The Asymptotic Loss of Information for Grouped Data

Størrelse: px
Begynne med side:

Download "The Asymptotic Loss of Information for Grouped Data"

Transkript

1 Journal of Multivariate Analysis 67, (1998) Article No. MV The Asymptotic Loss of Information for Grouped Data laus Felsenstein Technical University Vienna, Vienna, Austria and laus Po tzelberger University of Economics and Business Administration, Vienna, Austria Received December 2, 1996; revised March 12, 1998 We study the loss of information (measured in terms of the ullbacleibler distance) caused by observing ``grouped'' data (observing only a discretized version of a continuous random variable). We analyze the asymptotical behaviour of the loss of information as the partition becomes finer. In the case of a univariate observation, we compute the optimal rate of convergence and characterize asymptotically optimal partitions (into intervals). In the multivariate case we derive the asymptotically optimal regular sequences of partitions. Furthermore, we compute the asymptotically optimal transformation of the data, when a sequence of partitions is given. Examples demonstrate the efficiency of the suggested discretizing strategy even for few intervals Academic Press ey words and phrases: Asymptotically optimal discretization; grouped data; ullbacleibler distance; optimal quantizer; optimal design. 1. INTRODUCTION In statistical applications various phenomena concerning discretization or grouping of data arise. It is common that instead of a continuous random variable, a discrete approximation of is observed. More precisely, assume that the sample space R n is partitioned into measurable subsets [H 1,..., H ]=: H. Only H() is observed, where H() denotes the unique H i # H with # H i. Due to the central importance of this approximation an extensive literature on various approaches exists. Many papers deal with the correction or adaption of procedures for grouped data, such as variations of Sheppard's correction (see Dempster and Rubin, 1983). Especially, effects of grouping on the maximum lielihood estimate or Bayes estimates are discussed in the statistical literature (see Dempster, Laird, and Rubin (1977), Lindley (195), or Heitjan (1989) for a review) Copyright 1998 by Academic Press All rights of reproduction in any form reserved.

2 1 FELSENSTEIN AND PO TZELBERGER The design problem of choosing at least asymptotically optimal partitions is discussed in the electrical engineers' literature (see Benitz and Buclew, 1989). We consider the loss of information due to this discretizing process, with emphasis on the asymptotic case ( ). We intend to give an analysis and characterizations of asymptotically optimal partitions. Analogous to the problem of optimal quantization for L p -distances, only in the univariate case does a complete characterization of asymptotically optimal partitions seem possible. Regular sequences of partitions are of central importance in the analysis. First, optimal regular sequences are optimal among all sequences for n=1. Second, they provide a simple mechanism for constructing good partitions in the multivariate case. In practice, the numerical calculation of optimal intervals turns out to be remarably difficult even for small values of. Therefore, a practicable and schematic procedure to gain at least asymptotically optimal intervals seems to be helpful and necessary. Furthermore, for regular sequences of partitions, the design problem of choosing optimal partitions may be inverted in the following sense. If the partition is given, we find an optimal transformation of the data in order to minimize asymptotically the loss of information. This situation is common and arises, for example, if the data are rounded. In contrast to the existing literature we do not study the effect of discretizing on a single distribution, but rather on a model, i.e., a set of distributions, indexed by a parameter. Our measure of the loss of information is the expected ullbacleibler distance of the two posterior densities of the parameter %, resulting if or H(), respectively, is observed. From the Bayesian point of view the ullbacleibler distance represents the ``natural'' method for measuring the difference of the posterior distributions. The ullbacleibler distance has a decision theoretical interpretation as loss of information. Note that from a frequentist point of view, our distance is a weighted ullbacleibler distance between the conditional and the marginal distribution of restricted to H(), with a weight on the parameter space and the partition. Beyond that, our results hold for a general class of loss functions. For example, an asymptotically optimal partition remains optimal if we consider the squared Hellinger distance or a similar I-divergence type of distance measure. First, we introduce some notations. Let (, B) be a measurable space with R n measurable, and B the Borel _-algebra. The model consists of a family of conditional distributions of the variable with densities f (x %) with respect to the n-dimensional Lebesgue measure and a prior density?(%) on an arbitrary parameter space 3. F (H %) denotes the conditional probability of a measurable H/R n. (For univariate observations, i.e., n=1, we consider partitions into intervals only.) The corresponding density and probability of H for the marginal distribution of are f (x)

3 ASYMPTOTIC LOSS OF INFORMATION 11 and F (H), respectively. For a fixed partition H =[H 1,..., H ] into disjoint measurable sets H i, the distribution of H() is multinomial with parameter (F (H 1 %),..., F (H %)). The posterior densities are?(% ) and?(% H()), where?(% H())=F (H() %)?(%)F (H()). In the sequel we consider the quadratic Hellinger distance and the expected ullbacleibler distance. The Hellinger distance D( f, g) of two densities f, g is D( f, g)= { 1 2 (- f(t)&- g(t))2 dt = 12. We denote the squared Hellinger distance of?(% x) and?(% H(x)) by D 2 (x) :=D(?(% x),?(% H(x)))2 and the expected squared Hellinger distance by D 2 := D2 (x) f (x) dx. Given the observation x, the ullbacleibler distance is I (x)= log?(%?(% x) d% \?(% H(x))+ and the expected ullbacleibler distance is I = I (x) f (x) dx. If necessary we indicate the dependence of I or D 2 on H by writing I (H )ord 2 (H ). For n=1, those partitions where the endpoints of the intervals are quantiles of a distribution play a special role in the analysis of asymptotical behaviour of partitions. Definition. Let G, G 1,..., G n denote cumulative distribution functions on R with quantile functions Q=G &1, Q 1 =G &1 1,..., Q n =G &1 n. A sequence of partitions (H ), with =1 H =[H,..., H 1 ] is called a regular sequence of partitions corresponding to G or G 1,..., G n resp., if (i) n=1, H i =]h, i&1 h], and i h i =Q(i), i=,...,, (ii) n>1, 1,..., n # N exist, with => n i=1 i, and H i =H 1, j1 _H 2, j2 _}}}_H n, jn for intervals H r, jr =]Q r (( j r &1) i ), Q r ( j r i ], for some j 1,..., j n # N with j r r.

