Lineære diffligning(ssystem)er i ECON 4140 V2017: Hva er pensum, hva er forelest, og hva er vesentlig.

Størrelse: px
Begynne med side:

Download "Lineære diffligning(ssystem)er i ECON 4140 V2017: Hva er pensum, hva er forelest, og hva er vesentlig."

Transkript

1 Lineære diffligning(ssystem)er i ECON 4140 V2017: Hva er pensum, hva er forelest, og hva er vesentlig. (If you need an English version, please notify me. Nils) Jeg har blitt gjort oppmerksom på at forelesningsplanen ikke har vært nøyaktig hva angår henvisninger til den norske MA2. Det følgende typesatt del er ment å oppklare i forhold til referansene til boka. (Om noen har en gammel MA2: en feil rettes opp.) Vedlagt er også en oversikt over hva man kan si om klassifisering av likevektspunkter for lineære og ulineære systemer. Det er kanskje ryddigst å vedta at terskelverditilfellene der man ikke kan konkludere for ulineære systemer, ikke er like vesentlige V2017. MA2 avsnittene (FMEA avsnittene delvis unntatt Eulers differensialligning) er pensum. Spesielt må man vite at hvis man har to ikke-proporsjonale løsninger av en homogen 2. ordens lineær differensialligning, så får man allmenn løsningen ved å ta lineærkombinasjoner (MA2 setning jf ; FMEA setning 6.2.1). Eulers differensialligning (MA2 avsnitt 2.5 og et underavsnitt i FMEA) er ikke pensum i seg selv. Det er gitt i oppgaver med hint, og dersom den homogene ligningen har to løsninger t q 1 og t q 2, med q 1 q 2, så er det uansett pensum å kunne ta en lineær kombinasjon av disse for allmenn løsning. Mer generelle metoder for å finne løsninger med ikke-konstante koeffisienter (M2 avsnitt 2.4) er ikke pensum, men igjen: om dere får oppgitt løsningskandidater og kan verifisere, så må dere også kunne ta lineære kombinasjoner. Konstante koeffisienter: Stabilitet av lineære 2. ordens ligninger (MA2 avsnitt 2.6, FMEA avsnitt 6.4) og systemer i R 2 (MA2 avsnitt 2.7 og 2.8, FMEA 6.6 og 6.7) er pensum. MA2 2.7 og 2.8 stod dessverre ikke på forelesningsplanen, men er forelest. Tilfeller for 2. ordens diffligninger 1 : ẍ + aẋ + bx = 0 er globalt asymptotisk stabil a > 0 & b > 0. Ustabil hvis a < 0 eller hvis b < 0. Hvis b > 0 = a: Udempede svingninger A cos(t b) + B sin(t b). Stabil, men ikke asymptotisk (noen litteratur kaller dette «neutrally stable»). Hvis b = 0 = a: Tilfellet ẍ = 0 har løsning C + Dt, ustabil. Tilfeller for systemer i R 2 : tilsvarende, men se håndskrevet vedlegg. 1 Om noen har en eldre utgave av MA2, så er det en trykkfeil om det følgende versjonen er riktig. 1

