst ein antisymmetrisk tilstand med E < 0. Denne tilstanden kan skrivast som A sinh Kx B cosh Kx a < x < 0, (18) A sinh Kx + B cosh Kx 0 < x < a der K = 2mE. Sidan ψ(x) er kontinuerleg i x = 0 er B = 0 og ein får A sinh Kx. (19) Randkravet ψ(a) = 0 gjev A sinh Ka = 0 eller A = 0 som impliserer ψ(x) 0. Dette viser at det ikkje finst antisymmetriske tilstandar med E < 0.

Oppgåve 2 a) Ved innsetting får ein ˆL z f(φ, θ) = 0, (20) ˆL 2 f(φ, θ) = 2 f(φ, θ), (21) Dersom vi bruker eigenverdilikningane ˆL z Y lm (θ, φ) = hy lm (θ, φ) og ˆL 2 Y lm (θ, φ) = l(l + 1)Y lm (θ, φ), finn vi eigenverdiane m = 0 og l = 1. b) Ved rotasjon ein vinkel π 2 Dette impliserer rundt y-aksen har vi transformasjonane x z, (22) y y, (23) z x. (24) cos θ = z r Dette gjev g(θ, φ) = x r = cos φ sin θ. (25) 3 cos φ sin θ. (26) 4π c) Ved innsetting får ein at g(θ, φ) er ein eigentilstand til ˆL x med eigenverdi 0. Altså er m = 0. Sidan vi har rotert ein eigentilstand til ˆL z med eigenverdi π m = 0 rundt ein vinkel rundt y-aksen får ein eigentilstand til ˆLx med 2 eigenverdi m = 0. d) Vi kan skrive g(φ, θ) = = 3 cos φ sin θ 4π 3 1 4π 2 sin θ [ e iφ + e iφ]. (27) Det første leddet er ein eigenfunksjon til ˆL z med eigenverdi h. Det vil seie m = 1. Det andre leddet er ein eigenfunksjon til ˆL z med eigenverdi h. Det vil seie m = 1. Moglege måleresultat er såleis m = ±1 og g(θ, φ) er ikkje ein eigenfunksjon til ˆLz. L z er difor ikkje skarp i denne tilstanden. Merknad: Sidan koeffisienten foran dei to ledda har same absolutverdi, er sannsynlegheiten for å måle m = 1 og m = 1 like store, nemleg 1 2. Middelverdien er difor ˆL z = 0.

Oppgåve 3 a) Energien til den klassiske oscillatoren er E = p2 2m + 1 2 mω2 x 2. (28) Grunntilstanden har E = 0, det vil seie at partikkelen ligg i ro i x = 0. Kvantemekanisk er Hamiltonoperatoren til oscillatoren d 2 Ĥ = h2 2m dx + 1 2 2 mω2 x 2. (29) Grunntilstandsenergien for ein kvantemekanisk oscillator er E 0 = 1 2 hω, (30) og grunntilstanden til ein kvantemekanisk oscillator er gjeven ved bølgjefunksjonen ( ) 1 mω 4 e 1 2 h mωx2. (31) π h b) Viss F og G er kompatible har dei tilhøyrande operatorane ˆF og Ĝ eit felles sett av eigenfunksjonar som er ekvivalent med at dei kommuterer, [ ˆF, Ĝ] = 0. c) Operatoren  = d er ikkje hermitesk. Vi veit at operatoren ˆp dx x = i h d er hermitesk. Då er ˆB = i d og hermitesk. Dersom vi bruker dx dx reknereglane for adjungering finn vi  = (ib) = i ˆB = i ˆB Â. d) Ein bunden tilstand er lokalisert og bølgjefunksjonen ψ er normerbar, det vil seie kvadratisk integrerbar. Dette tyder at ψ 0 når x ± (ein dimensjon) eller r (to eller tre dimensjonar) raskt nok slik at normeringsintegralet er konvergent. e) I potensrekkjemetoden skriv vi løysinga til ei differensiallikning som ei rekkje f(x) = a n x n+s, (32) n=1 der s er eit heiltal. Ein finn uttrykke for dei ulike deriverte av f(x) ved å derivere kvart ledd i rekkja. Til dømes er f (x) = a n (n + s)x n+s 1, (33) n=1 Ein sett nå inn for dei ulike ledda i differensiallikninga og samlar ledd med same potens x k for alle k. Koeffisienten foran må då vere identisk lik null og

dette gjev ein rekursjonsformel der a n er uttrykt ved hjelp av lågare koeffisientar, vanlegvis a n 1 og a n 2. Ofte må ein krevje at rekkja bryt av, det vil seie at a k = 0 for k n for passe n (bundne tilstandar). Døme på bruk av potensrekkjemetoden er harmonisk oscillator, Legendres differensiallikning og radiallikninga for hydrogenatomet.