Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen februar 2006
|
|
- Inga Hanssen
- 7 år siden
- Visninger:
Transkript
1 Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen februar Frsteordens logikk - syntaks 1.1 Repetisjon og presiseringer Et frsteordens sprak L bestar av: 1. Logiske symboler konnektiver: ^, _,! og : hjelpesymboler: `(' og `)' og `,' kvantorer: 9 og 8 variable: V = fx 1 x 2 x 3 : : :g 2. Ikke-logiske symboler: en tellbar mengde konstantsymboler en tellbar mengde funksjonssymboler (med aritet) en tellbar mengde relasjonssymboler (med aritet) De ikke-logiske symbolene utgjr en signatur h c 1 c 2 c 3 : : : f 1 f 2 f 3 : : : konstantsy mboler f unksjonssy mboler R 1 R 2 R 3 : : : i. r elasjonssy mboler Vi sa flgende signaturer sist: enkelt sprak: h a f g P R i aritmetikk 1: h 0 s + = i aritmetikk 2: h = < i mengdelre: h \ [ = 2 i familierelasjoner:h Ola Kari mor far Mor Far Slektning i beundring: h a b Idol Liker i Hvis et frsteordens sprak L er gitt, sa far vi (denert induktivt): 1. Mengden T av termer i L: Enhver variabel og konstant er en term. Hvis f er et funksjonssymbol med aritet n og t 1 : : : t n er termer,sa er f (t 1 ::: t n ) en term. 2. Mengden F av formler i L: Hvis R er et relasjonssymbol med aritet n og t 1 : : : t n er termer,sa er R(t 1 : : : t n ) en (atomr) formel. 1
2 Hvis ' og Hvis ' er en formel og x er en variabel,sa er 8x' og 9x' formler. er formler,sa er :', (' ^ ), (' _ ) og ('! ) formler. Alle forekomster av en variabel x i ' sies a vre bundet i formlene 8x' og 9x' og innenfor skopet til den gjeldende kvantoren. I spraket for beundring ha b Idol Likeri kan vi uttrykke: 1: Alice liker Bob: Liker(a b) 2: Alice liker alle: 8xLiker(a x) 3: Alice liker alle som Bob liker: 8x(Liker(b x)! Liker(a x)) 4: Noen liker seg selv: 9xLiker(x x) 5: Bob liker alle som liker seg selv: 8x(Liker(x x)! Liker(b x)) 6: Ingen liker bade Alice og Bob: :9x(Liker(x a) ^ Liker(x b)) 8x(Liker(x a)! :Liker(x b)) 7: Noen liker ikke seg selv: 9x:Liker(x x) 8: Bob liker noen som liker Alice: 9x(Liker(b x) ^ Liker(x a)) 9: En som blir likt av alle er et idol: 8x(8yLiker(y x)! Idol(x)) 10: Et idol blir likt av alle: 8x(Idol(x)! 8y Liker(y x)) 1.2 Frie variable i termer Denisjon 1.1 (Frie variable i en term). FV(t) betegner mengden av frie variable i termen t. Denisjon 1.2 (Lukket term). En term t er lukket hvis FV(t) =, dvs. t inneholder ingen frie variable. Eksempel. I spraket ha b f i har vi: Termen f (x a) har en fri variabel x. Termen f (a b) har ingen frie variable og er en lukket term. 1.3 Rekursive denisjoner Nar mengder er denert induktivt, sa kan vi denere funksjoner over denne mengden rekursivt ved a 1. gi verdi til de \atomre" elementene (i basismengden), og 2. gi verdi til \sammensatte" elementene (fra induksjonssteget) ved a bruke verdiene som ble gitt til komponentene. Den presise, rekursive denisjonen av FV er flgende. Denisjon 1.3 (Frie variable - denert rekursivt). Gitt en term t, la mengden FV(t) av frie variable i t vre denert rekursivt ved: FV(x i ) = fx i g, for en variabel x i, og FV(c i ) =, for en konstant c i, og FV(f (t 1 : : : t n )) = FV(t 1 ) [ [ FV(t n ), for et funksjonssymbol f med aritet n. 2
3 1.4 Frie variable i formler Denisjon 1.4 (Frie variable i en formel). En variabelforekomst i en frsteordens formel er fri hvis den ikke er bundet, dvs. hvis den ikke er innenfor skopet til en kvantor. Vi skriver FV(') for mengden av frie variable i '. Eksempel (8xRxy ^ P z). x er bundet y er fri z er fri Eksempel (8xP xy! 8z P z x). x er bundet x er fri y er fri z er bundet Oppgave. Gi den presise, rekursive, denisjonen av frie variable i en formel. 1.5 Substitusjoner Denisjon 1.5 (Substitusjon for termer). La s og t vre termer og x en variabel. Da er s[t=x], det vi far ved a erstatte alle forekomster av x i s med t, denert rekursivt ved: 1. y [t=x] = t y hvis x = y ellers (nar s er en variabel y ). 2. c[t=x] = c (nar s er en konstant c). 3. f (t 1 [t=x] : : : t n [t=x]) (nar s er en funksjonsterm f (t 1 : : : t n )). Eksempel. f (x y a)[y =x]= f (x[y =x] y [y =x] a[y =x])= f (y y a) f (y y a)[b=y ]= f (y [b=y ] y [b=y ] a[b=y ])= f (b b a) Denisjon 1.6 (Substitusjon for formler). '[t=x] er denert rekursivt ved: 1. R(t 1 : : : t n )[t=x] = R(t 1 [t=x] : : : t n [t=x]) 2. : [t=x] = :( [t=x]) 3. (' 1 ' 2 )[t=x] = (' 1 [t=x] ' 2 [t=x]), hvor 2 f^ _!g 3
4 4. Qy [t=x] = Qy ( [t=x]) Qy hvis x 6= y ellers, hvor Q 2 f8 9g Eksempel. (P xy ^ 8xP xy )[a=x] = (P ay ^ 8xP xy ) (P xy ^ 8xP xy )[a=y ] = (P xa ^ 8xP xa) Vi ser at substitusjon ikke blir gjort for bundne variable. Vi har enda et tilfelle hvor vi nsker a forhindre substitusjon. Eksempel. 9xLiker(x y )[f (x)=y ] = 9xLiker(x f (x)) Her blir en variabel bundet etter substitusjon. Dette kan endre meningen til en formel pa en mate som vi ikke nsker. Denisjon 1.7. Vi sier at t er fri for x i ' hvis ingen variabel i t blir bundet som flge av a substitutere t for x i '. Eksempel. Termen f (x) er ikke fri for y i formelen 9xLiker(x y ). En mate a unnga dette pa er a omdpe bundne variable frst. F.eks. se pa 9zLiker(z y ) i stedet for 9xLiker(x y ). Fra na av antar vi at alle substitusjoner er \fri for", dvs. at ingen variable blir bundet som flge av en substitusjon. 1.6 Lukkede og apne formler Denisjon 1.8 (Lukket/apen formel). En formel ' er lukket hvis FV(') =, dvs. ' inneholder ingen frie variable. En formel er apen hvis den ikke inneholder noen kvantorer. Eksempel. 8xP xa er lukket 8xP xy er ikke lukket P xy er ikke lukket, men apen P ab er apen og lukket 4
5 2 Frsteordens logikk - semantikk 2.1 Introduksjon Hvordan skal vi tolke frsteordens formler? Hva skal 8x' og 9x' bety? Hva kan vi bruke frsteordens formler til a uttrykke? (Hva er det frsteordens formler ikke kan uttrykke?) Hva gjr en formel sann / gyldig / oppfyllbar? A gi en semantikk er a si noe om forholdet mellom sprak og virkelighet. Valuasjoner gir en semantikk for klassisk utsagnslogikk. Kripke-modeller gir en semantikk for intuisjonistisk logikk. I frsteordens logikk vil modeller gi oss en semantikk. En modell bestar intuitivt av 1. en mengde, og 2. en tolkning av alle ikke-logiske symboler slik at et konstantsymbol tolkes som et element i mengden, et funksjonssymbol tolkes som en funksjon pa mengden, og et relasjonssymbol tolkes som en relasjon pa mengden. Vi skal frst denere modeller helt presist, ogsa skal vi denere hva det vil si at en formel er sann i en modell. Husk Hvis D en mengde, sa bestar D n av alle n-tupler av elementer fra D, for n 0. D n = fhd 1 : : : d n i j d 1 : : : d n 2 Dg 2.2 Modeller La et frsteordens sprak L vre gitt. Denisjon 2.1 (Modell). En modell M for L bestar av en ikke-tom mengde D, kalt domenet til M, og en funksjon ( ) M som tolker alle ikke-logiske symboler pa flgende mate: Hvis c er et konstantsymbol, sa er c M 2 D. Hvis f er et funksjonsymbol med aritet n,sa er f M en funksjon fra D n = D D til D. n 5
6 Hvis R er et relasjonssymbol med aritet n,sa er R M en relasjon pa D n = D D. n Vi skriver jmj for domenet D til modellen M. Noen kommentarer 1. Et funksjonssymbol f med aritet 0 kan betraktes som en konstant. Da er f M en funksjon fra D 0 til D. Siden D 0 bestar av kun ett element hi - det tomme tuppelet - sa bestar f M ogsa av kun ett element hhi ei, hvor e 2 D. Vi kan derfor identisere f M med e. 2. Et relasjonssymbol R med aritet 0 kan betraktes som en utsagnsvariabel. Da er R M en delmengde av D 0. Siden D 0 bestar av kun ett element hi - det tomme tuppelet -sa ns det nyaktig to muligheter for R M. Enten sa er R M tom eller sa er hi 2 R M. Vi kan derfor tenke pa D 0 som Bool. 3. Et tuppel hei, hvor e 2 D, kan vi identisere med elementet e. Nar et relasjonssymbol R har aritet 1,sa skriver vi derfor fe 1 : : : e n g i stedet for fhe 1 i : : : he n ig. Vi antar derfor ogsa at R M D. 2.3 Hovedeksempel - et gursprak Relasjonssymbol aritet Sirkel 1 Firkant 1 Trekant 1 Stor 1 Liten 1 Mindre 2 Konstantsymboler: a b c d e f. Funksjonssymboler: ingen. Vi leser pa denne maten: Sirkel(x): \x er en sirkel" Firkant(x): \x er en rkant" Trekant(x): \x er en trekant" Stor(x): \x er stor" Liten(x): \x er liten" Mindre(x y ): \x er mindre enn y " 6
7 La oss na lage en modell for dette spraket! En tolkning av gurspraket La M vre en modell med domene D = a M = Sirkel M = b M = Firkant M = c M = Trekant M = d M = Stor M =. e M = Liten M = f g f M = Mindre M = : : : Vi foregriper begivenhetene og ser pa hvilke atomre formler som er sanne og usanne i modellen M. a b c d e f Sant Usant Sirkel(a) Firkant(c) Liten(b) Mindre(b e) Trekant(a) Stor(b) Mindre(a b) Mindre(a a) 2.4 Tolkning av termer og formler Vi sa i eksempelet over at vi hadde et konstantsymbol for hvert element i domenet, men det er ikke alltid slik. Nar vi skal tolke formler er det nyttig a ha en konstant for hvert element. Denisjon 2.2 (Utvidet sprak L(M)). La L vre et frsteordens sprak og M en modell for L. Da er L(M) det frsteordens spraket man far fra L ved a legge til nye konstantsymboler for hvert element i jmj. Hvis a er i jmj, sa skriver vi a for den nye konstanten. Hvis N er en modell for L(M), sa krever vi at a N = a. 7
8 Nar vi tolker termer og formler fra spraket L i en modell M, sa bruker vi det utvidete spraket L(M) og antar at M er en L(M)-modell. Denisjon 2.3 (Tolkning av lukkede termer). La L vre et frsteordens sprak og M en modell for L. Anta at M er en L(M)-modell. Da tolker vi en lukket term f (t 1 : : : t n ) pa flgende mate: f (t 1 : : : t n ) M = f M (t M 1 : : : tm n ): Oppgave. Dette er en rekursiv denisjon. Skriv ut hele denisjonen. Denisjon 2.4 (Tolkning av lukkede formler). La L vre et frsteordens sprak og M en modell for L. Anta a M er en L(M)-modell. Vi denerer ved rekursjon hva det vil si at en formel ' er sann i M vi skriver M j= ' nar ' er sann i M / M gjr ' sann. For atomre formler: M j= R(t 1 : : : t n ) hvis (t M : : : tm 1 n ) 2 RM. M j= :' hvis det ikke er tilfelle at M j= '. M j= ' ^ hvis M j= ' og M j=. M j= ' _ hvis M j= ' eller M j=. M j= 8x' hvis M j= '[a=x] for alle a i jmj. M j= 9x' hvis M j= '[a=x] for minst en a i jmj. Denisjon 2.5 (Oppfyllbarhet). En lukket formel ' er oppfyllbar hvis det ns en modell M som gjr ' sann. Vi sier ogsa at M oppfyller ' og at M en en modell for '. Oppfyllbar Ikke oppfyllbar 9xLiten(x) 9x(Liten(x) ^ Stor(x)) 9xP x! 8xP x P a ^ :P a 9x(Liten(x) ^ :Liten(x)) :Stor(a) ^ 8xStor(x) Denisjon 2.6 (Gyldighet). En lukket formel ' er gyldig hvis den er sann i alle modeller M, ellers sa er den falsiserbar. Gyldig Ikke gyldig (falsserbar) 8xP xa! 8z P z a (8xP x ^ 8y Qy )! 8xP x 9xLiten(x) _ 9x:Liten(x) 8xP x 9xStor(x)! 8xStor(x) 9xP x! 9x(P x ^ Qx) 8
Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen februar 2007
Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen - 19. februar 2007 1 Førsteordens logikk - syntaks 1.1 Repetisjon Et førsteordens språk L består av: 1. Logiske symboler
DetaljerINF1800 Forelesning 18
INF1800 Forelesning 18 Førsteordens logikk Roger Antonsen - 15. oktober 2008 (Sist oppdatert: 2008-10-15 23:50) Repetisjon og noen løse tråder Førsteordens språk Et førsteordens språk L består av: 1. Logiske
DetaljerFørsteordens logikk - syntaks
INF3170 Logikk Forelesning 5: Førsteordens logikk syntaks og semantikk Institutt for informatikk Universitetet i Oslo Førsteordens logikk - syntaks 23. februar 2010 (Sist oppdatert: 2010-02-09 17:42) INF3170
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 18: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 15. oktober 2008 (Sist oppdatert: 2008-10-15 23:50) Repetisjon og noen løse
DetaljerRepetisjon og noen løse tråder
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 18: FØRSTEORDENS LOGIKK Roger Antonsen Repetisjon og noen løse tråder Institutt for informatikk Universitetet i Oslo 15. oktober 2008 (Sist oppdatert: 2008-10-15
DetaljerForelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese februar 2008
Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese - 25. februar 2008 1 Innledning til førsteordens logikk 1.1 Introduksjon I utsagnslogikk kan vi analysere de logiske konnektivene,,
DetaljerDagens plan. INF3170 Logikk. Introduksjon. Forelesning 6: Førsteordens logikk syntaks og semantikk. Martin Giese. 25. februar 2008.