2 Siden forelesningsplanen var uklar her (men er klar på at kriteriene for ulineære systemer er med, se nedenfor): fokusér på de tilfellene der vi kan konkludere for ulineære systemer. Terskeltilfellene der vi ikke kan si noe om ulineære, kan V2017 nedprioriteres også for de linære. Spesielt om sadelpunkter: De to partikulærløsningene som konvergerer mot stadelpunktet, følger egenvektoren tilhørende den negative egenverdien. Enkelte lineære systemer i R n : Dersom vi har n lineært uavhengige egenvektorer v (1),..., v (n) med tilhørende egenverdier λ 1,..., λ n, får vi C 1 v (1) e λ1t + + C n v (n) e λnt. (I e.g. eksamen 2008 problem 1 (d) vil det forenkle, men man trenger det ikke, som Eric påpeker i løsningsforslaget.) Ulineære systemer. MA2: som på forelesningsplanen, FMEA: Ikke Theorem Faseplananalyse er pensum. Ambisjonsnivå for eksamen er å «skissere» et faseplan, altså, få ting kvalitativt til å stemme (loddrett/vannrette på tvers av nullkliner, riktige retninger...). Egenverdimetoden for å klassifisere likevektspunkter er pensum. Se vedlegg for oppdeling i tilfeller. Spesielt om sadelpunkter: De to partikulærløsningene som konvergerer mot stadelpunktet, vil i grensen gå som egenvektoren tilhørende den negative egenverdien; mer presist vil stigningstallet konvergere mot stigningstallet til egenvektoren. Ikke pensum: Lyapunov-funksjoner og Olechs setning (MA2 avsnitt 2.12 og en del av FMEA avsnitt 6.8). Det er henvist til Olechs setning i en seminaroppgave, men med beskjed om å klassifisere kun lokalt. Komplekse tall: dere klarer dere uten. Man trenger ingenting til eksamen, men i undervisningen bruker jeg begrepet «realdelen». Realdelen til et reelt tall er tallet selv. Det vi har bruk for i kurset, er når en andregradsligning ikke har reelle løsninger: om formelen gir, si, r = 7 ± 4, vil 7 være realdelen (både når «±» er pluss og når det er minus). Obs. at realdelen i dette tilfellet er stasjonærpunktet for andregradsfunksjonen. For 2x2-matrise A med egenverdier bestemt ved λ 2 λtra + deta = 0 og løsninger λ ± = tra ± ( tra 2 2 )2 deta vil realdelen enten være egenverdien selv, eller hvis ingen reelle egenverdier finnes realdelen er tra. 2 2

3

4

5

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving Oppgaver fra boken: :, 9,,, 5, 9, 5, 67 Det er oppgavene i boldface som

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning EKSAMEN I FOA94 Differensialligninger KLASSAR : 08HETK, 08HMAM, 08HMMT, 08HMPR, 08HUVT DATO : 0. desember 200 ANTALL OPPGAVER 3 ANTALL SIDER 3 VEDLEGG

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

5.5 Komplekse egenverdier

5.5 Komplekse egenverdier 5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,

Detaljer

SIF5025: Differensiallikninger og dynamiske systemer

SIF5025: Differensiallikninger og dynamiske systemer SIF505: Differensiallikninger og dnamiske sstemer Løsningsskisse til eksamen mai 003 Oppgave Bestem likevektspunktene til følgende sstem og skisser fasediagrammene (med orientering) a) Sstemet kan skrives

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et kronologisk utvalg av tidligere eksamensoppgaver innenfor temaet differenslikninger, og noen om komplekse tall, gitt ved UiO. Den første oppgaven gir

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

K Andre Ordens Differensialligninger

K Andre Ordens Differensialligninger K 6.6 - Andre Ordens Differensialligninger Innhold: H-P Ulven, 03.04.09 Terminologi Utvikling av regel for løsning av y ay by 0 (Tilfelle: y Ce r 1x De r x ) Utvikling av regel for løsning av y ay by 0

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Forelesningsplan M 117

Forelesningsplan M 117 Forelesningsplan M 117 Innledning Kan du gi et eksempel på et fenomen eller en prosess som er lineær? Har du eksempel på ikke-lineære fenomen? Hva er henholdsvis en ordinær (ODL) og en partiell differensialligning

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

Løsningsforslag, Ma-2610, 18. februar 2004

Løsningsforslag, Ma-2610, 18. februar 2004 Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ

Detaljer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

EKSAMEN. 1 Om eksamen. EMNE: MA-109 FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik

EKSAMEN. 1 Om eksamen. EMNE: MA-109 FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik EKSAMEN EMNE: MA- FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): Antall oppgaver: Antall

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato:

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato: SENSORVEILEDNING Emnekode: IRF2004 Emnenavn: Matematikk 2 Eksamensform: Skriftlig Dato: 26..8 Faglærer(e): Tore August Kro Eventuelt: Dette er revidert versjon av sensorveiledningen. Denne sensorveiledningen

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

SIE30AR Ulineær bevegelsestyring - Servoteknikk Løsningsforslag til øving 11: Passivitet

SIE30AR Ulineær bevegelsestyring - Servoteknikk Løsningsforslag til øving 11: Passivitet SIE3AR Ulineær bevegelsestyring - Servoteknikk Løsningsforslag til øving 11: Passivitet u u 1 H 1 y 1 y y H u Figure 1: To systemer i tilbakekobling 1 Fra Figur 1 kandet sees at u = u 1 + y y = y 1 = u

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, V08

LØSNINGSFORSLAG EKSAMEN MA0002, V08 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN MA000, V08 Oppgave 1 Litt av hvert. a) (10%) Løs initialverdiproblemet gitt ved differensialligningen

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 3. des. 3 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver: 6 Antall

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015 Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

UiO MAT1012 Våren Ekstraoppgavesamling

UiO MAT1012 Våren Ekstraoppgavesamling UiO MAT1012 Våren 2011 Ekstraoppgavesamling I tillegg til eksamen og prøveeksamen fra våren 2010 inneholder denne samlingen en del oppgaver som er blitt gitt til eksamen i diverse andre emner ved UiO i

Detaljer

Oppgaver til seksjon med fasit

Oppgaver til seksjon med fasit Oppgaver til seksjon.6-. med fasit Oppgaver til seksjon.6. Skriv b som en lineærkombinasjon av a og a når a = ( ( a = og b =.. Skriv b som en lineærkombinasjon av a, a og a når a = a =, a = og b = 5. (.

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Navn: Bård Skaflestad (946867) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side). UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

TMA4115 Matematikk 3 Vår 2017

TMA4115 Matematikk 3 Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4115 Matematikk Vår 2017 Obligatoriske oppgaver Lay, avsnitt 1.6 5. Bor-sulfid reagerer voldsomt med vann for å danne borsyre

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TMA4165 DIFFERENSIALLIGNINGER OG DYNAMISKE SYSTEMER

LØSNINGSFORSLAG TIL EKSAMEN I TMA4165 DIFFERENSIALLIGNINGER OG DYNAMISKE SYSTEMER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Nils A. Baas (735) 93519/20 LØSNINGSFORSLAG TIL EKSAMEN I TMA4165 DIFFERENSIALLIGNINGER

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

Kort om differensialligninger

Kort om differensialligninger Kort om differensialligninger Innføring En differensialligning er en ligning av typen () y (t) = f(t, y(t)), hvor f(t, y) er en kjent funksjon Løsningen på denne ligningen er en funksjon y(t) som passer

Detaljer

MA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1

MA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1 MA000 Brukerkurs i matematikk B Eksamen 8. mai 06 Løsningsforslag Oppgave a) Viser at B = A ved å vise at AB = BA = I. Nedenfor er matrisemultiplikasjonen AB vist (du må vise at BA gir det samme). ( )

Detaljer

Forelesning 2: Førsteordens lineære differensiallikninger

Forelesning 2: Førsteordens lineære differensiallikninger Forelesning 2: Førsteorens lineære ifferensiallikninger Tron Stølen Gustavsen 16. januar, 2009 Innhol Lesning 1 2.1. Likninger me konstante koeffisienter 1 2.2. Generelle koeffisienter 4 Referanser 5 Lesning.

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Løsningsforslag MAT102 - v Jon Eivind Vatne

Løsningsforslag MAT102 - v Jon Eivind Vatne Løsningsforslag MAT02 - v203 - Jon Eivind Vatne. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 4 2. 3 Svar: Fra den karakteristiske ligningen A λi 2 = λ 2 + 3λ + 2 = 0 får vi egenverdiene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

Forelesning, TMA4110 Torsdag 11/9

Forelesning, TMA4110 Torsdag 11/9 Forelesning, TMA4110 Torsdag 11/9 Martin Wanvik, IMF Martin.Wanvik@math.ntnu.no (K 2.8) Tvungne svingninger. Resonans. Ser på masse-fjær system påvirket av periodisk ytre kraft: my + cy + ky = F 0 cos

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur:

EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (9264) EKSAMEN I NUMERISK MATEMATIKK(TMA425) Lørdag 2. desember

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer