Existence of resistance forms in some (non self-similar) fractal spaces

Like dokumenter
Graphs similar to strongly regular graphs

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

UNIVERSITETET I OSLO

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z )

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

SVM and Complementary Slackness

Verifiable Secret-Sharing Schemes

1 Aksiomatisk definisjon av vanlige tallsystemer

Moving Objects. We need to move our objects in 3D space.

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Dynamic Programming Longest Common Subsequence. Class 27

Lipschitz Metrics for Non-smooth evolutions

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Uniqueness of the nonlinear Schrödinger equation driven by jump processes

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision

Splitting the differential Riccati equation

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf

MeijerG1. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized Meijer G-function

Asymptotic FOEL for the Heisenberg model on boxes

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Trust region methods: global/local convergence, approximate January methods 24, / 15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Fault Tolerant K-Center Problems

TOPOLOGY WORD LIST/TOPOLOGI-ORDLISTE. base space basisrom basis elements basiselementer basis for a topology basis for en topologi

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

msjmeeting-2017sep-02i002 . Dehn Sommerville, . Gorenstein., ( ) 2 8, f 0 ( ) = 6, f 1 ( ) = 12, f 2 ( ) = 8 3 ( : )

Unfoldable Self-Avoiding Walks

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Stationary Phase Monte Carlo Methods

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Neural Network. Sensors Sorter

Slope-Intercept Formula

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Trading Memory for Randomness

Løsningsforslag 2017 eksamen

Berry Phases of Boundary Gravitons

The Asymptotic Loss of Information for Grouped Data

Entropy of Semiclassical Measures for Nonpositively Curved Surfaces

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti

UNIVERSITETET I OSLO

Integral Equations on Multi-Screens

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

IN2010: Algoritmer og Datastrukturer Series 2

Smart High-Side Power Switch BTS730

Solutions of nonlinear differential equations

Asymptotic Distribution of Quasi-Normal Modes for Kerr de Sitter Black Holes

On Capacity Planning for Minimum Vulnerability

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Superlinear Ambrosetti Prodi problem for the p-laplacian operator

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Disjoint Sets. Chapter 21. CPTR 430 Algorithms Disjoint Sets 1

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Self-improving property of nonlinear higher order parabolic systems near the boundary

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Level-Rebuilt B-Trees

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen

SRP s 4th Nordic Awards Methodology 2018

Transitive Spaces of Operators

Trigonometric Substitution

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

TFY4170 Fysikk 2 Justin Wells

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Ma Flerdimensjonal Analyse Øving 11

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

Full characterizations of minimax inequality, fixed point theorem, saddle point theorem, and KKM principle in arbitrary topological spaces

1 The Dynamics of Random Economic Models Volker Böhm Universität Bielefeld Handout for MDEF2000 Workshop Modelli Dinamici in Economia e Finanza Urbino

Flows and Critical Points

Rohlin s invariant and gauge theory, I. Homology 3-tori

PSi Apollo. Technical Presentation

On time splitting for NLS in the semiclassical regime

Lattice Congruences of the Weak Order

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

UNIVERSITETET I OSLO

Progress on Mazur s program B

Utsatt eksamen ECON2915

Second Order ODE's (2P) Young Won Lim 7/1/14

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Transkript:

Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014

Motivation X Fractal

Motivation X Fractal Laplacian

Motivation X Fractal Dirichlet form Laplacian

Motivation X Fractal Dirichlet form Laplacian resistance form

Motivation X Fractal Dirichlet form Laplacian resistance form X is self-similar: p.c.f. (Kigami), Sierpiński carpet (Kajino),... X not self-similar: homogeneous random p.c.f. (Hambly), homogeous random carpets (Hambly, Kumagai, Kusuoka,...), self-conformal (Strichartz, Freiberg,...), fractafolds (Strichartz), fractal fields (Hambly, Kumagai), homogeneous non self-similar carpets (Steinhurst)

Motivation X Fractal Dirichlet form Laplacian resistance form X is self-similar: p.c.f. (Kigami), Sierpiński carpet (Kajino),... X not self-similar: homogeneous random p.c.f. (Hambly), homogeous random carpets (Hambly, Kumagai, Kusuoka,...), self-conformal (Strichartz, Freiberg,...), fractafolds (Strichartz), fractal fields (Hambly, Kumagai), homogeneous non self-similar carpets (Steinhurst), fractal quantum graphs

Quantum graphs graph: (V, E, ) V vertices -finite or countable many- E edges : E V V orientation r : E [0, ) weight function

Quantum graphs graph: (V, E, ) V vertices -finite or countable many- E edges : E V V orientation r : E [0, ) weight function a d c b

Quantum graphs graph: (V, E, ) V vertices -finite or countable many- E edges : E V V orientation r : E [0, ) weight function a d c b

