Exercises population. Øyvind Ryan
|
|
- Sigrid Nygaard
- 7 år siden
- Visninger:
Transkript
1 Exercises population Øyvind Ryan 19. februar 2013
2 1. Vi antar at en bakteriepopulasjon vokser eksponentielt og har en vekst gitt ved P = P 0 e kt der t er tiden i sekunder, P 0 = 120 er antall bakterier ved t=0 og k = 0.04s 1. Finn ut hvor mange bakterier det er etter: a. 10 sekunder Løsningsforslag: 179 b. 30 sekunder Løsningsforslag: 398 c. 1 minutt Løsningsforslag: d. 1 time Løsningsforslag: Vi skal se litt mer på oppgaven fra tidligere der vi hadde en bakteriepopulasjon som vokste eksponentielt og hadde en vekst gitt av P = P 0 e kt der t er tiden i sekunder, P 0 =120 er populasjonen ved t = 0 og k = Løsningsforslag: Koden blir t=0:30; % tidsrekka k=0.04; % parameter P0=120; % bakteriepopulasjonen ved start P=P0*exp(k*t); figure(1) plot(p) xlabel( tid [s] ) ylabel( antall bakterier ) title( Populasjon ) xlim([1 30]) t=1:60*6; P=P0*exp(k*t); figure(2) plot(p) xlabel( tid [s] ) ylabel( antall bakterier ) 2
3 title( Populasjon ) plot(t,1e8, r* ) xlim([1 360]) hold off Tidspunktet naar populasjonen naar grensen er ved ca. 340 sekunder. a. Lag en tidsvektor for de 30 første sekundene som du kaller t. b. Regn ut bakteriepopulasjonen for hver t, og plot denne. Sett navn på aksene. c. Lag en ny tidsvektor som representerer 6 minutter. d. Regn ut bakteriepopulasjonen for hvert sekund i 6 minutter, og plot denne. Sett navn på aksene e. Plot en linje i figuren din som markerer der populasjonen når 10 8 bakterier. La linjen være røde stjerner. Les av for hvilken t denne verdien nås. 3. I denne oppgaven skal vi se på en modell for samspillet mellom rovdyr og byttedyr. Vi lar x n og y n betegne hhv. antall rovdyr og antall byttedyr etter n uker, og vi antar at x n+1 = x n (1 r + c y n ) y n+1 = y n (1 dx n + q) der r, q, c og d er små, positive tall. a. Forklar tankegangen bak modellen. b. Velg r = 0.02, q = 0.04, c = , d = 0.001, x 1 = 50, y 1 = 200. Lag et program som regner ut x n og y n for n Plott følgene x n og y n i samme koordinatsystem. Hvorfor er toppene til x n forskjøvet i forhold til toppene til y n? Løsningsforslag: Koden blir % rovdyr og byttedyr % antall dyr i en uke = antall dyr uka f r - de d de + de nyf dte % antall nyf dte rovdyr avhengig av antall byttedyr % antall d de byttedyr avhengig av antall rovdyr 3
4 nt=1000; % antall uker r=0.02; % def av f dselsrater og d delighetrater q=0.04; c=0.0002; d=0.001; x=zeros(1,nt); y=zeros(1,nt); x(1)=50; % initialisering antall rovdyr y(1)=200; % initialisering antall byttedyr for n=2:nt x(n)=x(n-1)*(1-r+c*y(n-1)); y(n)=y(n-1)*(1-d*x(n-1)+q); end figure plot(x, r ) plot(y, b ) title( antall rovdyr (r d) og byttedyr (blâ) ) hold off % er det mange byttedyr, ker antall rovdyr; er det fâ byttedyr, minker antall rovdyr 4. En dyrestamme består av tre årskull. Vi regner med at 40% av dyrene i det yngste årskullet lever videre året etter, mens 70% i det nest yngste årskullet lever videre året etter. Ingen dyr lever mer enn tre år. Et individ i det andre årskullet blir i gjennomsnitt forelder til 1.5 individer som blir født året etter. Et individ i det eldste årskullet blir i gjennomsnitt forelder til 1.4 individer som blir født året etter. La x n, y n, z n være antall dyr i hvert årskull etter n år, og forklar hvorfor x n+1 = 1.5y n + 1.4z n y n+1 = 0.4x n z n+1 = 0.7y n a. Anta at det er 100 dyr av hvert årskull det første året. Lag et program som regner ut x n, y n og z n for 1 n 100. Plott alle tre kurvene i samme vindu. Lag et nytt vindu der du plotter alle de relative bestandene x n = x n x n +y n +z n, y n = y n x n +y n +z n, z n = z n x n +y n +z n. b. Gjenta a., men bruk andre startverdier, f.eks. x 1 = 300, y 1 = 0, z 1 = 0. Sammenlign med resultatene i 1. Gjør oppgavene enda en gang med et nytt sett av startverdier. Ser du et mønster? 4
5 Løsningsforslag: Koden blir: %oppgave med 3 Ârskull % x er antall yngste, y antall mellomste, og z antall eldste % indeksen k representerer hvilket Âr man er i. nt = 100; %antall Âr x=zeros(1,nt); y=zeros(1,nt); z=zeros(1,nt); x(1)=100; % initialisering antall dyr y(1)=100; z(1)=100; for k=2:nt % regne ut utviklingen x(k)=1.5*y(k-1)+1.4*z(k-1); y(k)=0.4*x(k-1); z(k)=0.7*y(k-1); end figure plot(x, : ) plot(y, -- ) plot(z, - ) %beregne og plotte de relative bestandene xr=x./(x+y+z) yr=y./(x+y+z) zr=z./(x+y+z) figure plot(xr, : ) plot(yr, -- ) plot(zr, - ) 5. Vi skal se på utviklingen til tre generasjoner av en dyrepopulasjon. Den første generasjonen kalles x, den midterste y og den eldste z. 40% av dyrene i generasjon x overlever til generasjon y, og 70% av dyrene i generasjon y overlever til generasjon z pr. år. Dyrene i generasjon y får gjennomsnittlig 1.5 barn hver pr. år, og dyrene i generasjon z får 1.4 barn hver pr. år. Løsningsforslag: a. og b.: function[x,y,z,b] = populasjon(x1,y1,z1,b1,t) 5
6 x(1)=x1; y(1)=y1; z(1)=z1; b(1)=b1; for i=1:t x(i+1)=1.5*y(i)+1.4*z(i)+0.5*b(i); y(i+1)=0.4*x(i); z(i+1)=0.7*y(i); b(i+1)=0.2*z(i); end a. Du skal lage en funksjon som tar i mot hvor mange dyr det er i hver generasjon ved tiden t=1, og sender tilbake tre arrayer som inneholder utviklingen til hver generasjon. I tillegg skal funksjonen også ta imot hvor mange tidsskritt(år) frem i tid du vil se på. Første linje i programmet ditt skal se slik ut: function[x,y,z] = populasjon(x1,y1,z1,t) Her er x1, y1, z1, og t vanlige tall, mens x, y, og z er arrayer. b. I denne funksjonen var z den eldste generasjonen. Under studiet av denne dyrepopulasjonen fant du ut at det var en generasjon til som var enda eldre enn z, nemlig generasjon b! Det var 20% av dyrene som var i generasjon z som overlevde til generasjon b, og annethvert dyr i generasjon b fikk ett barn pr. år. Gjør endringene som trengs i funksjonen for at den skal beregne utviklingen til bestanden inkludert generasjon b. Første linje i programmet ditt skal nå se slik ut: function[x,y,z,b] = populasjon(x1,y1,z1,b1,t) c. Lag en ny funksjon der du sender inn arrayene x,y,z, og b. Funksjonen skal lage et plot som viser utviklingen til populasjonene. Figuren skal ha navn på aksene, tittel og de fire grafene skal ha ulike farger. Første linje i programmet ditt skal se slik ut: function figur(x,y,z,b) Løsningsforslag: Koden blir 6
7 function figur(x,y,z,b) plot(x) plot(y, r ) plot(z, g ) plot(b, k ) xlabel( {\aa}r ) ylabel( antall dyr ) title( Populasjon ) legend( x, y, z, b ) 7
Exercises GEO1040. Øyvind Ryan
Exercises GEO1040 Øyvind Ryan 19. februar 2013 1. Bruk Matlab til å regne ut: a. 2.2 + 4.7 2.2 + 4.7 b. 5/7 5/7 c. 3 2 3^2 2 3 4 2 13 2.2 2 d. (2*3-4^2)/(13-2*2^2) e. 4.7 4 4.7^4 f. Hva er det 12. desimalet
Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
Løsningsforslag til øving 1
Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p
Examples plotting. Øyvind Ryan
Examples plotting Øyvind Ryan 19. februar 2013 Example 0.1. Vi skal tegne grafen til f (x, y) = x 3 4y 2 over rektangelet x [ 3,3], y [ 5,5]. Vi lager først en oppdeling av de to intervallene vi er interessert
Oppgave 4. Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave:
Oppgave 4 Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave: 1 %% FY1005 / TFY4165, Oving 1, Oppgave 4, del 1 2 %% 3 %%R = gasskonstanten = 8.314 J/
Funksjoner S1, Prøve 1 løsning
Funksjoner S1, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker, passer og linjal. Oppgave 1 Gitt funksjonen 3 f 3. a) Bestem koordinatene til skjæringspunktet mellom grafen til f og y-aksen.
Løsningsforslag til utvalgte oppgaver i kapittel 10
Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men
Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do
Oppgave 7.2.6 a) x d 1.0 for n from 1 by 1 to 200 do x d sin x Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. d) Det er klart at f x = 0 hvis og bare hvis x
Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x.
Oppgave 7.2.6 a) x d 1.0 x := 1.0 (1) for n from 1 by 1 to 20 do x d sin x end do x := 0.8170988 x := 0.7562117 x := 0.6783077 x := 0.6275718321 x := 0.5871809966 x := 0.550163908 x := 0.5261070755 x :=
Examples MAT1110. Øyvind Ryan
Examples MAT1110 Øyvind Ryan 19. februar 2013 Example 0.1. Vi skal tegne grafen til f (x, y) = x 3 4y 2 over rektangelet x [ 3,3], y [ 5,5]. Vi lager først en oppdeling av de to intervallene vi er interessert
Funksjoner 1T, Prøve 1 løsning
Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?
Løsningsforslag for første obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete
Løsningsforslag for første obligatoriske oppgave i STK00 Våren 2007 Av Ingunn Fride Tvete NB! Feil kan forekomme. Oppgave T er levetiden for en bestemt type elektronisk komponent, med sannsynlighetstetthet:
Termodynamikk og statistisk fysikk Oblig 7
FYS2160 Termodynamikk og statistisk fysikk Oblig 7 Sindre Rannem Bilden 4. november 2015 Oppgave 0.11 - Fase likevekt i en van der Waals system a) is at trykket, p(n,, T ), til van der Waals gassen er
Matematikk Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Å lage et plott a) Vi kan tilordne vektoren slik i kommandovinduet: ` x=0:.1:7*pi;' Legg merke til at det ikke er opplagt hvordan
Obligatorisk oppgave 1
Obligatorisk oppgave 1 a) Oppgaveteksten oppgir et vektorfelt f(x, y) F x, y = g x, y der f og g er oppgitt ved f x, y = x 3 3xy 1 og g x, y = y 3 + 3x y. Vi kan med dette regne ut Jacobimatrisen F x,
Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013
Noen MATLAB-koder Fredrik Meyer 23. april 2013 1 Plotte en vanlig funksjon Anta at f : [a, b] R er en vanlig funksjon. La for eksempel f(x) = sin x+x for x i intervallet [2, 5]. Da kan vi bruke følgende
4 Differensiallikninger R2 Oppgaver
4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver
Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax
Løsningsforslag: MAT 1110 Obligatorisk oppgave 2, V-12
Løsningsforslag: MAT 0 Obligatorisk oppgave, V- Oppgave a Siden f har en annenderivert, må både funksjonen selv og dens deriverte være kontinuerlige, og det sikrer at vi i regningene nedenfor har 0 0 -uttrykk:
MAT1110: Obligatorisk oppgave 2, V Løsningsforslag
MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10
11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Oppgaver Kapittel 5 (del 2) Ada Gjermundsen
: Institutt for geofag Universitetet i Oslo 11. september 2012 Oppgave 1: Vektor operasjoner : Lag en vektor som inneholder objektene: a) 2, 4, 6, 8, 10, 12 b) 10, 8, 6, 2, 0, -2, -4 c) 1, 1/2, 1/3, 1/4,
5.9 Momentan vekstfart
5.9 Momentan vekstfart I kapittel 5.8 fant vi den gjennomsnittlige vekstfarten til en funksjon i et intervall. Nå skal vi finne den momentane vekstfarten. Det er vekstfarten i et punkt. Den er vanskeligere
MAT-INF 2360: Obligatorisk oppgave 1
7. februar, 2013 MAT-INF 2360: Obligatorisk oppgave 1 Innleveringsfrist: 28/2-2013, kl. 14:30 Informasjon Skriftlige besvarelser skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et.
Funksjoner S2 Oppgaver
Funksjoner S Funksjoner S Oppgaver. Derivasjon... Den deriverte til en konstant funksjon... Den deriverte til en potensfunksjon... Den deriverte til et produkt av to funksjoner... 4 Den deriverte til en
Plotting av data i grafer
Kapittel 8 Plotting av data i grafer 8.1 Forskjellige typer grafer De viktigste plottetypene eller graftypene er Waveform Chart, som gir kontinuerlig oppdatert plotting, med stadig nye punkter på grafen.
Prosent og eksponentiell vekst
30 2 Prosent og eksponentiell vekst MÅL for opplæringen er at eleven skal kunne gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst 2.1 Prosentfaktorer Når vi skal regne
Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING
Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):
Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl )
Institutt for fysikk, NTNU TFY4165 og FY1005 Termisk fysikk, våren 011. Regneøving 9. (Veiledning: Fredag 18. mars kl. 1.15-14.00 og mandag 1. mars kl. 17.15-19.00.) Oppgave 1 Damptrykket for vann ved
I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:
OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)
Lærebokforfattere INNHOLD. REALFAGLIG PROGRAMMERING side 3. MINIKURS I PROGRAMMERING side 4. TRINKET side 6. LØKKER side 8
1 INNHOLD Lærebokforfattere CATHRINE WAHLSTRØM TELLEFSEN er førstelektor ved Det matematisknaturvitenskapelige fakultet ved Universitetet i Oslo, der hun blant annet leder arbeidet med etter utdanning
Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene
Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Origo er skjæringspunktet mellom x-aksen og y-aksen. Koordinatene til origo er altså. (0, 0) b Førstekoordinaten til
SCE1106 Control Theory
Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, October 26, 2006 SCE1106 Control Theory Exercise 6 Task 1 a) The poles of the open loop system is
Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5
Fasit til utvalgte oppgaver MAT1110, uka 8/4-/5 Tom Lindstrøm (lindstro@math.uio.no) 5..5 a) Alle punktene i B har avstand til origo større enn 1, så d(0, B) må være minst 1. Ved å velge punkter på x-aksen
d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =
Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel
41070 STABILITET I ELKRAFTSYSTEMER
NTNU Gitt: 26.01.00 Fakultet for Elektroteknikk og telekommunikasjon Leveres: 09.02.00 Institutt for elkraftteknikk 1 41070 STABILITET I ELKRAFTSYSTEMER ØVING 13. Obligatorisk dataøving. Formål: - gi en
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Lotte har spurt ti medelever om hvor mange ganger de handler i kantina i løpet av en uke. Resultatene ser du nedenfor. 1 5 1 3 3 1 4 2 4 0 Bestem medianen, gjennomsnittet,
Control Engineering. MathScript. Hans-Petter Halvorsen
Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,
Tabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
MAT1120 Plenumsregningen torsdag 26/8
MAT1120 Plenumsregningen torsdag 26/8 Øyvind Ryan (oyvindry@i.uio.no) August 2010 Innføring i Matlab for dere som ikke har brukt det før Vi skal lære følgende ting i Matlab: Elementære operasjoner Denere
Stigningstall og konstantledd, løsningsforslag
Stigningstall og konstantledd, løsningsforslag Oppgave: Løsningsforslag Listen [1] Oppgave Oppgave 1 a) Skriv ned stigningstallet og konstantleddet i de tre funksjonene under. 1. f(x) = x + Stigningstall
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
LØSNINGER UKE 6, STK1100. Ekstraoppgave 5 a) Sannsynligheten for at en 75 år gammel kvinne skal bli minst 80 år
LØSNINGER UKE 6, STK1100 Sammendrag. Løsningsforslag for noen av de oppgavene jeg ikke rakk igjennom på plenumen. Originalt skrevet av Ingunn Fride Tvete. Send mail til steffeng@math.uio.no hvis du ser
TMA4245 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.
Modellering 2P, Prøve 1 løsning
Modellering 2P, Prøve løsning Del Tid: 30 min Hjelpemidler: Skrivesaker Oppgave Vi har tallene 6,,6,2, a) Hva blir de to neste tallene? De to neste tallene blir 26 og 3. b) Vi kaller tall nummer n for
MA2501 Numeriske metoder
MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x
V1 = input( Gjett p V1: ) %%Riktig verdi er omtrent V1= ; %%f.eks gir 4*E-4 i feil for T=123K. %%Bestemmer tilsvarende P1: P1 =
Oppgave 5 Matlab-program som beregner van der Waals koeksistenstrykk for luft ved temperatur 123 K. I denne versjonen leses det inn en gjetning på væskevolumet, hvoretter det beregnes hvilket gassvolum
FYS2130 forelesning 1. februar 2013 Noen kommentarer til kapittel 3: Numeriske løsningsmetoder
FYS2130 forelesning 1. februar 2013 Noen kommentarer til kapittel 3: Numeriske løsningsmetoder Numerisk løsning av annen ordens differensialligning: 1. Kan skrive differensialligningen som en sum av to
MAT-INF 2360: Obligatorisk oppgave 1
6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)
Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon
Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon Øyvind Hagen Institutt for informatikk Universitetet i Oslo 23. oktober 2001 1 Innhold 1 Prelab 4 1.1 Implementasjon av Vittoz modellen.................
4. og 5. september 2012
r Institutt for geofag Universitetet i Oslo 4. og 5. september 2012 Oppgave 1 r Hvor mange ganger blir Hello Verden! skrevet ut i kommandovinduet? for i=0:20 disp( Hello Verden! ) Oppgave 2 r Hva blir
Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:
Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:
MA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under
MA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til
Termodynamikk og statistisk fysikk Oblig 4
FYS216 ermodynamikk og statistisk fysikk Oblig 4 Sindre Rannem Bilden 23. september 215 Oppgave.5 - Rotasjon av diatomiske molekyler a) Skriv ned partisjonsfunksjonen Z R ( ) Z R ( ) =Σ j g(j)e ε jβ =(2j
Eksamen 2P MAT1015 Høsten 2012
Eksamen 2P MAT1015 Høsten 2012 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg inn i
Termodynamikk og statistisk fysikk Oblig 2
FYS6 Termodynamikk og statistisk fysikk Oblig Sindre Rannem Bilden. september 05 Oppgave 0. - Likevekt i et spinnsystem a Hva er antallet mikrotilstander i et system med antall spinn? Svar: Da hver spinn
Løsningsforslag til øving 10
Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2013. a) Fra forelesningene, kapittel 4.5, har vi Ved å benytte og kan dette omformes til Med den gitte tilstandsligningen finner
Eksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
ITGK - H2010, Matlab. Repetisjon
1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne
Løsningsforslag for MAT-0001, desember 2009, UiT
Løsningsforslag for MAT-1, desember 29, UiT av Kristian Hindberg Oppgave 1 a) Bestem grenseverdien e x 1 x lim x x 2 e x 1 x lim x x 2 = lim x e x 1 2x e = x lim x 2 = 1 2 b) Finn det ubestemte integralet
Eksamen 2P MAT1015 Høsten 2012 Løsning
Eksamen 2P MAT1015 Høsten 2012 Oppgave 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg
Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96
Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,
a) The loop transfer function with the process model with a P controller is given by h 0 (s) = h c (s)h p (s) = K p (1 + s)(2 + s) K p
Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, November 9, 006 SCE1106 Control Theory Solution Exercise 8 Task 1 a) The loop transfer function with
Eksempel 1: Bestemmer om tallet som skrives inn er et partall eller et oddetall side 12
1 INNHOLD PROGRAMMERING I MATEMATIKK side 3 MINIKURS I PROGRAMMERING side 4 TRINKET side 5 LØKKER side 6 ARRAYER side 8 GRAFTEGNING MED PYTHON side 10 Eksempel 1: Bestemmer om tallet som skrives inn er
Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene
Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Koordinatene til origo er (0, 0). b Vi leser av førstekoordinaten langs x-aksen og andrekoordinaten langs y-aksen for
Løsning 1P, funksjoner
Løsning 1P, funksjoner Del 1 Tid: 50 min Hjelpemidler: Skrivesaker Oppgave 1 En funksjon er gitt ved f x 3x 6. a) Bestem funksjonens stigningstall og skjæring med koordinataksene. Stigningstallet er -3.
Løsningsforslag øving 12, ST1301
Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis
2P kapittel 2 Modellering Utvalgte løsninger oppgavesamlingen
P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Av tabellen ser vi at y minker like mye hver gang x øker med 1. Tallene passer derfor med en lineær funksjon. b Hver gang x øker med 1, minker
2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
Eksamen S1 høsten 2014
Eksamen S1 høsten 2014 Tid: 2 timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) 2x 10 xx 5 b) x lg 3 5 2 Oppgave 2 (1 poeng)
2P-Y eksamen våren 2018 løsningsforslag
2P-Y eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
Øving 12, ST1301 A: B:
Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører
MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag
MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva
Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
Løsningsforslag Eksamen M001 Våren 2002
Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2
Alternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning
Forelesning / 8 Finne skalarfunksjon når gradienten er kjent. Se GF kap..3.4. Ta som eksempel β = yi + xj + k. Vi vet at β = x i + j + z k og følgelig ser vi at vi må løse et system av tre likninger som
Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned
S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka
S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].
11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 6 + en hel del ekstra.
Institutt for geofag Universitetet i Oslo 11. september 212 plotfunksjonen Den vanligste funksjonen for å plotte 2D-data i MatLab er plotfunksjonen Funksjonen plotter vektorer med data og lager rette linjer
Høgskolen i Oslo og Akershus. i=1
Innlevering i BYFE/EMFE 1000 Oppgavesett 2 Innleveringsfrist: 19. oktober klokka 14:00 Antall oppgaver: 2 Løsningsforslag Oppgave 1 a) Skriptet starter med å la Sum være 0, så blir det for hver iterasjon
2P eksamen våren 2018 løsningsforslag
2P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
MAT-INF 1100: Obligatorisk oppgave 1
13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
Løsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
Programmering i Java med eksempler
Differenslikn. p.124 Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2005 MAT-INF1100 Differenslikn. p.224 Differenslikning av orden 2 (1) Vi kjenner formler for
MA0002 Brukerkurs i matematikk B Vår 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 7 Kapittel 7.3: Rasjonale funksjoner og delbrøkoppspaltning 7.3:3 Bruk polynomdivisjon for
eksamensoppgaver.org 4 lg(x 3) = 2 10 lg(x 3) = 10 2 x 3=100 x = 103 tan x = 3 x [0, 360 x = arctan( 3) x = arctan(3)
eksamensoppgaver.org 4 oppgave1 a.i.1) lg(x 3) = 2 10 lg(x 3) = 10 2 x 3=100 x = 103 a.i.2) tan x = 3 x [0, 360 x = arctan( 3) x = arctan(3) x 71, 6 Viseratløsningenliggeri4.kvadrant,derforsettervi x 360
MAT 1110: Oblig 1, V-12, Løsningsforslag
MAT 0: Oblig, V-2, Løsningsforslag Oppgave: a Jacobi-matrisen er F (x, y u x v x u y v y 3x 2 2 3y 2 b Lineariseringen i punktet a er gitt ved T a F(x F(a + F (a(x a. I vårt tilfelle er a ( 2, 2, og vi
Funksjoner 1T, Prøve 2 løsning
Funksjoner 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene.
DEL 1. Uten hjelpemidler. a) Sett opp et likningssystem som svarer til opplysningene ovenfor.
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg7 Oppgave (4 poeng) Skriv uttrykkene så enkelt som mulig a) b) (x 3) 3( x ) ( x 1)( x 1) 3 a b ( a b) 3 Oppgave 3 (3 poeng)
Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
Om plotting. Knut Mørken. 31. oktober 2003
Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at
NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.
NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt
Lineære funksjoner - Elevark
Lineære funksjoner - Elevark -Navn: Oppgave 1 a) Hva koster det å reise for to personer? b) Hvor mange kan reise for 160 kr? c) Hva koster en billett? d) Vi kaller antall personer for x, og utgiftene for
MATLAB for MAT 1110. Klara Hveberg og Tom Lindstrøm
MATLAB for MAT 1110 av Klara Hveberg og Tom Lindstrøm Dette lille notatet gir en kort innføring i MATLAB med tanke på behovene i MAT 1110. Hensikten er å gi deg litt starthjelp slik at du kommer i gang
Oppgaver til seksjon med fasit
Oppgaver til seksjon.6-. med fasit Oppgaver til seksjon.6. Skriv b som en lineærkombinasjon av a og a når a = ( ( a = og b =.. Skriv b som en lineærkombinasjon av a, a og a når a = a =, a = og b = 5. (.
Eksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
Oppgaver. Innhold. Funksjoner i praksis Vg2P
Oppgaver Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 10 Modul 3: Tredjegradsfunksjoner... 1 Modul 4: Potensfunksjoner og rotfunksjoner... 14 Modul 5: Eksponentialfunksjoner...