4 12 FELSENSTEIN AND PO TZELBERGER It is essential that Q, Q 1,..., Q n do not depend on. For n>1, regular partitions are partitions into rectangles. Rectangles are only one possibility for generalizing intervals to higher dimensions. Partitions into rectangles cannot be expected to be optimal, for instance, among partitions into convex sets or partitions into polyhedra. For n=1, regular partitions enable the construction of an asymptotically optimal sequence of partitions. Let I *=inf H I (H ), where the infimum is taen over all partitions into intervals with size. A sequence of partitions (H ) =1 is called asymptotically optimal if lim sup I (H )I *=1. (1) We will show that (1) is equivalent to lim sup D 2 (H )D 2 *=1, where D 2 *=inf H D 2 (H ). In this paper we obtain the following results. First, we prove that for n=1, the optimal rate of convergence for is quadratic in 1, i.e. I *=O(1 2 ). For n>1, we show that the optimal rate among regular sequences is O(1 2n ). Furthermore, we characterize these optimal regular sequences of partitions. Sufficient and necessary conditions for asymptotic optimality of arbitrary sequences of partitions are given for n=1. We characterize the distribution G leading to the asymptotically optimal sequence of regular partitions and show that these partitions maintain asymptotically optimal among arbitrary partitions. This leads to the optimal transformation of the data if the partition is fixed. We demonstrate by examples the ``efficiency'' of our method even for small. To obtain the results mentioned above it is necessary to state regularity conditions. The conditions we use are fulfilled for most of the relevant statistical models. In (regular) cases where our conditions fail it seems possible to modify regularity conditions appropriately. For technical reasons we prove the results for the Hellinger distance first. Then we show a relation between the Hellinger distance and the ullbacleibler distance that reveals equal asymptotic behaviour of both distances. The paper is organized as follows. Regularity conditions are stated and discussed in Section 2. Section 3 gives the results. In Section 4 we present examples and show that asymptotically optimal partitions are good approximations to optimal partitions for finite. In Section 5 the proofs of the Results of Section 3 and of necessary technical lemmas are provided.

5 ASYMPTOTIC LOSS OF INFORMATION REGULARITY CONDITIONS The following regularity conditions are necessary to provide a precise mathematical formulation of the results. Let 9 (x, %) := f $ (x %) f (x %) & f $ (x) f (x) with f $ (x %)=(x) f (x %) and f $ (x)=(x) f (x). The posterior variance of 9 (x, %) is denoted by _ 2 (x) := 9 2 (x, %)?(% x) d%. C1. f $ (x %) exists for all % # 3, f $ (x %) andf $ (x) are continuous in x and f $ (x %) in%, andf$(x %)?(%) d%= f $ (x). C2. The support of % is independent of %. C3. _ 2 (x) is continuous, 9 2 (x, %) f 2 (x)?(% x) d% dx<, and 9 2 (x, %) f 2 (x)?(% x) is bounded in x for any fixed %. The behavior of the marginal distribution near the boundary of the support (if it is not bounded) ought to be smooth in some sense. To state ``smoothness conditions'' we introduce the (left and right side) hazard rates, r R (x) := f (x) 1&F (x), r L(x) := f (x) F (x). Our assumptions concerning the marginal distribution are: C4. Constants c L, c R, c > and :> exist with c L c R such that (i) f ( } ) is increasing on ]&, c L [, decreasing on ]c R, [, and positive on [c L, c R ]; (ii) for <x< y with F &1 ( y)<c L it holds that F &1 (x) F } y : &1 ( y)<c x}

6 14 FELSENSTEIN AND PO TZELBERGER and for x< y<1 with F &1 (x)>c R it holds that F &1 F &1 ( y) (x)c } 1&y} 1&x : ; (iii) yx+c 1 x for any constant c 1 >, a c 2 > exists such that for c R x r R ( y) r R (x) c 2 holds and for x&c 1 x yxc L holds. r L ( y) r L (x) c 2 Condition (iii) is fulfilled if the hazard rates are monotone (especially r L decreasing and r R increasing). C5. For any compact interval ($, %) and ($) exist such that for x, x~ # and x&x~$ } f $ (x~ %)&f $ (x %) ($, %) f (x %) } with 2 ($, %)?(% x) d% 2 ($) and lim $ 2 ($)=. C6. The integral 9 4 (x, %)?(% x) d% exists and is continuous in x. C7. The integral f (x %) 9 (x, %) 4?(% x)) f 3 (x) d%dx is finite. C8. For any $> and any x out of the interior of the support let f $ (u %) 3 \ $ (x, %) := sup u, v # U $ (x) f (u %) 32 f (v %) 12, where U $ (x)=[yx& y<$]. Then for any compact, a$> exists with \ $(x, %)?(%) d% dx<.

7 ASYMPTOTIC LOSS OF INFORMATION 15 We close this section by commenting briefly on the regularity conditions C1C8. Conditions C1 and C2 guarantee that objects lie _ 2 (x), or derivatives of densities, exist and that order of integration and differentiation may be interchanged. In this sense, they are automatically necessary or at least not problematic. Condition C4 implies that few intervals in the tails of the distributions do not count asymptotically. Condition C4 can be weaened for specific models and is thus not necessary. However, a condition lie C4 will always be necessary. Note that C4 holds if the hazard rates r R or r L oscillate not too wildly near or &. Conditions C5 and C8 are conditions on the uniform smoothness of f (} %) on compact subsets of R. They are usually not problematic. Note that in any event we must assume that f (}%) is differentiable. Conditions C3, C6, and C7 are moment conditions that simplify the proofs of the lemmas. C7 is the only condition that reads differently for and =F (); see the proof of Lemma ASYMPTOTICALLY OPTIMAL PARTITIONS In this section we state the main results, concerning convergence rates and asymptotically optimal partitions for the expected squared Hellinger distance and the expected ullbacleibler distance between the two posterior densities. The results for the expected squared Hellinger distance are given for n=1 only. For the expected ullbacleibler distance, in addition to the case n=1, convergence rates and optimal regular partitions are considered for n>1. Let n=1. We show that the rate of convergence cannot exceed O(1 2 ), with the size of the partition. Define for a partition H =[H 1,..., H ] with H i =]h i&1, h i ], $ i =F (h i )&F (h i&1 ), and p*, (x)= I i=1 H i (x) $ 2 f i (x). i=1 $3 i The following theorem summarizes the main results on the Hellinger distance. Theorem 1. Assume that the regularity conditions C1C6 hold for the joint distribution of and %. Then (i) Any sequence of partitions (H ) =1 satisfies lim inf 2 D \ (_2 (x) f (x)) 13 dx + 3.

8 16 FELSENSTEIN AND PO TZELBERGER (ii) A sequence of partitions (H ) =1 is asymptotically optimal, if and only if i=1 $3 i =O(12 ) and if for any compact interval R with (_ 2 (x) f (x)) &23 dx> p*, (x) I (x) p*, (x) dx ww wea (_ 2 (x) f (x)) &23 I (x) (_ 2 (x) f (x)) &23 dx. (iii) For a regular sequence of partitions (H ) =1 generated by g=g$, where D 2 =O(12 ) and _ 2 (x) f (x)g 2 (x) dx<, we have D 2 = 1 96 _2 (x) f (x) dx+o(1 2 ). (2) 2 g 2 (x) (iv) The regular sequence of partitions (H ) =1 generated by g(x) B (_ 2 (x) f (x)) 13 (3) is asymptotically optimal. Remars. 1. Conditions C1C6 imply that (_ 2 (x) f (x)) 13 dx<, so that g defined by (3) is a density. 2. We prove (2) if _ 2 (x) f (x)g 2 (x) dx< and i=1 $3= i O(1 2 ). It can be shown that a regular sequence of partitions is not of order O(1 2 )if_ 2 (x) f (x)g 2 (x) dx= in the sense that no Riemann sum converges to a finite limit. 3. Part (iv) claims that the regular sequence corresponding to g(x) B (_ 2 (x) f (x)) 13 is asymptotically optimal among all sequences of partitions, not only among regular sequences. 4. Asymptotically, optimality is a question of the asymptotic behaviour concerning wea convergence of the empirical distributions of the endpoints h i if n=1. Any asymptotically negligible transformation of the endpoints maintains asymptotical optimality. Analogously to optimal quantization with L p -distances, we conjecture that for n>1, asymptotically not only does the empirical distribution of the partition matter, but also its geometric features. Whereas the Hellinger distance of two densities always exists the ullbac Leibler distance does not. Therefore we need additional assumptions, C7 and C8, for the distributions of (, %) and. Theorem 2. Let n=1 and assume the regularity conditions C1C8 hold for the joint distribution of and %. Then

9 ASYMPTOTIC LOSS OF INFORMATION 17 (i) For sequences of partitions [H ] with (F &1 (h i)&f &1 (h i&1)) 3 =O(1 2 ) and any compact interval contained in the interior of the support of f, lim provided that D (x) 2 f (x) dx>. I (x) f (x) dx D (x) 2 f (x) dx =4, (ii) If for a sequence of partitions (H ), I =1 =O(1 2 ) (for ) holds, then lim I D 2 =4. (iii) A sequence of partitions is asymptotically optimal for the ullbacleibler distance if and only if it is optimal for the squared Hellinger distance. Theorems 1 and 2 imply the following main theorem concerning the asymptotical behavior of the ullbacleibler distance. Theorem 3. Let n=1 and assume the regularity conditions C1C8 hold for the joint distribution of and %. Then (i) Any sequence of partitions (H ) =1 satisfies lim inf 2 I 2 24\ 1 (_2 (x) f (x)) 13 dx + 3. (ii) For a regular sequence of partitions (H ) =1 generated by g=g$, where I 2 =O(12 ) and _ 2 (x) f (x)g 2 (x) dx<, we have I 2 = 1 24 _2 (x) f (x) dx+o(1 2 ). 2 g 2 (x) (iii) The regular sequence of partitions (H ) =1 generated by g(x) B (_ 2 (x) f (x)) 13 is asymptotically optimal. Finally, we deal with the problem of an optimal transformation Y=T() of the data if a regular sequence of partitions is given. This is the most common situation in applications. Tae, for instance, rounding in ], 1]. This corresponds to the regular sequence of partitions (](i&1), i]) i=1. It is reasonable to choose the transformation T such that the partitions (](i&1), i]) i=1 are asymptotically optimal for Y=T(). Not unexpectedly, again G=T is optimal, where G is the c.d.f.

10 18 FELSENSTEIN AND PO TZELBERGER of g(x) B (_ 2 (x) f (x)) 13. Note that if (](i&1), i]) i=1 is asymptotically optimal for Y=T(), then (]T &1 ((i&1)), T &1 (i)]) is i=1 asymptotically optimal for. Since G &1 (i) are asymptotically optimal endpoints of the intervals for, the transformation T=G leads to the optimality of h i =i for Y. Therefore the optimal procedure is to transform the data according to G() if the values are rounded. In Proposition 1, I (T ) denotes the ullbacleibler distance between the posterior distribution of % given T () and the posterior distribution of % given H(T ()), where H corresponds to a regular sequence of partitions, defined by a c.d.f. R. Proposition 1. Let a regular sequence of partitions, corresponding to the c.d.f. R be given, with R invertible. Let G be the c.d.f. with G$(x)= g(x) B (_ 2 (x) f (x)) 13. Then T=R &1 b G is asymptotically optimal, i.e., lim sup I (T )I (T)1, for all monotonous transformations T from the support of F onto the support of R. For more than one observation (n>1) we need additional notation. Let n # N denote the dimension of the observation and # N the number of rectangles into which R n is partitioned by H. This partition induces a partition H i of each of the components into intervals. Let i denote the number of intervals in the ith components. Then => n i=1 i. We assume that, given the parameter %, the random variables are independent, with a p.d.f. f i, (}%) with respect to Lebesgue measure. For x=(x 1,..., x n )#R n, let H(x)=(H(x 1 ),..., H(x n )), where H(x i ) is the unique interval in H i with x i # H(x i ). Furthermore, let z i =(H(x 1 ),..., H(x i&1 ), x i+1,..., x n ) and x i =(x 1,..., x i&1, x i+1,..., x n ), with obvious modifications for i=1 or i=n. Now the ullbacleibler distance of the posterior densities corresponding to and H() reads I (n) with expectation (x)= log \?(% x 1,..., x n )?(% H(x 1 ),..., H(x n ))+?(% x 1,..., x n ) d% I (n) = I(n) (x) f (x) dx = log \ >n f i=1 i, (x i %) f (x 1,..., x n ) F (H(x)) > n i=1 F i, (H(x i )%)+ f (x) dx.

11 ASYMPTOTIC LOSS OF INFORMATION 19 Thus n I (n) = : i=1 I (x i ) f i, (x i ) dx i & log \ f (x) > n f i=1 i, (x i ) n = : i=1{ I (x i ) f i, (x i ) dx i & log \ f i, (x i z i ) f i, (x i ) > n F i=1 i, (H(x i )) F (H(x)) + f (x) dx F i, (H(x i )) F i, (H(x i )z i )+ f i, (z i, x i ) dz i dx i= n = : i=1{ I (x i ) f i, (x i ) dx i & I (x i ) f i, (x i ) dx i=, with I (x i )= log \ f i, (z i x i ) f i, (z i h(x i ))+ f i, (z i x i ) dz i, (4) since f (x 1,..., x n ) F (H(x 1 ),..., H(x n )) > n i=1 F i, (H(x i )) > n i=1 f i, (x i ) i=1{ f i, (x i z i ) F i, (H(x i )) f i, (x i ) F i, (H(x i )z i )=. n = ` Therefore the expected ullbacleibler distance for multivariate observations is the sum of the expected ullbacleibler distances for one dimensional observation minus the one dimensional expected ullbac Leibler distance, where z i replaces the parameter %. Let 9 i (x i, %)= x i log f i, (x i %), _ 2 % x (9(x i, } )) the variance of 9 i (x i, %) with respect to the conditional i distribution of % given x i, and let _ 2 * i, (x i )= _2 % x i (9(x i,})) f (x i x i ) dx i. Let g* i denote the p.d.f. proportional to (_ 2 i, * (x i ) f i, (x i )) 13. An application of Theorem 3 gives an asymptotic representation of I (n).

12 11 FELSENSTEIN AND PO TZELBERGER Theorem 4. Let n>1 be fixed and let (H ) =1 be a regular sequence of partitions, with (H ) corresponding to g =1 1,..., g n. If conditions C1C8 hold for the distributions of ( i, %) and the distributions of ( i, z i ) (1in), then (i) and (ii) hold. (i) If i =O(1 1n ) for all 1i, jn, then n I (n) = : i= _2 i, * (x i ) f i, (x i ) 2 i g 2(x dx i +o(1 2n ). (5) i i) (ii) (H ) =1 g i = g i * and is asymptotically optimal among regular sequences, if i 1n c12 i > n j=1 c12n j, where c i =( (_ 2 * i, (x i ) f i, (x i )) 13 dx i ) 3. In this case, I (n) j=1 c1n j =n>n +o(1 2n ). 24 2n 4. EAMPLES For purposes of illustration, we apply our discretizing strategy to some special univariate distributions. The required conditions C1 to C8 seem to be technical but they are fulfilled for most of the ``standard'' distributions. We start with normally distributed observations %tn(%, _ 2 ) with nown variance _ 2. If the prior distribution is a (conjugate) normal distribution, %tn(+, d 2 ), the marginal distribution is normal again, tn(+, d 2 +_ 2 ). Since 9 (x, %)= x&+ d 2 +_ 2&x&% _ 2 all posterior moments of 9 exist and _ 2 (x)= d 2 _ 2 (d 2 +_ 2 )

13 ASYMPTOTIC LOSS OF INFORMATION 111 is independent of x. Therefore C1C3 and C6 hold. Because of the inequality 2 t+- t &8(t) 2,(t) t+- t 2 +8? for the density,(t) and the c.d.f. 8(t) of the standard normal distribution (see Abramowitz and Stegun, 1972) condition C4 is valid. Concerning condition C5 for any compact interval it is possible to choose ($, %)=$p 2 (%) e $p 1 (%), where p 2 is a polynomial of degree 2 and p 1 a polynomial of degree 1. Therefore the second moment of ($, %) with respect to the posterior distribution exists and vanishes if $. Similarly, condition C8 is fulfilled for the normal distribution since \ $ (x, %) has the form \ $ (x, %)=q x (%) e &%2 2+q~ x (%), where q x (%) and q~ x (%) are polynomials in % for fixed x and the degree of q~ x (%) is1. Application of Theorem 2 leads to an asymptotically optimal sequence consisting of the quantiles of g(x) B f (x) 13 since _ 2 (x) is constant. The optimal quantiles are coming from the normal distribution with mean + and variance 3(d 2 +_ 2 ). The following table shows the (numerically calculated) optimal points and the asymptotically optimal quantiles for d 2 =_ 2 =1 and +=. The minimal ullbacleibler distance is I * and the difference of the ullbacleibler distances using optimal points or quantiles is denoted by 2(). There is not much difference even for really small number of intervals,. Optimal points Quantiles I * 2() 3 &.636;.636 &1.55; E&2 6.7E&2 4 &1.36; ; 1.36 &1.65; ; E&2 3.6E&3 5 &1.72; &.53;.53; 1.72 &2.6; &.62;.62; E&2 2.6E&3 6 &2.8; &.93; ;.93; 2.8 &2.37; &1.6; ; 1.6; E&2 1.7E&3 7 &2.22; &1.22; &.39;.39; 1.22; 2.22 &2.62; &1.39; &.44;.44; 1.39; E&2 1.3E&3 The second example deals with a model where the parameter attains two values only, arising in problems of testing hypotheses. Numerical calculations are simplified and we demonstrate the efficiency of our method.

14 112 FELSENSTEIN AND PO TZELBERGER The densities on the interval x # [, 1] are f (x %)=3x 2 if %= and f (x %)=3(1&x) 2 if %=1. The prior probabilities are equal,?()=?(1)=12. Then f (x)=32(x 2 +(1&x) 2 ) results as marginal density of and 9 (x, )= 2 x & 2(2x&1) x 2 +(1&x) 2 9 (x, 1)=& 2 1&x & 2(2x&1) x 2 +(1&x) 2. The posterior variance of 9 (x, %) is _ 2 (x)= 8 4(2x&1)2 x 2 +(1&x) 2& (x 2 +(1&x) 2 ) 2. It is easy to show that all required regularity conditions (C1C8) hold. Therefore, the optimal density g has the form g(x)=c 1 (x 2 +(1&x) 2 ) 13 with normalizing constant c= The following table compares the optimal points to the regular asymptotically optimal quantiles. Again, I * is the optimal ullbacleibler distance and 2() is the difference. Optimal points Quantiles I * 2() 3.35; ; E&2 5.52E& ;.5; ;.5; E&2 3.88E& ;.41;.59; ;.48;.592; E&2 2.65E& ;.348;.5;.652; ;.345;.5;.655; E&2 1.86E& ;.33;.435;.565;.697; ;.3;.434;.566;.7; E&3 1.35E& ;.269;.387;.5;.613;.731; ;.265;.384;.5;.616;.735; E&3 1.E&5 5. PROOFS The proofs of Theorems 14 can be simplified if the random variable is transformed to the interval [, 1] by applying F.Let =F () and denote by f(x %) its conditionals p.d.f. and let 9(x, %)= f $(x %)f(x %). _ 2 (x) denotes the posterior variance of 9(x, %). The relations between the non-transformed and transformed objects are f(x %)= f (F &1 (x) %) f (F &1 (x)), 9(x, %)=9 (F &1 (x), %)f (F &1 (x)), and _ 2 (x)=9 2 (x, %)?(% x) d%=_ 2 &1 (F (x))f 2 &1 (F (x)).

15 ASYMPTOTIC LOSS OF INFORMATION 113 Recall that the proofs of Theorems 13 will be given for the transformed observations, with conditional p.d.f. f(x %). We assume that C1C6 hold for Lemmas 1 and 2 and that C1C8 hold for Lemmas 4 and 5. Lemma 1. Let n=1. A sequence of partitions exists such that D 2 = O(1 2 ), and such that for any => a compact interval ], 1[ exists, with lim inf D 2 (x) dxd2 1&=. (6) For x #]h i&1, h i ], let,(x):=h i +h i&1 &2x. In the following we consider two densities, p and p *. p (x)= : i=1 p *(x)= : i=1 I Hi (x) 3,(x) < 2 : I Hi (x) $ i< 2 : p (x) is a probability density satisfying 1 16,2 (x) 9 2 (x, %) f(x %)?(%) d% dx= i=1 $3 i 48 _ 2 (x) p (x) dx, i=1 for compact intervals ], 1[. Furthermore, i=1 $ 3 i. lim p (x) _ 2 (x) dx p*(x) _ 2 (x) dx =1. In the next lemma we show that D 2 (x) restricted to compact intervals is asymptotically proportional to p (x) _ 2 (x). and Lemma 2. Let n=1. For any compact interval ], 1[, lim $ 3 i, (7) ( i=1 $396) i _2 (x) p (x) dx =1 (8) D 2 (x) dx ( i=1 lim $396) i _2 (x) p *(x) dx D 2 (x) dx =1 (9)

16 114 FELSENSTEIN AND PO TZELBERGER p *(x) is used to construct a density with the points h i as quantiles. We define this density as g(x) B 1- p *(x) and get h i h i&1 g(x) dx=c hi h i&1 1 $ i dx=c with some constant c. Therefore h i h i&1 g(x) dx=1 and h i g(x) dx=i hold. We may restrict the analysis to sequences h i which become ``dense'' quicly enough, exactly to sequences with i=1 $3=c i 2 and a bounded sequence (c ). Then $ 3 i : j=1 $ 3 j = p *(h i ) $ i gives $ i =- p*(h i ) - c, which implies h i = ji - p*(h j ) c. The quantile function Q=G &1 of the distribution with the density g and G(x)= x g(t) dt leads to so that h i = : - p *(Q( j)) c, ji h i =- c i - p *(Q(x)) dx=- c G(h i ) - p *(Q(x)) dx. The substitution Q(x)=y then gives h i =- c h i - p*(x) g(x) dx =- c h i =- c h i 1 - p *(x)- p *(x) dx \ 1 1- p *(x) dx. Thus c =( 1 1- p *(x) dx) 2 and : i $ 3 i p *(x) _ 2 (x) dx= 1 2\ 1 1- p *(x) dx + &1 1- p *(x) dx + 2 p *(x) _ 2 (x) dx. (1)

17 ASYMPTOTIC LOSS OF INFORMATION 115 Combined with (9), we have for compact ]>, 1[, (196 2 )( 1 lim 1- p *(x) dx) 2 p *(x) _ 2 (x) dx D 2 (x) dx =1. (11) Lemma 3. The density function g(x) minimizing 1- q(x) dx \ + 2 q(x) _ 2 (x) dx (12) has the form q(x)=c[_ 2 (x)] &23 for x # with a normalizing constant c. p *(x)=q(x) (=c(_ 2 (x)) &23 ) is optimal in the following sense. For any sequence p~ * different from q and any compact interval $], 1[ a compact $$ exists such that ( 1 lim inf 1- p~ *(x) dx) 2 p~ *(x) _ 2 (x) dx ( 1 1- p *(x) dx) 2 p *(x) _ 2 (x) dx >1. Inserting the optimal p *(x)=q(x) in (1) gives, according to Lemma 2, : i $ 3 i p *(x) _ 2 (x) dx=(1 2 ) \ (_ 2 (x)) 13 dx + 3. If (H ) =1 is a regular partition with h i =Q(i)), Q=G &1, and g(x)=g$(x), then g(x) B 1- p *(x) B (_ 2 (x)) 13 ; i.e., regular partitions corresponding to densities proportional to (_ 2 (x)) 13 are asymptotically optimal. Both the expected squared Hellinger distance and the expected ullbacleibler distance are invariant with respect to the transformation =F (). We thus have to substitute dx by f (x) dx and p *(x) by p *(F (x)) f (x) in the case of a general marginal density f (x). We now have p *(F (x)) f (x)= 1 i=1 $3 i I Hi (x) $ 2 i f (x). Finally, we combine Lemmas 13 with the proof of Theorem 1.

18 116 FELSENSTEIN AND PO TZELBERGER Proof of Theorem 1. (i) This is a reformulation of Lemma 3. (ii) This is again Lemma 3, using the representation (1) and the result (9), because Lemma 1 implies that for at least one sequence (and therefore for the optimal sequence) D 2 =O(12 ). (iii) This is (9) and (1) under the assumption that _ 2 (x) f (x)g 2 (x) dx exists. (iv) This is a special case of (iii). As the lower bound in (i) is attained asymptotically, this optimal regular sequence is in fact asymptotically optimal among all sequences of partitions. The proof of Theorems 2 and 3 are split into the following two lemmas. Lemma 4. Let n=1. A sequence of partitions exists such that I =O(1 2 ) and such that for all => a compact interval ], 1[ exists with lim sup I (x) dxi 1&=. Lemma 5. For each compact interval ], 1[ and &$& :=sup 1i $ i I (x) dx=4 D 2 (x) dx+o \ D 2 (x) dx +. The asymptotic relation between the two distances D 2 and I stated in the preceding lemma leads to optimal sequences of partitions for the ullbacleibler distance. A sequence of partitions is asymptotically optimal for the squared Hellinger distance if and only if it is asymptotically optimal for the ullbacleibler distance. The proof of Theorem 2 is an application of the results on the squared Hellinger distance together with Lemmas 4 and 5. Proof of Theorem 4. Let 9 i(x i, z i )= x i log f i, (x i z i ) and let _~ 2 i, (x i) be the variance of 9 i(x i, z i ) with respect to the conditional distribution of z i x i. Then, according to Theorem 3(ii), 24 2 i (I(x i)&i (x i )) f i, (x i ) dx i _2 i, (x i)&_~ 2 i, (x i) g 2 i (x i) f i, (x i ) dx i.

19 ASYMPTOTIC LOSS OF INFORMATION 117 We have and f $ i, (x i z i ) f i, (x i z i ) f i, (z i x i ) dz i = f $ i, (x i z i ) f i, (z i ) f i, (x i ) dz i f $ i, (x i %) f i, (x i %) so that _ 2 i, (x i )&_~ 2 i, (x i ) = f $ i, (x i ) f i, (x i ) = f $ i, (x i %) f i, (x i %)?(% x i) d% 9 i(x i, %)?(% x i, z i ) d%= f $ i, (x i %) f i, (x i %)?(% x i, z i ) d% f i, (x i %) f i, (z i %)?(%) f i, (x i, z i ) d%= f $ i, (x i %) f i, (z i %)?(%) d% f i, (x i, z i ) = f $ i, (x i, z i ) f $ i, (x i, z i ) =f $ i, (x i z i ) f $ i, (x i z i ), = \ f $ 2 i, (x i?(% x f i, (x i %)+ i ) d%& \ f $ 2 i, (x i z i ) f f i, (x i z i )+ i, (z i x i ) dz i E % xi 9 2 i (x i, %)&E zi x i (E % zi, x i 9 i (x i, %)) 2 =E zi x i [E % zi, x i 9 2 i (x i, %)&(E % zi, x i 9 i (x i, %)) 2 ] =E zi x i Var % zi, x i (9 2 i (x i, %)) = Var(9 2 i (x i, %) H i (x 1 ),..., H i (x i&1 ), x i,..., x n ) f i, (x i x i ) dx i. For, Var(9 2 i (x i, %) H i (x 1 ),..., H i (x i&1 ), x i,..., x n ) converges to Var(9 2 i (x i, %) x i,..., x n ) for all (x 1,..., x n ). Furthermore, Var(9 2 i (x i, %) H i (x 1 ),..., H i (x i&1 ), x i,..., x n ) =_ 2 i, (x i )&_~ 2 i, (x i )_ 2 i, (x i ). The theorem on dominated convergence implies thus 24 2 i (I(x i)&i (x i )) f i, (x i ) dx i _2 * i, (x i ) g 2 i (x i) f i, (x i ) dx i,

20 118 FELSENSTEIN AND PO TZELBERGER and (i) follows immediately. Choosing g i = g i * and minimizing (5) over ( 1,..., n ), with > n i=1 i=, yield (ii). Finally, we provide the proofs of the technical lemmas. We will show that the special sequence of intervals where q i :=c H i x 3 (1&x) 3 f (F &1 (x)) dx, (13) = H 1 x 3 (1&x) 3 f (F &1 (x)) dx, c &1 gives a convergence rate D 2 =O(12 ) for the transformed model =F (). Lemma 6. For fixed => define M + =[i&1 q i&1 F (=)] and M & =[i2 q i F (&=)]. Conditions C1C4 imply lim sup &1 F sup (q i)&f &1 i # M + F &1 (q i&1) (q i&1) < (14) and lim sup F &1 sup (q i&1)&f &1 (q i) i # M F &1 (q & i) Furthermore, a constant c 3 > exists with lim sup sup 2i&1 sup u, v #[q i&1, q i ] <. (15) f (F &1 (u)) f (F &1 (v))c 3. (16) Proof. Let H i =]q i&1, q i ] and c R F &1 (12). If F &1 (H i )[c L, c R ] the assertion is implied by the uniform continuity of F &1 and f b F &1 on compact intervals. We assume F &1 (H i)]c R, [ and F &1 (i&1)>c R. For x, y with c R F &1 (x)f&1( y)f&1(x)(1+c 1) condition C4 gives f (F &1 (x)) &1 R(F (x)) &1 1&F (F (x)) 1 1&x f (F &1 ( y))=r R (F &1 ( y)) 1&F (F &1 ( y)) c 2 1&y. (17)

21 ASYMPTOTIC LOSS OF INFORMATION 119 Furthermore, we have F &1 F &1 \ i+12 + \ i&1 + c } i&1 1& 1& i+12 }: c 4 : < leading to f \ F&1 f \ F&1 Let (1&q i&1 )(1&q i )=1+A with \ i&1 \ i c 2. (18) Then A= i (i&1) x3 (1&x) 3 f (F &1 (x)) dx. 1 i x3 (1&x) 3 f (F &1 (x)) dx Since (i&1) x3 (1&x) 3 f (F &1 (x)) dx i x 3 (1&x) 3 f (F &1 (x)) dx i&1 \ 1&i&1 + i+12 \ 1&i+12 +&3 A i (i+12) _ f \ F &1 f \ F&1 i&1 +1&i i+12 &12&i 4 \ i&1 ++ \ i it follows from (18) that 1512(4c 2 ) and (1&q i&1 )(1&q i )1+248c 2. Thus F &1 F &1 : 1&q i } (q i) (q i&1) } c 1&q i&1 : c } c 2 }

22 12 FELSENSTEIN AND PO TZELBERGER and (14) is verified. Monotony of the density [c R, [ and (18) give sup u, v #[q i&1, q i ] f (F &1(u)) f(f&1 f (F &1 (v))= f (F &1 (q i)) (q i&1)) 1 c 2 1&q i&1 1&q i 1 c 2 \ c 2 +. For F &1 (H i)]&, c L [ we find an upper bound in the same way and (16) and (15) are proved. Proof of Lemma 1. The endpoints of the intervals are chosen by h i =q i defined in (13). Let H i =]h i&1, h i ]for1i&1and x # H i. Then D 2 (x)=1 2 (- f(x %)&- F(H i %)($ i )) 2?(%) d%. Let x %, i # H i such that f(x %, i %)=F(H i %) $ i.forx # H i, we write for an x~ %, i # H i. Thus f $(x~ %, i %) - f(x %)&- F(H i %) $ i =(x&x %, i ) 2 - f(x~ %, i %) where D 2 =d 1+ 1 &1 8 : (x&x %, i ) f $(x~ 2 2 %, i %) i=1 Hi f(x~ %, i %) dx?(%) d%+d, d 1 = 1 2 h 1 (-?(% x)&-?(% H 1 )) 2 dx?(%) d% and d = h &1 (-?(% x)&-?(% H )) 2 dx?(%) d%. The terms d 1 and d are o(1 4 ) since for sufficiently large d 1&h &1 =c H 1 1&1 c H 8 f (F &1 (1&1)) 1 x 3 (1&x) 3 f (F &1 (x)) dx 1&1 (1&x) 3 dx = c H 32 f (F &1 (1&1)) 1 4=o(14 )

23 ASYMPTOTIC LOSS OF INFORMATION 121 and analogously d 1 =o(1 4 ). Thus D 2 o(14 )+ 1 &1 8 : $ 2 i i=2 Hi f $(x~ %, i %) 2 dx?(%) d%. f(x~ %, i %) An x^ %, i #[(i&1)), i] exists with h i &h i&1 =c H f (F &1 (x^ %, i)). Therefore, we have D 2 o(14 ) c3 H : 3 &1 i=2 f (F &1 (x^ %, i)) f $(x~ 3 %, i %) 2?(%) d%. f(x~ %, i %) Let x* %, i #[(i&1), i] maximize f $(x %)- f(x %). For all except the first and the last interval Lemma 6 provides a constant c 3 with Then f (F &1 (x^ %, i)) 3 f $(x~ %, i %) 2 f(x~ %, i %) c3 3 f (F &1 (x* %, i)) 3 f $(x* %, i %) 2 f(x* %, i %). D 2 o(14 ) &1 8 c3 3 c3 H { : i=2 1 f $(x* %, i %) 2 f(x* %, i %) f (F &1 (x* %, i))?(%) d%. 3= (19) The integrand is a Riemann sum converging to 1 8 c3 3 c3 H 1 f $(x f (F &1 %)2 (x))3 f(x %) dx, which is finite by condition C3. If we consider only the subsequence with =2 m for m # N, then the Riemann sum is nonincreasing and therefore 1 lim sup 2 2m D 2 2 mc3 3 c3 H 8 1 f (F &1 f $(x %)2 (x))3 dx?(%) d%. f(x %) To complete the proof, for # N, let m be the largest integer with 2 m. Then 2 m 2. We have just proved that there exists a sequence (H ), =1 where H consists of 2 m intervals and D 2 2 =O(12 2m m ). Therefore there exists a sequence (H ) =1 of partitions into intervals with lim sup 2 D 2 2 C2 2m 4C, with C(c 3 Hc 3 38) 1 f (F &1 (x)) 3 ( f $(x %) 2 f(x %)) dx?(%) d%. Equation (6) is an immediate consequence of the construction of the sequence (H ). =1

24 122 FELSENSTEIN AND PO TZELBERGER Proof of Lemma 2. Let,(x)=h i +h i&1 &2x; then F(H i %) 9(x, %) =1+,(x) +R(x, %) $ i f(x %) 2 if x # H i, with R(x, %)= h i h i&1 ( y&x)( f $(x~ %)&f $(x %)) dy $ i f(x %) x~=x~(x, y), and x~&xy&x. If C5 holds a function ($) exists with R(x, %)$ i ($ i ). We use the representation with and (- f(x %)&- F(H i %)$ i ) 2 =,2 9 2 f(x %) +S(x, %)+T(x, %), (2) 16 R(x, %) f(x %)[,(x) 9(x, %) f(x %)+R(x, %) f(x %)] S(x, %)= (- f(x %)+- F(H i %)$ i ) 2 T(x, %)=,2 (x) 9 2 (x, %) f(x %) 4 { f(x %) (- f(x %)+- F(H i %)$ i ) 2&1 4=. Let &$&=sup $ i and c j (x)= 9 j?(% x) d%. The supremum of c j (x) in is denoted by c* j and c 4 = 9 4?(% x) d% dx. Then S(x, %)?(%) d% $ 2 i - c* 2 (&$&)+$ 2 i 2 (&$&). Since { f(x %) (- f(x %)+- F(H i %)$ i ) 4= 2&1 = \ - f(x %) (- f(x %)+- F(H i %)$ i ) &1 2+\ } - f(x %) (- f(x %)+- F(H i %)$ i ) &1 2} f(x %) (- f(x %)+- F(H i %)$ i ) and - f(x %) } (- f(x %)+- F(H i %)$ i ) &1 2} } 1 2\ 1& F(H i $ i f(x %)+},

25 ASYMPTOTIC LOSS OF INFORMATION 123 the inequality holds. We have T(x, %) 3 16 $2 i 9 2 (x, %) f(x %) } 1& F(H i %) $ i f(x %)} h i h i&1 9 4 (x, %) f(x %)?(%) d% dx$ i c* 4. (21) Application of Jensen's inequality leads to h i h i&1 \ 1& F(H 2 i f(x %)?(%) d% dx $ i f(x %)+ = h i h i 2 $ i + h i&1 \ - f(x %)& F(H i %) h i&1 1?(%) d% dx $ i hi (- f(x %)&- f( y %)) 2?(%) d% dy dx h i&1 $ 2 i sup x, y # H i D 2 (?( } x),?( } y)). The last term is o(1) for &$&. Schwarz' inequality gives Thus h i h i&1 T(x, %)?(%) d% dx 3 16 $2 i \ hi _ \ h i h i&1 9 4 (x, %) f(x %)?(%) d% dx $ i f(x %)+ h i&1 \ 1& F(H i %) 3 16 $2 i - c* 4 $ i - $ i o(1). f(x %)?(%) d% dx + 12 } (S(x, %)+T(x, %))?(%) d% dx } =o \ : i=1 $ 3 i +. (22) Equation (8) then follows from (2), (7), and (22).

26 124 FELSENSTEIN AND PO TZELBERGER Proof of Lemma 3. We define a density g(x)=q &12 (x) q &12 (x) dx. Then Jensen's inequality gives 1- q(x) dx \ + 2 _ q(x) _ 2 (x) dx= 2 (x) g 2 (x) dx = \ _23 (x) g(x) + \ _ 23 (x) g(x) 3 g(x) dx g(x) dx + 3 = \ _ 23 (x) dx + 3, with equality if and only if g B _ 23. Therefore the optimal q is proportional to (_ 2 ) &23. Proof of Lemma 4. The proof is similar to the proof of Lemma 6, so we give the deviating parts only. Let x %, i # H i with f(x %, i %)=F(H i %)$ i. Note that log(1+t)t and with and We have I = : I = : i=1 Hi log \ =2 : 2 : i=1 Hi log \ i=1 Hi \ =2I +2I i=1 Hi \ I = :, i=1 H i \ f(x %) f(x %)?(%) d% dx f(x %, i %)+ f(x %) f(x %) x?(%) d% dx f(x %, i %)+ f(x %) f(x %, i %) &1 f(x %)?(%) d% dx + f(x %) f(x %, i %) &1 + ( f(x %)&f(x %, i %))?(%) d% dx f(x %) f(x %, i %) &1 + f(x %, i %)?(%) d% dx. I = : i=1 Hi (- f(x %) - f(x %, i %)&1)?(%) d% dx=&d 2.

27 ASYMPTOTIC LOSS OF INFORMATION 125 Furthermore, I = : i=1 Hi \ f(x %) f(x %, i %) &1 + (- f(x %)&- f(x %, i %)) _(- f(x %)+- f(x %, i %))?(%) d% dx = : i=1 Hi (- f(x %)&- f(x - f(x %) %, i %)) \ 2 1+?(%) d% dx - f(x %, i %)+ =2D 2 + : 2D 2 + \ : i=1 H i (- f(x %)&- f(x %, i %)) 2 - f(x %) - f(x %, i %) i=1 Hi (- f(x %)&- f(x %, i %)) 4?(%) d% dx + 12 _ \ : i=1 Hi f(x %) =2D 2 + \ : 12 f(x %, i %) dx?(%) d% + i=1 H i (- f(x %)&- f(x %, i %)) 4?(%) d% dx Again, we choose the endpoints of the intervals as where h :=c H i x 3 (1&x) 3 f 32 c &1 H = 1 x 3 (1&x) 3 f 32 (F &1 &1 (F Analogously to Lemma 1, it can be seen that (x)) dx, (x)) dx.?(%) d% dx Hi (- f(x %)&- f(x %, i %)) 4?(%) d% dx=o(1 4 ), for i=1 and i=. For2i&1 an x~ %, i # H i exists such that f $(x~ %, i %) - f(x %)&- f(x %, i %)=(x&x %, i ) 2 - f(x~ %, i %) holds. The arguments concerning the convergence of the Riemann sum used in Lemma 2 apply here as well. Thus I 2D 2 +O(12 )

28 126 FELSENSTEIN AND PO TZELBERGER if f $(x %)4 f(x %)?(%) f (F &1 2 (x))7 d% dx<, which is condition C7 for the transformed model. Proof of Lemma 5. Let B=- F(H i %)$ i f(x %)=- f(x %, i %)f(x %). Then and D (x) 2 = 1 2 (B&1)2?(% x) d% log(b)=&(1&b)&(1&b 2 ) 1 v 1+v(B&1) dv =&(1&B)&(1&B) 2 2&(1&B) 3 1 so that I (x)=&2 log(b)?(% x) d%, and therefore with Now R(x)=2 (1&B)3 1 I (x)=4d (x) 2 +R(x) v 2 1+v(B&1) dv, v 2 dv f(x %)?(%) d%. 1+v(B&1) } 1 v 2 1+v(B&1) dv } 1 B ; hence it is sufficient to prove that 1&B 3 B?(% x) d%=o( i $ 3 i ) uniformly in x. Now 1 f(x %)(1&B) 3 B=(- f(x %)&- f(x %, i %)) 3 - f(x %, i %) =(x&x %, i ) $ 3 i \ &$&(x, %) f $(x~ %, i %) 3 1 f(x~ %, i %) 32 - f(x %, i %)

29 ASYMPTOTIC LOSS OF INFORMATION 127 with x~ %, i defined as in Lemma 4. Condition C8 implies that for small &$& the integral \ &$& (x, %)?(%) d%< for any x #, so that for x # H i Hi 1&B 3 B?(% x) d%$ 3 i 1 8 \ &$& (x, %)?(%) d% dx=o($ 3 ) i Hi uniformly in x #. REFERENCES M. Abramowitz and I. Stegun, ``Handboo of Mathematical Functions,'' U.S. Department of Commerce, Washington, DC, G. R. Benitz and J. A. Buclew, Asymptotically optimal quantizers for detection of i.i.d. data, IEEE Trans. Theory 35 (1989), W. Cochran, Errors of measurements in statistics, Technometrics 1 (1968), D. R. Cox, Note on grouping, J. Amer. Statist. Assoc. 52 (1957), A. Dempster, N. Laird, and D. Rubin, Maximum lielihood from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc. Ser. B 39 (1977), 138. A. Dempster and D. Rubin, Rounding error in regression: The appropriateness of Sheppard's corrections, J. Roy. Statist. Soc. Ser. B 45 (1983), D. Heitjan, Inference from Grouped Continuous Data: A review (with discussion), Statist. Sci. 4 (1989), D. Heitjan and D. Rubin, Ignorability and coarse data, Ann. Statist. 19 (1991), D. Lindley, Grouping corrections and maximum lielihood equations, Proc. Cambridge Philos. Soc. 46 (195), Printed in Belgium

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Level-Rebuilt B-Trees

Level-Rebuilt B-Trees Gerth Stølting Brodal BRICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University August 1998 1 B-Trees Bayer, McCreight 1972 Level 2 Level 1

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Unbiased Estimation in the Non-central Chi-Square Distribution 1

Unbiased Estimation in the Non-central Chi-Square Distribution 1 Journal of Multivariate Analysis 75, 112 (2000) doi10.1006mva.2000.1898, available online at httpwww.idealibrary.com on Unbiased Estimation in the Non-central Chi-Square Distribution 1 F. Lo pez-bla zquez

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Semiparametric Mixtures in Case-Control Studies

Semiparametric Mixtures in Case-Control Studies Journal of Multivariate Analysis 79, 132 (2001) doi:10.1006jmva.2000.1961, available online at http:www.idealibrary.com on Semiparametric Mixtures in Case-Control Studies S. A. Murphy 1 Pennsylvania State

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

On Capacity Planning for Minimum Vulnerability

On Capacity Planning for Minimum Vulnerability On Capacity Planning for Minimum Vulnerability Alireza Bigdeli Ali Tizghadam Alberto Leon-Garcia University of Toronto DRCN - October 2011 Kakow - Poland 1 Outline Introduction Network Criticality and

Detaljer

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Investigating Impact of types of delivery of undergraduate science content courses

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: KJB 492 Bioinformatikk Eksamensdag: Fredag 14. desember 2001 Tid for eksamen: Kl.: 9.00 13.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

Implementing Bayesian random-effects meta-analysis

Implementing Bayesian random-effects meta-analysis Implementing Bayesian random-effects meta-analysis Christian Röver 1, Beat Neuenschwander 2, Tim Friede 1 1 Department of Medical Statistics University Medical Center Göttingen 2 Novartis Pharma AG, Basel,

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Ravi Varadhan, Ganesh Subramaniam Johns Hopkins University AT&T Labs - Research 1 / 28 Introduction Goal:

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

EM Algorithm for Latent Variable Models

EM Algorithm for Latent Variable Models EM Algorithm for Latent Variable Models Julia Kempe & David S. Rosenberg New York University May 7, 2019 Julia Kempe & David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 May 7, 2019 1 /

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time: Side 1 av 8 Norwegian University of Science and Technology DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN Wednesday 3 th Mars 2010 Time: 1615-1745 Allowed

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 575 2 ). Ved bruk av tabell A.3 finner

Detaljer

Checking Assumptions

Checking Assumptions Merlise Clyde Duke University November 16, 2016 Linear Model Linear Model: Y = µ + ɛ Assumptions: µ C(X) µ = Xβ ɛ N(0 n, σ 2 I n ) Focus on Wrong mean for a case or cases Wrong distribution for ɛ Cases

Detaljer

A Geometric Approach to an Asymptotic Expansion for Large Deviation Probabilities of Gaussian Random Vectors

A Geometric Approach to an Asymptotic Expansion for Large Deviation Probabilities of Gaussian Random Vectors journal of multivariate analysis 58, 12 (1996) article no. 36 A Geometric Approach to an Asymptotic Expansion for Large Deviation Probabilities of Gaussian Random Vectors K. Breitung Universita di Pavia,

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Eksamen 9. desember 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Løsningsskisse Oppgave 1 a) Define the following events: A: Getting an ace as your first card B: Getting

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1310 Økonomisk aktivitet og økonomisk politikk Exam: ECON1310 Macroeconomic theory and policy Eksamensdag: 18.05.01 Sensur blir annonsert: 07.06.01

Detaljer

Checking Assumptions

Checking Assumptions Checking Assumptions Merlise Clyde STA721 Linear Models Duke University November 20, 2017 Linear Model Linear Model: Y = µ + ɛ Assumptions: µ C(X) µ = Xβ ɛ N(0 n, σ 2 I n ) Focus on Wrong mean for a case

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.)

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.) Side/Page 1 av/of 8 + 3 sider vedlegg + enclosure, 3 pages NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn:

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Identification of Refined ARMA Echelon Form Models for Multivariate Time Series*

Identification of Refined ARMA Echelon Form Models for Multivariate Time Series* journal of multivariate analysis 56, 27231 (1996) article no. 11 Identification of Refined ARMA Echelon Form Models for Multivariate Time Series* Sai d siri Institut national de statistique et d'e conomie

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

Approximation of the Power of Kurtosis Test for Multinormality

Approximation of the Power of Kurtosis Test for Multinormality Journal of Multivariate Analysis 65, 166180 (1998) Article No. MV97178 Approximation of the Power of Kurtosis Test for Multinormality Kanta Naito Hiroshima University, Higashi-Hiroshima, 739, Japan Received

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON3610/4610 Resource Allocation and Economic Policy Eksamensdag: Torsday 28.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 Resource Allocation and Economic Policy Eksamensdag: redag 30. November

Detaljer

VLSI Design for Yield on Chip Level

VLSI Design for Yield on Chip Level IBM Systems and Technology Group Markus Bühler Jeanne Bickford Jason Hibbeler Jürgen Koehl DATE 2006 Outline Catastrophic Failures Defect Mechanisms State of the Art Novel Techniques Conclusion 2 Catastrophic

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Talk Outline appearance based tracking patch similarity using histogram tracking by mean shift experiments, discussion Mean shift Tomáš

Detaljer