On time splitting for NLS in the semiclassical regime

Størrelse: px
Begynne med side:

Download "On time splitting for NLS in the semiclassical regime"

Transkript

1 On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21

2 Splitting for NLS i t u u = f ( u 2) u, t 0, x R d, with u : [0, T ] R d C, and f : R + R. Splitting: solve successively two parts of the equation. 1 ODE: 1 i t u + 2 u = f ( u 2) u. 2 Linear PDE: i t u u = f ( u 2) u 0. Interest: two equations which are easy to solve. Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 21

3 Splitting for NLS i t u u = f ( u 2) u, t 0, x R d, with u : [0, T ] R d C, and f : R + R. Splitting: solve successively two parts of the equation. 1 ODE: 1 i t u + 2 u = f ( u 2) u. 2 Linear PDE: i t u u = f ( u 2) u 0. Interest: two equations which are easy to solve. Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 21

4 Splitting for NLS i t u u = f ( u 2) u, t 0, x R d, with u : [0, T ] R d C, and f : R + R. Splitting: solve successively two parts of the equation. 1 ODE: 1 i t u + 2 u = f ( u 2) u. 2 Linear PDE: i t u u = f ( u 2) u 0. Interest: two equations which are easy to solve. Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 21

5 Splitting for NLS i t u u = f ( u 2) u, t 0, x R d, with u : [0, T ] R d C, and f : R + R. Splitting: solve successively two parts of the equation. 1 ODE: 1 i t u + 2 u = f ( u 2) u. 2 Linear PDE: i t u u = f ( u 2) u 0. Interest: two equations which are easy to solve. Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 21

6 Splitting for NLS i t u u = f ( u 2) u, t 0, x R d, with u : [0, T ] R d C, and f : R + R. Splitting: solve successively two parts of the equation. 1 ODE: 1 i t u + 2 u = f ( u 2) u. 2 Linear PDE: i t u u = f ( u 2) u 0. Interest: two equations which are easy to solve. Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 21

7 Solving the equations i t u u = f ( u 2) u. 1 ODE: i t u = f ( u 2) u. It is a linear equation! Indeed, t ( u 2 ) = 0 since f : R + R. 2 Linear PDE: i t u + 1 u = 0. 2 Same thing, thanks to Fourier (in space): i t û ξ 2 2 û = 0. explicit formula for the ODE, and FFT for the PDE. Rémi Carles (Montpellier) Splitting for semiclassical NLS 3 / 21

8 Solving the equations i t u u = f ( u 2) u. 1 ODE: i t u = f ( u 2) u. It is a linear equation! Indeed, t ( u 2 ) = 0 since f : R + R. 2 Linear PDE: i t u + 1 u = 0. 2 Same thing, thanks to Fourier (in space): i t û ξ 2 2 û = 0. explicit formula for the ODE, and FFT for the PDE. Rémi Carles (Montpellier) Splitting for semiclassical NLS 3 / 21

9 Solving the equations i t u u = f ( u 2) u. 1 ODE: i t u = f ( u 2) u. It is a linear equation! Indeed, t ( u 2 ) = 0 since f : R + R. 2 Linear PDE: i t u + 1 u = 0. 2 Same thing, thanks to Fourier (in space): i t û ξ 2 2 û = 0. explicit formula for the ODE, and FFT for the PDE. Rémi Carles (Montpellier) Splitting for semiclassical NLS 3 / 21

10 Solving the equations i t u u = f ( u 2) u. 1 ODE: i t u = f ( u 2) u. It is a linear equation! Indeed, t ( u 2 ) = 0 since f : R + R. 2 Linear PDE: i t u + 1 u = 0. 2 Same thing, thanks to Fourier (in space): i t û ξ 2 2 û = 0. explicit formula for the ODE, and FFT for the PDE. Rémi Carles (Montpellier) Splitting for semiclassical NLS 3 / 21

11 Splitting scheme(s) Denote by X t the linear flow: X t u 0 = u(t), where i t u u = 0 ; u t=0 = u 0, and by Y t the nonlinear flow: Y t u 0 = u(t), where i t u = f ( u 2) u ; u t=0 = u 0. Lie-Trotter: Z t L = Y t X t or Z t L = X t Y t. Strang: Z t S = X t/2 Y t X t/2 or (... ). Higher order... Rémi Carles (Montpellier) Splitting for semiclassical NLS 4 / 21