INF3170 Logikk Dagens plan Forelesning 6: og semantikk Martin Giese Institutt for informatikk Universitetet i Oslo 1 Innledning til førsteordens logikk 2 25. februar 2008 3 Institutt for informatikk (UiO)
DetaljerINF4170 { Logikk. Forelesning 2: Frsteordens logikk. Arild Waaler. 10. september Institutt for informatikk, Universitetet i Oslo
INF4170 { Logikk Forelesning 2: Frsteordens logikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 10. september 2013 Dagens plan 1 Innledning til frsteordens logikk 2 Frsteordens logikk -
DetaljerHvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170.
Forelesning 4: Repetisjon og førsteordens logikk Christian Mahesh Hansen - 12. februar 2007 1 Repetisjon Motivasjon Er utsagnene sanne? Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170,
DetaljerDagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon
INF3170 Logikk Dagens plan Forelesning 4: og førsteordens logikk Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 12. februar 2007 3 Institutt for informatikk (UiO) INF3170 Logikk
DetaljerINF1800 Forelesning 17
INF1800 Forelesning 17 Førsteordens logikk Roger Antonsen - 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon og kommentarer Vi skal nå kunne Utsagnslogikk: syntaks og semantikk
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 17: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon
Detaljer2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold
Forelesning 7: Frsteordens logikk { seantikk og sekventkalkyle Roger Antonsen - 6. ars 2006 1 Frsteordens logikk og seantikk 1.1 Repetisjon En odell M for et sprak L bestar av 1. en ikke-to engde jmj,
DetaljerDefinisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.
Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar
DetaljerForelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006
Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige
DetaljerINF3170 Forelesning 4
INF3170 Forelesning 4 Sunnhet og kompletthet - 16. februar 2010 (Sist oppdatert: 2010-02-09 17:43) Dagens plan Innhold Sunnhet 1 Introduksjon.......................................... 1 Bevaring av falsifiserbarhet..................................
DetaljerFOL: syntaks og representasjon. 15. og 16. forelesning
FOL: syntaks og representasjon 15. og 16. forelesning Førsteordens logikk Førsteordens logikk: et formelt system som man bruker til å representere og studere argumenter. Som utsagnslogikk, men mer uttrykkskraftig,
DetaljerForelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007
Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 1 Repetisjon: Førsteordens syntaks og semantikk Et førsteordens språk L består av: 1. Logiske symboler
DetaljerPredikatlogikk Syntaks Semantikk INF3170 / INF4171. Predikatlogikk: Syntaks og semantikk. Andreas Nakkerud. 1. september 2015
INF3170 / INF4171 Predikatlogikk: Syntaks og semantikk Andreas Nakkerud 1. september 2015 Predikatlogikk Utsagnslogikk: p 0, p 1, p 1 p 6, p 2 p 1 Predikatlogikk: (( x)p 1 (x)), (( x)(( y)p 4 (x, y)))
DetaljerRepetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L:
INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Repetisjon: Førsteordens syntaks og semantikk
DetaljerINF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo
INF4170 { Logikk Forelesning 1: Utsagnslogikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 20. august 2013 Dagens plan 1 Utsagnslogikk 2 Sekventkalkyle 3 Sunnhet 4 Kompletthet Institutt
DetaljerRepetisjonsforelesning
Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk
DetaljerForelesning januar 2006 Induktive denisjoner og utsagnslogikk
Forelesning 2-30. januar 2006 Induktive denisjoner og utsagnslogikk 1 Praktisk informasjon INF5170 { Logikkseminar Tirsdager 14:15-16:00 pa Buerommet (3. etg, I). Flg med pa forskning og aktuelle temaer
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)
DetaljerBeregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden.
Forelesning 15: Oppgaveløsing Christian Mahesh Hansen - 21. mai 2007 1 Generelle eksamenstips 1.1 Disponér tiden! Sett opp et grovt tidsbudsjett. En tre timers eksamen har 3 * 60 = 180 minutter. Oppgavene
DetaljerForelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen
Forelesning 1-23. januar 2006 Introduksjon, mengdelre og utsagnslogikk 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: { Christian Mahesh Hansen (chrisha@ifi.uio.no) { Roger Antonsen (rantonse@ifi.uio.no)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)
DetaljerINF3170 Logikk. Ukeoppgaver oppgavesett 7
INF3170 Logikk Ukeoppgaver oppgavesett 7 Unifisering I forelesning 10 så vi på en unifiseringsalgoritme som finner en mest generell unifikator for to termer. I automatisk bevissøk har vi imidlertid bruk
DetaljerINF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo
INF3170 { Logikk Forelesning 5: Automatisk bevissk Arild Waaler Institutt for informatikk, Universitetet i Oslo 29. oktober 2013 Dagens plan 1 Automatisk bevissk 2 Automatisk bevissk II 3 Kompletthet av
DetaljerMerk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!
Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:
DetaljerDet utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet
Forelesning 4-13. februar 2006 Intuisjonistisk logikk 1 Intuisjonistisk logikk 1.1 Innledning Til na i kurset Det utsagnslogiske spraket: konnektiver og formler Bevissystem: sekventkalkylen LK for klassisk
DetaljerKompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen
INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. desember 2015 Tid for eksamen: 08.15 12:15 Oppgave 1 Grunnleggende mengdelære
DetaljerDagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet.
INF4170 Logikk Dagens plan Forelesning 10: fri-variabel sekventkalkyle og sunnhet Martin iese 1 Institutt for informatikk, Universitetet i Oslo 14. april 2008 Institutt for informatikk (UiO) INF4170 Logikk
DetaljerINF3170 Forelesning 2
INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................
DetaljerLitt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel
INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080
Detaljer1 Utsagnslogikk (10 %)
1 Utsagnslogikk (10 %) a1) A A, C A A C A B A B (A C) B, C B B C B B, C A, C B, C A C B C A C B C B (A C) A (B C) B (A C) Utledningen lukkes ikke og vi får følgende valuasjon v som falsifiserer formelen:
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden
DetaljerDagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21.
INF3170 Logikk Dagens plan Forelesning 15: Oppgaveløsing Christian Mahesh Hansen 1 Generelle eksamenstips Institutt for informatikk, Universitetet i Oslo 2 21. mai 2007 Institutt for informatikk (UiO)
DetaljerForelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007
Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. november 2012 Tid for eksamen: 13:00 16:00 Oppgave 1 Mengdelære (15 poeng)
DetaljerDagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel
INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Praktisk informasjon Endringer
DetaljerPraktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet.
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Praktisk informasjon Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Endringer
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære
DetaljerMetode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon.
Forelesning 15: Avanserte emner Roger Antonsen - 29. mai 2006 1 Resolusjon 1.1 Overblikk John Alan Robinson, 1965. Metode for a avgjre gyldighet av formler. Populr, eektiv og enkel a implementere. En av
DetaljerINF1800 Forelesning 19
INF1800 Forelesning 19 Førsteordens logikk Roger Antonsen - 21. oktober 2008 (Sist oppdtert: 2008-10-21 20:12) Repetisjon Semntikk Hvis M er en modell og ϕ er en lukket formel, så definerte vi M = ϕ. Vi
DetaljerPrøveeksamen 2016 (med løsningsforslag)
Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann
DetaljerINF1800 Forelesning 4
INF1800 Forelesning 4 Utsagnslogikk Roger Antonsen - 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger Kursets hjemmeside blir stadig oppdatert: http://www.uio.no/studier/emner/matnat/ifi/inf1800/
DetaljerDefinisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.
Forelesning 16: Repetisjon Christian Mahesh Hansen - 4. juni 2007 1 Kompletthet 1.1 Introduksjon Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 4: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger
DetaljerSunnhet og kompletthet av sekventkalkyle for utsagnslogikk
Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk Sekventkalkyle System for å bevise sekventer fra aksiomer ved hjelp av regler Bevis er oppstilling som viser hvordan nye sekventer kan avledes
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave
Detaljerv : T, kan bare ha verdi av typen T. n =0 slyfes alltid parentesene. Typet uttrykkssprak type representerer en verdimengde. variabel, deklarert funksjon, herunder karakteriseres syntaktisk ved a angi navn
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den
DetaljerINF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo
INF3170 Logikk Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo 9. februar 2010 (Sist oppdatert: 2010-02-09 15:10) Utsagnslogikk INF3170
DetaljerHvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.
Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,
DetaljerDatabaser fra et logikkperspektiv
Databaser fra et logikkperspektiv Evgenij Thorstensen IFI, UiO Høst 2013 Evgenij Thorstensen (IFI, UiO) Databaser fra et logikkperspektiv Høst 2013 1 / 31 Outline 1 Logikk som verktøy 2 Relasjonsdatabaser
DetaljerDagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens)
INF3170 Logikk Dagens plan Forelesning 16: Repetisjon Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 4. juni 2007 3 Institutt for informatikk (UiO) INF3170 Logikk 04.06.2007
DetaljerDagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens)
INF4170 Logikk Dagens plan Forelesning 11: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 31. april 2008 Institutt
DetaljerLØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)
DetaljerForelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007
Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 1 Førsteordens sekventkalkyle 1.1 Introduksjon Vi har til nå sett sekventkalkyle for utsagnslogikk. Vi
DetaljerForelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008
Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler - 21. januar 2008 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: Martin Giese (martingi@ifi.uio.no) Arild Waaler
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 10. februar 2009 (Sist oppdatert: 2009-02-11 01:52) Kapittel 4: Logikk (predikatlogikk)
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =
DetaljerINF3170 Forelesning 11
INF3170 Forelesning 11 Intuisjonistisk logikk Roger Antonsen - 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Innhold Intuisjonistisk logikk 1 Innledning........................................... 1
DetaljerIntuisjonistisk logikk
INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Intuisjonistisk logikk 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) INF3170 Logikk
DetaljerINF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo
INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Intuisjonistisk logikk INF3170 Logikk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.
DetaljerEn repetisjon hrj høst 2009
En repetisjon hrj høst 2009 Data Maskin Data Syntaktiske objekter - endelige Mengde { } Multimengde [ ] Liste < > Symbol String = Liste av symboler Vi kan alltid finne ut om to syntaktiske objekter er
DetaljerINF3170 Logikk. Ukeoppgaver oppgavesett 6
INF3170 Logikk Ukeoppgaver oppgavesett 6 Normalformer Negasjons normalform I dette oppgavesettet skal vi se nærmere på normalformer. Formelen (P Q) kan også skrives som P Q. Formlene er ekvivalente, dvs.
DetaljerLøsningsforslag oblig. innlevering 1
Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,
DetaljerDagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.
INF3170 Logikk Dagens plan Forelesning 1: Introduksjon. og sekventkalkyle Arild Waaler Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 21. januar 2008 3 Institutt for informatikk
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 6: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk
DetaljerDagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen
Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)
DetaljerLogiske symboler. Ikke-logiske symboler. Konnektiver Kvantorer Har fast tolking
Inf 3170 Logiske symboler Konnektiver Kvantorer Har fast tolking Ikke-logiske symboler Relasjonssymboler Funksjonssymboler Ariteten er alltid gitt Tolkningen kan variere Vi får formelspråket Start med
DetaljerINF1800 Forelesning 6
INF1800 Forelesning 6 Utsagnslogikk Roger Antonsen - 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk Hvordan fange inn utsagn? Jeg spiser det hvis det er godt. Jeg spiser
DetaljerDagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk.
INF3170 Logikk Dagens plan Forelesning 9: Arild Waaler 1 Institutt for informatikk, Universitetet i Oslo 2 Konsistens 19. mars 2007 Institutt for informatikk (UiO) INF3170 Logikk 19.03.2007 2 / 28 Innledning
DetaljerFørsteordens sekventkalkyle
INF3170 Logikk Forelesning 7: Sekventkalkyle for førsteordens logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Førsteordens sekventkalkyle 16. mars 2010 (Sist oppdatert: 2010-04-06
DetaljerDagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5.
INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen 1 Institutt for informatikk, Universitetet i Oslo 2 5. mars 2007 Institutt for informatikk
DetaljerMAT1030 Forelesning 5
MAT1030 Forelesning 5 Logikk, utsagnslogikk Roger Antonsen - 27. januar 2009 (Sist oppdatert: 2009-01-28 09:12) Kapittel 4: Logikk (fortsettelse) Repetisjon Forrige gang snakket vi om utsagn og predikater,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 29. november 2013 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) Oppgave
DetaljerBevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken
Forelesning 4: Intuisjonistisk logikk Arild Waaler - 11. februar 2008 1 Intuisjonistisk logikk 1.1 Innledning Til nå i kurset Det utsagnslogiske språket: konnektiver og formler Bevissystem:LK og DPLL for
DetaljerINF3170 / INF4171. Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet. Andreas Nakkerud. 15. september 2015
INF3170 / INF4171 Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet Andreas Nakkerud 15. september 2015 Kripke-modeller Vi ser på modeller for et språk L. Definisjon En Kripke-modell er et
DetaljerKapittel 4: Logikk (predikatlogikk)
MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Logikk (predikatlogikk) 10. februar 2009 (Sist oppdatert: 2009-02-11
DetaljerSekventkalkyle for første ordens predikatlogikk uten likhet
Sekventkalkyle for første ordens predikatlogikk uten likhet Tilleggslitteratur til INF1800 Versjon 29/9 07 Vi definerer sekventer for predikatlogikk på samme måte som i utsagnslogikk. En sekvent består
DetaljerDet betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F.
Forelesning 7 Dag Normann - 4. februar 2008 Oppsummering Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel og de utsagnslogiske bindeordene,,, og. Vi har sett hvordan vi kan undersøke egenskapene
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 7: Predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo 4. februar 2008 Oppsummering Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel
DetaljerOppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel ((p q) r) Eksempel (p (q r))
Oppsummering MAT1030 Diskret matematikk Forelesning 7: Predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo 4. februar 2008 Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel
DetaljerSemantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon.
INF3170 / INF4171 Predikatlogikk: Semantikk og naturlig deduksjon Andreas Nakkerud 3. september 2015 Eksempel Gitt en similaritetstype 0, 2; 1; 2 bygger vi en struktur (modell) hvor A = {c 1, c 2, a, b},
DetaljerSekventkalkyle for utsagnslogikk
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Sekventkalkyle for utsagnslogikk Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59)
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk
DetaljerINF3170 Forelesning 10
INF3170 Forelesning 10 Fri-variabel sekventkalkyle Roger Antonsen - 20. april 2010 (Sist oppdatert: 2010-04-27 11:37) Innhold Fri-variabel sekventkalkyle 1 Introduksjon..........................................
DetaljerFortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen
INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fortsettelse 6. april 2010 (Sist oppdatert: 2010-04-06 14:24) INF3170 Logikk 6.
DetaljerINF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo
INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo 6. april 2010 (Sist oppdatert: 2010-04-06 14:23) Fortsettelse INF3170 Logikk 6.
DetaljerPlenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3).
Plenumsregning 9 Diverse ukeoppgaver Roger Antonsen - 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3). a) Ved å bruke den rekursive definisjonen av PL, vis hvordan vi skritt
DetaljerFri-variabel sekventkalkyle
INF3170 Logikk Forelesning 10: Fri-variabel sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fri-variabel sekventkalkyle 20. april 2010 (Sist oppdatert: 2010-04-27 11:38) INF3170
Detaljer