1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 20 5 160 2 Oppgave 4 (2 poeng) Løs likningssystemet 2 2 x y 4 x 2 y Eksamen MAT1013 Matematikk 1T Våren 2017 Side 1 av 9
Oppgave 5 (2 poeng) Løs likningen lg x 0 4 2 3 Oppgave 6 (2 poeng) Skriv så enkelt som mulig 1 x 5 2x 6 2 x x 1 x x Oppgave 7 (4 poeng) Ved en skole leser 80 % av elevene aviser på nett, 50 % leser papiraviser, og 2 % leser ikke aviser. a) Systematiser opplysningene gitt i teksten ovenfor i et venndiagram eller i en krysstabell. b) Bestem sannsynligheten for at en tilfeldig valgt elev ved skolen leser både aviser på nett og papiraviser. En elev ved skolen leser aviser på nett. c) Bestem sannsynligheten for at denne eleven ikke leser papiraviser. Oppgave 8 (2 poeng) Om en rettvinklet trekant får du vite: Lengden av den korteste siden er 20. Differansen mellom lengdene av de to andre sidene er 2. Hvor lang er den lengste siden i denne trekanten? Eksamen MAT1013 Matematikk 1T Våren 2017 Side 2 av 9
Oppgave 9 (4 poeng) En funksjon f er gitt ved f x x x x 3 2 ( ) 3 2 3 a) Bestem den gjennomsnittlige vekstfarten til i intervallet b) Bestem den momentane vekstfarten til f når x 2. f 2,0 Oppgave 10 (2 poeng) I koordinatsystemet ovenfor har vi tegnet grafen til en tredjegradsfunksjon f. Bruk den grafiske framstillingen til å løse ulikhetene a) fx ( ) 0 b) f ( x) 0 Eksamen MAT1013 Matematikk 1T Våren 2017 Side 3 av 9
Oppgave 11 (8 poeng) Funksjonen f er gitt ved f x x x 2 ( ) 4 3 a) Bestem nullpunktene til f. Grafen til f er symmetrisk om en linje. b) Tegn grafen til f sammen med linjen i et koordinatsystem. Grafen til f har en tangent med stigningstall 2. c) Bestem likningen for denne tangenten. Tegn tangenten i det samme koordinatsystemet som du brukte i oppgave b). Tangenten fra oppgave c) skjærer linjen i punktet P. Grafen til f har en annen tangent som også går gjennom punktet P. d) Skisser denne tangenten i samme koordinatsystem som du har brukt tidligere i oppgaven. Bestem likningen for tangenten grafisk. e) Gjør beregninger og avgjør om likningen du fant i oppgave d), er riktig. Eksamen MAT1013 Matematikk 1T Våren 2017 Side 4 av 9
Oppgave 12 (5 poeng) a) Bruk PQR ovenfor til å vise at sin 30 1 cos 30 3 tan 30 3 2 2 3 Videre i oppgaven kan du få bruk for noen av disse trigonometriske verdiene. I ABC er AB 2, AC 4 og A 30 b) Bestem arealet av ABC. c) Vis at BC 2 5 2 3 Eksamen MAT1013 Matematikk 1T Våren 2017 Side 5 av 9
Tid: 2 timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 1 (7 poeng) Funksjonen f gitt ved f x x x x 3 2 ( ) 0,0047 0,40 8,3 86 x 0,52 viser fyllingsgraden fx ( ) prosent i et vannmagasin x uker etter 1. januar 2016. a) Bruk graftegner til å tegne grafen til f. b) I hvor mange uker var fyllingsgraden høyere enn 60 %? c) I hvilken uke var fyllingsgraden lavest? Hvor stor del av vannmagasinet var fylt da? d) Bestem likningen for tangenten til grafen til f i punktet (22, f (22)). Hva forteller stigningstallet til denne tangenten om fyllingsgraden i vannmagasinet? Eksamen MAT1013 Matematikk 1T Våren 2017 Side 6 av 9
Oppgave 2 (2 poeng) To voksne og tre barn betaler til sammen 520 kroner for billetter til en kinoforestilling. En voksenbillett koster 40 kroner mer enn en barnebillett. Hvor mye koster en barnebillett, og hvor mye koster en voksenbillett? Oppgave 3 (2 poeng) Linjediagrammet ovenfor viser hvordan andelen dagligrøykere ved en bedrift har avtatt i perioden 2000 2017. a) Bestem en lineær modell som tilnærmet beskriver utviklingen. b) Når vil andelen dagligrøykere ved bedriften være 5 % ifølge modellen i oppgave a)? Eksamen MAT1013 Matematikk 1T Våren 2017 Side 7 av 9
Oppgave 4 (4 poeng) Ved et meieri blir det oppdaget en feil ved en av maskinene som skrur korker på kartongene. På kjølelageret er det 200 kartonger med lettmelk og 100 kartonger med helmelk. 2 5 av kartongene med lettmelk og 1 4 av kartongene med helmelk har ikke tett kork. Tenk deg at du skal ta en kartong tilfeldig fra kjølelageret. a) Bestem sannsynligheten for at kartongen ikke har tett kork. Anta at du tar en kartong som ikke har tett kork. b) Bestem sannsynligheten for at kartongen inneholder lettmelk. Oppgave 5 (2 poeng) Gitt trekanten ovenfor. Bruk CAS til å bestemme s. Eksamen MAT1013 Matematikk 1T Våren 2017 Side 8 av 9
Oppgave 6 (3 poeng) En funksjon f er gitt ved Bruk CAS til å f x x ax a x a 3 2 2 ( ) 2, 0 vise at grafen til f har et nullpunkt og et stasjonært punkt i Pa (, 0) avgjøre om P er et toppunkt, et bunnpunkt eller et terrassepunkt Oppgave 7 (4 poeng) Figuren ovenfor viser en halvsirkel med sentrum i B og radius R en halvsirkel med sentrum i C og radius r en kvart sirkel med sentrum i A og radius 2R De to halvsirklene tangerer hverandre i punktet D. Punktet D ligger på linjen gjennom B og C. a) Bruk Pytagoras setning til å vise at 2 r R. 3 b) Bruk CAS til å bestemme arealet av det blå området på figuren uttrykt ved R. Kilder Oppgavetekst med grafiske framstillinger og bilder: Utdanningsdirektoratet. Eksamen MAT1013 Matematikk 1T Våren 2017 Side 9 av 9