12 Splitting scheme(s) Denote by X t the linear flow: X t u 0 = u(t), where i t u u = 0 ; u t=0 = u 0, and by Y t the nonlinear flow: Y t u 0 = u(t), where i t u = f ( u 2) u ; u t=0 = u 0. Lie-Trotter: Z t L = Y t X t or Z t L = X t Y t. Strang: Z t S = X t/2 Y t X t/2 or (... ). Higher order... Rémi Carles (Montpellier) Splitting for semiclassical NLS 4 / 21

13 Convergence of the approximation i t u u = u 2 u ; u t=0 = u 0. Theorem (Besse-Bidégaray-Descombes 02; Lubich 08) Case d 2: for u 0 H 2 (R d ) and all T > 0, C, h 0 such as if t ]0, h 0 ], n N with n t [0, T ], ( Z t L ) n u0 u(n t) L 2 C (m 2, T ) t, with m j = max 0 t T u(t) H j (R d ). If d = 3 and u 0 H 4 (R d ), ( Z t S ) n u0 u(n t) L 2 C (m 4, T ) ( t) 2. Rémi Carles (Montpellier) Splitting for semiclassical NLS 5 / 21

14 Semiclassical regime iε t u ε + ε2 2 uε = f ( u ε 2) u ε, and ε 0. Initial datum of WKB type: u ε 0 (0, x) = a 0(x)e iφ 0(x)/ε. Conserved quantities: Mass: Energy: d dt uε (t) 2 L = 0. ( 2 d ε u ε (t) 2 L + F ( u ε (t, x) 2) ) dx = 0. dt 2 R d u ε H 1 ε 1. More generally, m j = O(ε j ) (sharp). The splitting error estimates become useless in the limit ε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 6 / 21

15 Semiclassical regime iε t u ε + ε2 2 uε = f ( u ε 2) u ε, and ε 0. Initial datum of WKB type: u ε 0 (0, x) = a 0(x)e iφ 0(x)/ε. Conserved quantities: Mass: Energy: d dt uε (t) 2 L = 0. ( 2 d ε u ε (t) 2 L + F ( u ε (t, x) 2) ) dx = 0. dt 2 R d u ε H 1 ε 1. More generally, m j = O(ε j ) (sharp). The splitting error estimates become useless in the limit ε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 6 / 21

16 Semiclassical regime iε t u ε + ε2 2 uε = f ( u ε 2) u ε, and ε 0. Initial datum of WKB type: u ε 0 (0, x) = a 0(x)e iφ 0(x)/ε. Conserved quantities: Mass: Energy: d dt uε (t) 2 L = 0. ( 2 d ε u ε (t) 2 L + F ( u ε (t, x) 2) ) dx = 0. dt 2 R d u ε H 1 ε 1. More generally, m j = O(ε j ) (sharp). The splitting error estimates become useless in the limit ε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 6 / 21

17 Hydrodynamics iε t u ε + ε2 2 uε = f ( u ε 2) u ε ; u ε 0(0, x) = a 0 (x)e iφ 0(x)/ε. WKB type approximation: u ε (t, x) a(t, x)e iφ(t,x)/ε. Position density: ρ ε (t, x) = u ε (t, x) 2. Current density: J ε (t, x) = ε Im (u ε (t, x) u ε (t, x)). Formally (justifications exist), ρ ε and J ε converge to: t ρ + div J = 0 ; ρ t=0 = a 0 2, ( ) J J t J + div + ρ f (ρ) = 0 ; J ρ t=0 = a 0 2 φ 0. Identifying terms: ρ = a 2, J = a 2 φ. Rémi Carles (Montpellier) Splitting for semiclassical NLS 7 / 21

18 Splitting in the semiclassical limit Idea: as long as the solution to the exact equation writes u ε (t, x)=a ε (t, x)e iφε (t,x)/ε, (a ε, φ ε uniformly bounded H s ), then so does the numerical solution obtained by splitting. ODE: iε t u ε = f ( u ε 2 )u ε, u ε t=0 = aε 0e iφε 0 /ε. u ε (t, x) = a0 ε(x)eiφε 0 (x)/ε itf ( aε 0 (x) 2)/ε. Amounts to considering the system: { t φ ε = f ( a ε 2) ; φ ε t=0 = φε 0, t a ε = 0 ; a ε t=0 = aε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 8 / 21