Quantum graphs graph: (V, E, ) V vertices -finite or countable many- E edges : E V V orientation r : E [0, ) weight function a d c b

Quantum graphs d Weighted graph: (V, E,, r) V vertices -finite or countable many- E edges : E V V orientation 1.5 a 1 2 c b 2.5 r : E [0, ) weight function

Quantum graphs Weighted graph: (V, E,, r) G a d b Metric graph: 1-d simplicial complex c

Quantum graphs Weighted graph: (V, E,, r) G a d b Metric graph: 1-d simplicial complex c Φ e : [0, r(e)] G smooth, e E Lebesgue measure on G

Quantum graphs Weighted graph: (V, E,, r) G a d b Metric graph: 1-d simplicial complex c Φ e : [0, r(e)] G smooth, e E Lebesgue measure on G

Quantum graphs Weighted graph: (V, E,, r) G a d b Metric graph: 1-d simplicial complex c Quantum graph: metric graph + operator (-2nd derivative on edges) vertex conditions

Quantum graphs Weighted graph: (V, E,, r) G a d b Metric graph: 1-d simplicial complex c Quantum graph: metric graph + operator (-2nd derivative on edges) vertex conditions L 2 (G) := L 2 ([0, r(e)], dx) e E H 1 (G) := H 1 ([0, r(e)], dx) e E

Fractal quantum graphs Definition: A separable compact connected and locally connected metric space (X, d) is called a fractal quantum graph (FQG) if (i) there exists {l k } k=1 R + and isometries φ k : [0, l k ] X, k 1 such that and (ii) the set is totally disconnected. φ k ([0, l k ]) = [0, l k ] k 1 φ k ((0, l k )) φ j ((0, l j )) =, k j, X \ φ k ((0, l k )) k=1

Resistance form For each n 0, define F n := {f C(X ) f φ k H 1 ([0, l k ]) k n, n f loc. const. in X \ φ k ((0, l k ))} and the bilinear form k=1 E n (f, g) := X f (x)g (x) dx f, g F n.

Resistance form For each n 0, define F n := {f C(X ) f φ k H 1 ([0, l k ]) k n, n f loc. const. in X \ φ k ((0, l k ))} and the bilinear form k=1 E n (f, g) := X f (x)g (x) dx = n lk k=1 0 (f φ k ) (g φ k ) dx f, g F n.

Let D n be a dense subset of n k=1 φ k ((0, l k )) and E n (f, f ) := inf{e n (g, g) g F n, g Dn f }, f l(d n ) := {f : D n R}. Proposition: {E n, l(d n )} n 1 is a compatible sequence (of resistance forms).

Resistance form Theorem: Let X be a FQG and D a countable dense subset of X. R (i) There exists a resistance form (E, F) on Ω := D, where { } f (x) f (y) 2 R(x, y) := sup f F E(f, f ) is the resistance metric associated to (E, F). (ii) Furthermore, if there exists a sequence {ε n } n 1 such that ε n 0 and ) n diam R (conn. comp. Ω \ φ k (0, l k ) < ε n n 1 k=1 then (E, F) is a resistance form on X. ( )

Dirichlet form and Laplacian Theorem 2: Property ( ) X is R-compact.

Dirichlet form and Laplacian Theorem 2: Property ( ) X is R-compact. (E, F) regular resistance form + µ locally finite and regular

Dirichlet form and Laplacian Theorem 2: Property ( ) X is R-compact. (E, F) regular resistance form + µ locally finite and regular (E, D) local and regular Dirichlet form on L 2 (X, µ)

Dirichlet form and Laplacian Theorem 2: Property ( ) X is R-compact. (E, F) regular resistance form + µ locally finite and regular (E, D) local and regular Dirichlet form on L 2 (X, µ) µ associated Laplacian on X

Example: Hanoi-type FQG 1. E n (f, g) := X f (x)g (x) dx f, g F n 2. E n (f, g) f, g l(d n ) 3. (E, F) on X

Example: Hanoi-type FQG (E, F) resistance form + µ β measure µβ Let r := 1 α 2 and s := 1 β 3 and N D/N (x) denote the eigenvalue counting function of N/D µ β. Then (i) N D/N (x) x 1 2, for 0 < rs < 1 9, (ii) N D/N (x) x 1 2 log x, for rs = 1 9, (iii) N D/N (x) x log 3 log(rs), for rs > 1 9.

Work in progress: generalization Let (X, d) be a compact connected metric space satisfying X = A i, I countable set, A i X open, i I for all i I, (X \ A i ) A i finite. Theorem: For such space (X, d), if (i) There exists (E i, F i ) resistance form on A i for each i I and the resistance metric R i is compatible with d. (ii) There exists M > 0 such that for any x, y X γ : [0, 1] X s.t. diam Ri (A i ) < M, ( ) i I γ A i then, there exists a resistance form (E, F) on X.

Thank you!