19 Splitting in the semiclassical limit Idea: as long as the solution to the exact equation writes u ε (t, x)=a ε (t, x)e iφε (t,x)/ε, (a ε, φ ε uniformly bounded H s ), then so does the numerical solution obtained by splitting. ODE: iε t u ε = f ( u ε 2 )u ε, u ε t=0 = aε 0e iφε 0 /ε. u ε (t, x) = a0 ε(x)eiφε 0 (x)/ε itf ( aε 0 (x) 2)/ε. Amounts to considering the system: { t φ ε = f ( a ε 2) ; φ ε t=0 = φε 0, t a ε = 0 ; a ε t=0 = aε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 8 / 21

20 Splitting in the semiclassical limit Idea: as long as the solution to the exact equation writes u ε (t, x)=a ε (t, x)e iφε (t,x)/ε, (a ε, φ ε uniformly bounded H s ), then so does the numerical solution obtained by splitting. ODE: iε t u ε = f ( u ε 2 )u ε, u ε t=0 = aε 0e iφε 0 /ε. u ε (t, x) = a0 ε(x)eiφε 0 (x)/ε itf ( aε 0 (x) 2)/ε. Amounts to considering the system: { t φ ε = f ( a ε 2) ; φ ε t=0 = φε 0, t a ε = 0 ; a ε t=0 = aε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 8 / 21

21 Splitting in the semiclassical limit Idea: as long as the solution to the exact equation writes u ε (t, x)=a ε (t, x)e iφε (t,x)/ε, (a ε, φ ε uniformly bounded H s ), then so does the numerical solution obtained by splitting. ODE: iε t u ε = f ( u ε 2 )u ε, u ε t=0 = aε 0e iφε 0 /ε. u ε (t, x) = a0 ε(x)eiφε 0 (x)/ε itf ( aε 0 (x) 2)/ε. Amounts to considering the system: { t φ ε = f ( a ε 2) ; φ ε t=0 = φε 0, t a ε = 0 ; a ε t=0 = aε 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 8 / 21

22 Linear PDE: iε t u ε + ε2 2 uε = 0, u t=0 ε = aε 0e iφε 0 /ε. The solution can be written as u ε = a ε e iφε /ε, with t φ ε φε 2 = 0 ; φ ε t=0 = φε 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε ; a t=0 ε = aε 0. The system is decoupled: φ ε solves Burgers. Before singularity formation, solve the first equation (φ ε uniformly bounded H s ), then the second is a linear PDE with bounded coefficients (a ε uniformly bounded H s 2 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 9 / 21

23 Linear PDE: iε t u ε + ε2 2 uε = 0, u t=0 ε = aε 0e iφε 0 /ε. The solution can be written as u ε = a ε e iφε /ε, with t φ ε φε 2 = 0 ; φ ε t=0 = φε 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε ; a t=0 ε = aε 0. The system is decoupled: φ ε solves Burgers. Before singularity formation, solve the first equation (φ ε uniformly bounded H s ), then the second is a linear PDE with bounded coefficients (a ε uniformly bounded H s 2 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 9 / 21

24 Linear PDE: iε t u ε + ε2 2 uε = 0, u t=0 ε = aε 0e iφε 0 /ε. The solution can be written as u ε = a ε e iφε /ε, with t φ ε φε 2 = 0 ; φ ε t=0 = φε 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε ; a t=0 ε = aε 0. The system is decoupled: φ ε solves Burgers. Before singularity formation, solve the first equation (φ ε uniformly bounded H s ), then the second is a linear PDE with bounded coefficients (a ε uniformly bounded H s 2 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 9 / 21

25 Outcome The numerical solution is written as a ε e iφε /ε, by solving successively { t φ ε = f ( a ε 2), t a ε = 0. and t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. Amounts to do some splitting on t φ ε φε 2 = f ( a ε 2), t a ε + φ ε a ε aε φ ε = i ε 2 aε. Rémi Carles (Montpellier) Splitting for semiclassical NLS 10 / 21

26 Outcome The numerical solution is written as a ε e iφε /ε, by solving successively { t φ ε = f ( a ε 2), t a ε = 0. and t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. Amounts to do some splitting on t φ ε φε 2 = f ( a ε 2), t a ε + φ ε a ε aε φ ε = i ε 2 aε. Rémi Carles (Montpellier) Splitting for semiclassical NLS 10 / 21

27 Déjà vu t φ ε φε 2 = f ( a ε 2), t a ε + φ ε a ε aε φ ε = i ε 2 aε. Without i ε 2 aε, for f (ρ) = +ρ γ 1, symmetrised version of isentropic Euler. With i ε 2 aε, system introduced by Emmanuel Grenier (f > 0). Generalizations: WKB regime for other equations (f 0, Schrödinger-Poisson, f (ρ) = λρ σ ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 11 / 21

28 Déjà vu t φ ε φε 2 = f ( a ε 2), t a ε + φ ε a ε aε φ ε = i ε 2 aε. Without i ε 2 aε, for f (ρ) = +ρ γ 1, symmetrised version of isentropic Euler. With i ε 2 aε, system introduced by Emmanuel Grenier (f > 0). Generalizations: WKB regime for other equations (f 0, Schrödinger-Poisson, f (ρ) = λρ σ ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 11 / 21

29 Déjà vu t φ ε φε 2 = f ( a ε 2), t a ε + φ ε a ε aε φ ε = i ε 2 aε. Without i ε 2 aε, for f (ρ) = +ρ γ 1, symmetrised version of isentropic Euler. With i ε 2 aε, system introduced by Emmanuel Grenier (f > 0). Generalizations: WKB regime for other equations (f 0, Schrödinger-Poisson, f (ρ) = λρ σ ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 11 / 21

30 Propagating Sobolev regularity: linear PDE t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. The linear PDE has been replaced by a nonlinear system. φ ε solves (multid) Burgers: local resolution, propagation of H s regularity (s > d/2 + 1), tame estimates. If φ ε L ([0, τ]; H s ), s > d/2 + 1, one cannot hope better than a ε L ([0, τ]; H s 1 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 12 / 21

31 Propagating Sobolev regularity: linear PDE t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. The linear PDE has been replaced by a nonlinear system. φ ε solves (multid) Burgers: local resolution, propagation of H s regularity (s > d/2 + 1), tame estimates. If φ ε L ([0, τ]; H s ), s > d/2 + 1, one cannot hope better than a ε L ([0, τ]; H s 1 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 12 / 21

32 Propagating Sobolev regularity: linear PDE t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. The linear PDE has been replaced by a nonlinear system. φ ε solves (multid) Burgers: local resolution, propagation of H s regularity (s > d/2 + 1), tame estimates. If φ ε L ([0, τ]; H s ), s > d/2 + 1, one cannot hope better than a ε L ([0, τ]; H s 1 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 12 / 21

33 Propagating Sobolev regularity: linear PDE t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. The linear PDE has been replaced by a nonlinear system. φ ε solves (multid) Burgers: local resolution, propagation of H s regularity (s > d/2 + 1), tame estimates. If φ ε L ([0, τ]; H s ), s > d/2 + 1, one cannot hope better than a ε L ([0, τ]; H s 1 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 12 / 21

34 Propagating Sobolev regularity: linear PDE t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. The linear PDE has been replaced by a nonlinear system. φ ε solves (multid) Burgers: local resolution, propagation of H s regularity (s > d/2 + 1), tame estimates. If φ ε L ([0, τ]; H s ), s > d/2 + 1, one cannot hope better than a ε L ([0, τ]; H s 1 ). Rémi Carles (Montpellier) Splitting for semiclassical NLS 12 / 21

35 Propagating Sobolev regularity: ODE { t φ ε = f ( a ε 2), t a ε = 0. If f is local (f (ρ) = ρ γ 1 ), then for a ε L ([0, τ]; H σ ), σ > d/2, φ ε L ([0, τ]; H σ ) and not better: the numerical scheme does not preserve the regularity. The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered. Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo). Rémi Carles (Montpellier) Splitting for semiclassical NLS 13 / 21

36 Propagating Sobolev regularity: ODE { t φ ε = f ( a ε 2), t a ε = 0. If f is local (f (ρ) = ρ γ 1 ), then for a ε L ([0, τ]; H σ ), σ > d/2, φ ε L ([0, τ]; H σ ) and not better: the numerical scheme does not preserve the regularity. The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered. Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo). Rémi Carles (Montpellier) Splitting for semiclassical NLS 13 / 21

37 Propagating Sobolev regularity: ODE { t φ ε = f ( a ε 2), t a ε = 0. If f is local (f (ρ) = ρ γ 1 ), then for a ε L ([0, τ]; H σ ), σ > d/2, φ ε L ([0, τ]; H σ ) and not better: the numerical scheme does not preserve the regularity. The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered. Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo). Rémi Carles (Montpellier) Splitting for semiclassical NLS 13 / 21

38 Propagating Sobolev regularity: ODE { t φ ε = f ( a ε 2), t a ε = 0. If f is local (f (ρ) = ρ γ 1 ), then for a ε L ([0, τ]; H σ ), σ > d/2, φ ε L ([0, τ]; H σ ) and not better: the numerical scheme does not preserve the regularity. The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered. Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo). Rémi Carles (Montpellier) Splitting for semiclassical NLS 13 / 21

39 Propagating Sobolev regularity: ODE { t φ ε = f ( a ε 2), t a ε = 0. If f is local (f (ρ) = ρ γ 1 ), then for a ε L ([0, τ]; H σ ), σ > d/2, φ ε L ([0, τ]; H σ ) and not better: the numerical scheme does not preserve the regularity. The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered. Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo). Rémi Carles (Montpellier) Splitting for semiclassical NLS 13 / 21

40 Sobolev regularity Hypothesis f (ρ) = K ρ, where the Fourier transform of K, 1 K(ξ) = (2π) d/2 e ix ξ K(x)dx, R d satisfies: Example If d 2, sup ξ R d (1 + ξ 2 ) K(ξ) < ; If d 3, sup ξ R d ξ 2 K(ξ) <. If d 3, Schrödinger-Poisson: f ( u 2 )u = V p u, where V p = λ u 2, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 14 / 21

41 The exact solution If for s > d/2 + 1, φ 0 L, ( φ 0, a 0 ) H s+1 H s, then there exists T > 0 such that the system t φ ε φε 2 = f ( a ε 2) ; φ ε 0 = φ 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε ; a0 ε = a 0, has a unique solution (φ ε, a ε ) C([0, T ]; L H s ) such that φ ε C([0, T ]; H s+1 ). In addition, the bounds are uniform in ε ]0, 1]. We can take T = T max δ, where T max is the lifespan of the Euler-Poisson system (if T max < ). WKB form preserved for the exact solution, on [0, T ]. Rémi Carles (Montpellier) Splitting for semiclassical NLS 15 / 21

42 The exact solution If for s > d/2 + 1, φ 0 L, ( φ 0, a 0 ) H s+1 H s, then there exists T > 0 such that the system t φ ε φε 2 = f ( a ε 2) ; φ ε 0 = φ 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε ; a0 ε = a 0, has a unique solution (φ ε, a ε ) C([0, T ]; L H s ) such that φ ε C([0, T ]; H s+1 ). In addition, the bounds are uniform in ε ]0, 1]. We can take T = T max δ, where T max is the lifespan of the Euler-Poisson system (if T max < ). WKB form preserved for the exact solution, on [0, T ]. Rémi Carles (Montpellier) Splitting for semiclassical NLS 15 / 21

43 The exact solution If for s > d/2 + 1, φ 0 L, ( φ 0, a 0 ) H s+1 H s, then there exists T > 0 such that the system t φ ε φε 2 = f ( a ε 2) ; φ ε 0 = φ 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε ; a0 ε = a 0, has a unique solution (φ ε, a ε ) C([0, T ]; L H s ) such that φ ε C([0, T ]; H s+1 ). In addition, the bounds are uniform in ε ]0, 1]. We can take T = T max δ, where T max is the lifespan of the Euler-Poisson system (if T max < ). WKB form preserved for the exact solution, on [0, T ]. Rémi Carles (Montpellier) Splitting for semiclassical NLS 15 / 21

44 Main result Theorem There exist ε 0 > 0 and C, c 0 independent of ε ]0, ε 0 ] such that for all t (0, c 0 ], for all n N such that t n = n t [0, T ], we have: 1. There exist φ ε and a ε with sup t [0,T ] ( a ε (t) H s (R d ) + φ ε (t) H s+1 (R d ) + φ ε (t) L (R d ) such that u ε = a ε e iφε /ε on [0, T ] R d. 2. There exist φ ε n and a ε n with a ε n H s (R d ) + φ ε n H s+1 (R d ) + φ ε n L (R d ) C, ) C, such that (Zε t ) n ( a 0 e iφ 0/ε ) = ane ε iφn/ε, and the following error estimate holds: a ε n a ε (t n ) H s 1 + φ ε n φ ε (t n ) H s + φ ε n φ ε (t n ) L C t. Rémi Carles (Montpellier) Splitting for semiclassical NLS 16 / 21

45 Back to initial unknowns Corollary Under the previous assumptions, with previous notations: (Z t ) n u0 ε S tn ε ε u0 ε L 2 (R d ) C t ε. Main quadratic observables: (Zε t ) n u0 ε 2 L u ε (t n ) 2 C t, 1 (R d ) L (R d ) ( ) Im ε(zε t ) n u0 ε t (Zε ) n u0 ε J ε (t n ) L 1 (R d ) L (R d ) C t. Remark In agreement with numerical experiments by Bao-Jin-Markowich 03. Rémi Carles (Montpellier) Splitting for semiclassical NLS 17 / 21

46 Scheme of the proof Remark Regularity estimates on the exact solution. (Local) regularity estimates on the numerical scheme. Local error estimate (after Descombes-Thalhammer). From local to global: Lady Windermere s fan and induction (after Holden-Lubich-Risebro). Working in phase/amplitude representation yields L bounds independent of ε ]0, 1], which were not known. Rémi Carles (Montpellier) Splitting for semiclassical NLS 18 / 21

47 Scheme of the proof Remark Regularity estimates on the exact solution. (Local) regularity estimates on the numerical scheme. Local error estimate (after Descombes-Thalhammer). From local to global: Lady Windermere s fan and induction (after Holden-Lubich-Risebro). Working in phase/amplitude representation yields L bounds independent of ε ]0, 1], which were not known. Rémi Carles (Montpellier) Splitting for semiclassical NLS 18 / 21

48 Scheme of the proof Remark Regularity estimates on the exact solution. (Local) regularity estimates on the numerical scheme. Local error estimate (after Descombes-Thalhammer). From local to global: Lady Windermere s fan and induction (after Holden-Lubich-Risebro). Working in phase/amplitude representation yields L bounds independent of ε ]0, 1], which were not known. Rémi Carles (Montpellier) Splitting for semiclassical NLS 18 / 21

49 Scheme of the proof Remark Regularity estimates on the exact solution. (Local) regularity estimates on the numerical scheme. Local error estimate (after Descombes-Thalhammer). From local to global: Lady Windermere s fan and induction (after Holden-Lubich-Risebro). Working in phase/amplitude representation yields L bounds independent of ε ]0, 1], which were not known. Rémi Carles (Montpellier) Splitting for semiclassical NLS 18 / 21

50 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

51 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

52 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

53 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

54 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

55 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

56 Analytic regularity The phase φ ε and the amplitude a ε belong to H l ρ, l > d/2 + 1, where ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ, with a time dependent weight ρ. Inspired by the analysis of Ginibre & Velo 01. Requirements: ρ(t) δ > 0 on [0, T ], ρ(t) 1. For instance, ρ(t) = M 0 Mt, with M 0, M 1. Advantages: The previous loss of regularity issue disappears, No symmetry needed in the hydrodynamical form (unlike in Grenier s approach). Typically, we can consider f ( u 2 )u = λ u 2σ u, σ N, λ R. Rémi Carles (Montpellier) Splitting for semiclassical NLS 19 / 21

57 Parabolization of the Euler system The time dependent analytic norm implies the general property ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ d dt ψ 2 H = 2 tψ, ψ ρ l H l ρ + 2 ρ ψ 2. Hρ l+1/2 Last term: as if a parabolic term (of order 1) had been added ( ρ < 0). Implicit dependence of M = ρ in the computations: assume that the initial data a 0 and φ 0 satisfy ( 1+δ â 0 (ξ) 2 + ˆφ 0 (ξ) 2) dξ <, R d e ξ for some δ > 0 (e.g.: Gaussian data, or compact support on Fourier side). Same error estimate as before (in all H s, with T > 0 independent of ε). Rémi Carles (Montpellier) Splitting for semiclassical NLS 20 / 21

58 Parabolization of the Euler system The time dependent analytic norm implies the general property ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ d dt ψ 2 H = 2 tψ, ψ ρ l H l ρ + 2 ρ ψ 2. Hρ l+1/2 Last term: as if a parabolic term (of order 1) had been added ( ρ < 0). Implicit dependence of M = ρ in the computations: assume that the initial data a 0 and φ 0 satisfy ( 1+δ â 0 (ξ) 2 + ˆφ 0 (ξ) 2) dξ <, R d e ξ for some δ > 0 (e.g.: Gaussian data, or compact support on Fourier side). Same error estimate as before (in all H s, with T > 0 independent of ε). Rémi Carles (Montpellier) Splitting for semiclassical NLS 20 / 21

59 Parabolization of the Euler system The time dependent analytic norm implies the general property ψ 2 H l ρ = R d ξ 2l e 2ρ ξ ˆψ(ξ) 2 dξ d dt ψ 2 H = 2 tψ, ψ ρ l H l ρ + 2 ρ ψ 2. Hρ l+1/2 Last term: as if a parabolic term (of order 1) had been added ( ρ < 0). Implicit dependence of M = ρ in the computations: assume that the initial data a 0 and φ 0 satisfy ( 1+δ â 0 (ξ) 2 + ˆφ 0 (ξ) 2) dξ <, R d e ξ for some δ > 0 (e.g.: Gaussian data, or compact support on Fourier side). Same error estimate as before (in all H s, with T > 0 independent of ε). Rémi Carles (Montpellier) Splitting for semiclassical NLS 20 / 21

60 Theorem Suppose that d, σ N, d, σ 1, and λ R. Let φ 0, a 0 such that ( 1+δ ˆφ 0 (ξ) 2 + â 0 (ξ) 2) dξ <, for some δ > 0. R d e ξ T, ε 0, c 0 > 0 and (C k ) k N s. t. ε (0, ε 0 ], the following holds: 1.!u ε = Sεu t 0 ε C([0, T ], sh s ). Moreover, there exist φ ε and a ε with ( ) sup t [0,T ] a ε (t) H k (R d ) + φ ε (t) H k (R d ) C k, k N, such that u ε (t, x) = a ε (t, x)e iφε (t,x)/ε for all (t, x) [0, T ] R d. 2. There exist φ ε n and a ε n with a ε n H k (R d ) + φ ε n H k (R d ) C k, k N such that (Zε t ) n ( a 0 e iφ 0/ε ) = ane ε iφn/ε, and: a ε n a ε (t n ) H k + φ ε n φ ε (t n ) H k C k t. Rémi Carles (Montpellier) Splitting for semiclassical NLS 21 / 21

61 Local error estimate Let A an operator, and E A its propagator: t E A (t, v) = A (E A (t, v)) ; E A (0, v) = v. Theorem (Descombes-Thalhammer) Suppose that F (u) = A(u) + B(u), and denote S t (u) = E F (t, u) and Z t (u) = E B (t, E A (t, u)) the exact and numerical flows, respectively. The exact formula holds Z t (u) S t (u) = t τ E F (t τ 1, Z τ 1 (u)) 2 E B (τ 1 τ 2, E A (τ 1, u)) [B, A] (E B (τ 2, E A (τ 1, u))) dτ 2 dτ 1. NB: 2 E = linearized flow. Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 5

62 Standard framework for NLS: A = i ε 2 ; B(v) = i ε f ( v 2) v; F (v) = A(v) + B(v). Linearized exact flow: 2 E F (t, u)w 0 = w, where iε t w + ε2 2 w = f ( u 2) w + f (uw + uw) u; w t=0 = w 0. Drawback: does not preserve the (monokinetic) WKB structure. If u = ae iφ/ε, then iε t w + ε2 2 w = f ( a 2) w + f For w 0 = b 0 e iϕ 0/ε, in general, there does not hold Remark ( ) ae iφ/ε w + ae iφ/ε w ae iφ/ε. w = b ε e iϕε /ε, b ε, ϕ ε uniformly bounded in H s. More simply, a ε ne iφε n /ε a ε e iφε /ε has no reason to be factored α ε ne iϕε n /ε (with uniform bounds). Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 5

63 That is another reason to work on systems: { t φ ε = f ( a ε 2), t a ε = 0. and t φ ε φε 2 = 0, t a ε + φ ε a ε aε φ ε = i ε 2 aε. Rémi Carles (Montpellier) Splitting for semiclassical NLS 3 / 5

64 Precised framework ( ) ( φ 1 ) A = 2 φ 2 a φ a 1 2 a φ + i ε 2 a, ( ) ( ( φ f a 2 ) ) B =. a 0 Remark Both operators are nonlinear. [A, B] ( ) φ = a ( ( φ f a 2 ) div f ( a 2 φ ) ) ε div f (Im (a a)) a f ( a 2) a f ( a 2). Rémi Carles (Montpellier) Splitting for semiclassical NLS 4 / 5

65 Local error Theorem (Local error estimate for WKB states) Let s > d/2 + 1 and µ > 0. Suppose that φ ε H s+1 µ, a ε H s µ. There exist C, c 0 > 0 (depending on µ) independent of ε (0, 1] such that ( ( )) ( ) ( ) ( φ ε L t, a ε := Zε t φ ε a ε Sε t φ ε Ψ a ε = ε ) (t) A ε, (t) where A ε and Ψ ε satisfy Ψ ε (t) H s + A ε (t) H s 1 Ct 2, 0 t c 0. Rémi Carles (Montpellier) Splitting for semiclassical NLS 5 / 5

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

IN2010: Algoritmer og Datastrukturer Series 2

IN2010: Algoritmer og Datastrukturer Series 2 Universitetet i Oslo Institutt for Informatikk S.M. Storleer, S. Kittilsen IN2010: Algoritmer og Datastrukturer Series 2 Tema: Grafteori 1 Publisert: 02. 09. 2019 Utvalgte løsningsforslag Oppgave 1 (Fra

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Institutt for matematiske fag Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Faglig kontakt under eksamen: Dag Wessel-Berg Tlf: 924 48 828 Eksamensdato: 1. juni 216 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00 NTNU Side 1 av 2 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

EMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post:

EMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post: EMPIC MEDICAL Etterutdanningskurs flyleger 21. april 2017 Lars (Lasse) Holm Prosjektleder Telefon: +47 976 90 799 E-post: Lrh@caa.no it-vakt@caa.no Luftfartstilsynet T: +47 75 58 50 00 F: +47 75 58 50

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Emnedesign for læring: Et systemperspektiv

Emnedesign for læring: Et systemperspektiv 1 Emnedesign for læring: Et systemperspektiv v. professor, dr. philos. Vidar Gynnild Om du ønsker, kan du sette inn navn, tittel på foredraget, o.l. her. 2 In its briefest form, the paradigm that has governed

Detaljer

On multigrid methods for the CahnHilliard equation with obstacle potential

On multigrid methods for the CahnHilliard equation with obstacle potential On multigrid methods for the CahnHilliard equation with obstacle potential ubomír Ba as Department of Mathematics Imperial College London Joint work with Robert Nürnberg http://www.ma.ic.ac.uk/~lubo lubo@imperial.ac.uk

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding

On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding Nonlinear Differ. Equ. Appl. (2017) 24:37 c 2017 Springer International Publishing AG DOI 10.1007/s00030-017-0461-y Nonlinear Differential Equations and Applications NoDEA On the uniqueness of vanishing

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl ENGLISH TEXT (and NORWEGIAN) Page 1 of 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450

Detaljer

Self-improving property of nonlinear higher order parabolic systems near the boundary

Self-improving property of nonlinear higher order parabolic systems near the boundary Nonlinear Differ Equ Appl 7 200), 2 54 c 2009 Birkhäuser Verlag Basel/Switzerland 02-9722/0/0002-34 published online October 2, 2009 DOI 0007/s00030-009-0038-5 Nonlinear Differential Equations and Applications

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Asymptotic FOEL for the Heisenberg model on boxes

Asymptotic FOEL for the Heisenberg model on boxes Asymptotic FOEL for the Heisenberg model on boxes Mathematical Many Body Theory, June 13 18 BCAM, Bilbao, Spain Shannon Starr University of Alabama at Birmingham June 16, 2016 https://arxiv.org/abs/1509.00907

Detaljer

Survival Chances of Mutants Starting With One Individual

Survival Chances of Mutants Starting With One Individual Journal of Biological Physics 31: 587 597, 2005. DOI: 10.1007/s10867-005-6061-9 C Springer 2005 Survival Chances of Mutants Starting With One Individual CHRISTOPH KUHN Institut für Molekularbiologie und

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.)

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.) Side/Page 1 av/of 8 + 3 sider vedlegg + enclosure, 3 pages NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn:

Detaljer

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra

Detaljer

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University Energy Dissipation in Hybrid Stars Sophia Han Washington University Texas Symposium December 8-13, 2013 Mark Alford, Sophia Han, Kai Schwenzer 1 Context Nuclear Matter Crust Quark Matter Core -Sharp interface:

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Building conservation in practice

Building conservation in practice Building conservation in practice Aadne Gunnar Sollid Cultural heritage leader in Aust- Agder county. Aust-Agder fylkeskommune 2 Synagogen er blant de eldste eksisterende tresynagogen i Øst-Europa. Den

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Flows and Critical Points

Flows and Critical Points Nonlinear differ. equ. appl. 15 (2008), 495 509 c 2008 Birkhäuser Verlag Basel/Switzerland 1021-9722/040495-15 published online 26 November 2008 DOI 10.1007/s00030-008-7031-2 Nonlinear Differential Equations

Detaljer

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT STØTTEMATERIALE TIL FORELESNINGENE OM SKATT ECON3610, H2017 Kristoffer Midttømme Eksempler på skattevridninger: Den britiske vindusskatten Fordeling av antall vinduer (1) Oates, Wallace E., and Robert

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer