Metode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon.

Størrelse: px
Begynne med side:

Download "Metode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon."

Transkript

1 Forelesning 15: Avanserte emner Roger Antonsen mai Resolusjon 1.1 Overblikk John Alan Robinson, Metode for a avgjre gyldighet av formler. Populr, eektiv og enkel a implementere. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon. Vi begynner med a se pa resolusjon for utsagnslogikk. 1.2 Resolusjon: regel og utledninger I resolusjon har man kun en regel: resolusjonsregelen. { Den forteller hvordan utleder nye klausuler fra de man har. Utledningene i resolusjon har kun en gren. Denisjon 1.1. Resolusjonsregelen er C [ fag D [ f:ag C [ D hvor C og D er klausuler og A en utsagnsvariabel. En resolusjonsutledning fra en mengde klausuler M er en endelig sekvens av klausuler hvor hvert element kommer fra M eller fra to foregaende elementer ved anvendelse av resolusjonsregelen. Eksempel 1 La M besta av klausulene f:p g, fp; :Qg og fqg. Vi kan na anvende resolusjonsregelen og utlede fg. 1

2 f:p g fp ; :Qg fqg 1. f:p g f:qg fg 2. fp; :Qg 3. fqg 4. f:qg (fra 1 og 2) 5. fg (fra 3 og 4) Dette brukes for a vise at (P ^ (P! Q))! Q er gyldig. Denisjon 1.2. Et resolusjonsbevis for en formel F er en resolusjonsutledning fra matrisen som representerer F hvor den siste klausulen er tom. Teorem 1.1. En formel F er gyldig hvis og bare hvis det ns et resolusjonsbevis for F. Sunnhet. Anta at matrisen M representerer F. { Anta at en resolusjonsutledning for M ender med fg. { Resolusjonsregelen bevarer falsiserbarhet (av mengden av klausuler). { Den tomme klausulen er ikke falsiserbar. { Matrisen M og formelen F er ikke falsiserbar. { F er gyldig. Kompletthet. { Kan gjres direkte ved et modelleksistensargument. { Kan gjres indirekte ved oversettelse til LK. Eksempel 2 Avgjr om (P! Q) ^ (:P! R) ^ (Q _ R! S)! S er gyldig. Overfrer til DNF: (P ^ :Q) _ (:P ^ :R) _ (Q ^ :S) _ (R ^ :S) _ S Mengden av klausuler: fp; :Qg, f:p; :Rg, fq; :Sg, fr; :Sg, fsg. fp ; :Qg f:p ; :Rg fq; :Sg fr; :Sg fsg f:q; :Rg f:r; :Sg f:sg Vi konkluderer med at formelen er gyldig! fg 2

3 Eksempel 3 Merk: dette er ikke en resolusjonsutledning: f:p; :Qg fg fp; Qg Korrekt anvendelse av resolusjonsregelen gir: f:p; :Qg f:q; Qg fp; Qg (:P ^ :Q) _ (P ^ Q) er ikke gyldig. La f.eks. v (P ) = 1 og v (Q) = Resolusjon for frste-ordens logikk Denisjon 1.3. Resolusjonsreglene for frsteordens logikk er C [ fag D [ f:bg C [ fa; Bg (C [ D) (C [ fag) hvor C og D er klausuler, A og B er atomre formler og er en mest generell unikator for A og B. Krever skolemisering og overfring til klausalform. Unngar problemer som inkrementell lukking lser. Mengden av genererte klausuler eksploderer. { I teorembevisere er malet a ha eektiv subsumering, som lses ved hashing-teknikker (termindeksering). Konjunktiv normalform og oppfyllbarhet Det er vanlig a presentere resolusjon pa den duale maten: { Med utgangspunkt i konjunktiv normalform. { En klausul tolkes disjunktivt. (Klausul = disjunkson av literaler.) { En matrise tolkes konjunktivt. (Matrise = konjunksjon av klausuler.) { Resolusjonsregelen bevarer oppfyllbarhet i stedet for falsiserbarhet. { Den tomme klausulen er ikke oppfyllbar. { For a avgjre gyldigheten av en formel ', overfrer man :' til konjunktiv normalform og sjekker for oppfyllbarhet. { Resten er likt. 3

4 2 Dualiteter Oppfyllbarhet Sker etter bevis for ` En motmodell oppfyller Tablaer (vanligvis ogsa resolusjon) Konjunktiv normalform / negativ representasjon Falsiserbarhet Sker etter bevis for ` Et motmodell falsiserer Ensidig sekventkalkyle, matriser, koblingskalkyle Disjunktiv normalform / positiv representasjon Dualitet For a nne ut om ' er gyldig, sjekk om :' er oppfyllbar. Sekventkalkylen ivaretar begge aspektene! 3 Modallogikk pa en under en halvtime Modale sprak er enkle, men utrykksfulle, sprak for a snakke om relasjonelle strukturer. { Enkel syntaks og avgjrbarhet. { Uttrykkskraftig nok til a fange inn aspekter ved andreordens logikk. Modale sprak gir et internt, lokalt perspektiv pa relasjonelle strukturer. { \Vi ser grafer innenfra." Anbefaler Modal Logic av Blackburn, de Rijke og Venema (2001). Vi utvider utsagnslogikk med de modale operatorene og. Alle utsagnslogiske formler er formler. Hvis ' er en formel, sa er ' og ' formler. og er duale: ' := : :'. Modallogiske formler tolkes i Kripke-modeller, men vi stiller ingen krav til den binre relasjonen (partiell ordning, monotoni) slik vi gjorde for intuisjonistisk logikk. En enkel graf: w x y z punkt x y z w sanne utsagnsvariable P Q, R S R 4

5 En mengde punkter: fx; y ; z; wg. En binr relasjon R: xrw, xry, y Rz og w Ry. { x kan se w og y, men kan ikke se z. For hvert punkt en mengde sanne utsagnsvariable. { x P betyr at P er sann i x ' uttrykker at vi kan se et punkt hvor ' er sann. { x ' betyr at det ns et punkt x 0 slik at xrx 0 og x 0 '. ' uttrykker at ' er sann i alle punkter vi kan se. { x ' betyr at for alle punkter x 0 slik at xrx 0, sa x 0 '. w Q p siden w Ry og y Q. x Q p siden xrw og w Q. x Q Nei, siden w 6 Q. x p R siden bade w R og y R. p x S x S p siden xry og y S. x (Q! S) p siden y S. Lesninger av og 1. Ndvendighet og mulighet / metafysisk ' kan leses som `det er mulig at ''. ' blir `det er ikke mulig at ikke '' eller `det er ndvendig at ''. Vi br ha '! ': `det som er ndvendig er mulig'. Vi br ogsa ha '! ': `det er tilfellet, er mulig'. Br vi ha '! '? Hvis vi har '! ', sa kollapser modalitetene. 2. Epistemisk logikk og kunnskap ', eller K', kan leses som `vi vet at ''. Vi br ha K'! ': `hvis vi vet at ', sa ma ' vre sann' Vi br ikke ha '! K'. Br vi ha K'! KK'? (positiv introspeksjon) 3. Bevisbarhetslogikk Vi kan lese ' som `' er bevisbar'. Hvordan aksiomatisere bevisbarhet? Lob-formelen ( '! ')! ' er sentral. 5

6 4 Kompakthet Alt vi har gjort til na har vrt for endelige sekventer, dvs. objekter pa formen ` hvor og er endelige multimengder av formler. Na tillater vi at og er tellbart uendelige multimengder av formler. Alle denisjoner og resultater overfres og holder fremdeles. Et bevis er fortsatt et endelig tre hvor alle grener er lukket. Sunnhet og kompletthet er likt: ` er gyldig hvis og bare hvis ` er bevisbar. Merk: hvis og er uendelige, sa vil et bevis for sekventen ` ha endelig mange grener. Da ns det en endelig delmengde 0 av og en endelig delmengde 0 av slik at sekventen 0 ` 0 er bevisbar. Teorem 4.1 (Kompakthet). La vre en mengde frsteordens formler. er oppfyllbar, enhver endelig delmengde 0 av er oppfyllbar. Bevis. ) Trivielt ( Anta at ikke er oppfyllbar. Da er sekventen ` gyldig. Ved kompletthet er ` bevisbar. Da ns det en endelig delmengde 0 av slik at 0 ` er bevisbar. Ved sunnhet kan ikke 0 vre oppfyllbar. Da ns en endelig delmengde av som ikke er oppfyllbar. 4.1 En anvendelse av kompakthet Lemma 4.1. Hvis en mengde har vilkarlig store endelige modeller, sa har en uendelig modell. Bevis. La ' n vre en formel som uttrykker at `det ns minst n elementer'. (Vi kan anta at vi har likhet i spraket.) La = [ f' n j 1 ng. Siden har vilkarlig store endelige modeller, ma hver endelig delmengde av vre oppfyllbar. Ved kompakthet ma vre oppfyllbar. Modellen som oppfyller ma vre uendelig, siden den oppfyller ' n for alle n. Teorem 4.2. Det ns ingen mengde formler som er slik at er sann i alle og bare de endelige modellene. Med andre ord: endelighet er ikke aksiomatiserbart i frsteordens logikk. Bevis. Flger umiddelbart fra forrige Lemma. Siden har vilkarlig store endelige modeller, ma ha en uendelig modell. 5 Teorier, aksiomer og ufullstendighet 5.1 Teorier og aksiomer Denisjon 5.1 (Teori). En teori er en mengde formler T som er lukket under logisk konsekvens: hvis T j= ', sa er ' 2 T. Ved sunnhet og kompletthet sa er dette det samme som a si: hvis sekventen T ` ' er bevisbar, sa ' 2 T. Denisjon 5.2 (Aksiom). En mengde slik at T = f' j j= 'g kalles en aksiommengde for teorien T. Elementene i kalles aksiomer. 6

7 Fullstendighet og konsistens Denisjon 5.3 (Fullstendig teori). En teori T er fullstendig hvis for enhver formel ' i spraket, sa er enten ' eller :' med i T ; ellers kalles teorien ufullstendig. Denisjon 5.4 (Konsistent teori). En teori T er inkonsistent hvis bade ' og :' er med i T, for en formel '; ellers er teorien konsistent. Vi kan lage fullstendige teorier for mange omrader av matematikken. { Teorien for grafer. { Teorien for boolske algebraer. { Teorien for algebraisk lukkede kropper. { Teorien for tett ordnede mengder uten endepunkter. { Presburgeraritmetikk (bare pluss, ikke gange). Mal: a lage en fullstendig teori for all matematikk! Peanoaritmetikk Aksiomer for suksessor { 8x(Sx 6= 0) { 8x8y (Sx = Sy! x = y ) { (8x(x 6= 0! 9y (x = Sy ))) Aksiomer for addisjon { 8x(x + 0 = x) { 8x8y (x + Sy = S(x + y )) Aksiomer for multiplikasjon { 8x(x 0 = 0) { 8x8y (x Sy = (x y ) + x) Induksjonsaksiomet { '(0) ^ 8x('(x)! '(Sx))! 8x'(x), for hver formel '(x) med hyst x fri. Peanoaritmetikk er teorien vi far fra denne mengden av aksiomer. Uten induksjonsaksiomet far vi Robinsonaritmetikk. 7

8 5.2 Ufullstendighet Kurt Godel beviste i 1931 sitt bermte ufullstendighetsteorem. Teorem 5.1 (Godels frste ufullstendighetsteorem). Enhver konsistent, aksiomatisk teori som er tilstrekkelig sterk er ufullstendig. Tilstrekkelig sterk betyr at vi kan bevise grunnleggende pastander om pluss og gange. Robinsonaritmetikk er tilstrekkelig. Hvis teorien er sterk nok, sa ns det alltid en pastand ikke kan bevises i teorien. I alle tilstrekkelig sterke tallteorier vil det nnes pastander som er sanne (i standardmodellen) men som ikke er bevisbare. Avslutning Dette er siste forelesning... Resten av tiden setter vi av til diskusjon og sprsmal. Takk for flget! 8

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen INF3170 Logikk Forelesning 14: Avanserte emner Dagens plan 1 Christian Mahesh Hansen 2 Dualiteter Institutt for informatikk, Universitetet i Oslo 3 14. mai 2007 4 5 Teorier, aksiomer og ufullstendighet

Detaljer

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo INF4170 { Logikk Forelesning 1: Utsagnslogikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 20. august 2013 Dagens plan 1 Utsagnslogikk 2 Sekventkalkyle 3 Sunnhet 4 Kompletthet Institutt

Detaljer

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006 Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige

Detaljer

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet Forelesning 4-13. februar 2006 Intuisjonistisk logikk 1 Intuisjonistisk logikk 1.1 Innledning Til na i kurset Det utsagnslogiske spraket: konnektiver og formler Bevissystem: sekventkalkylen LK for klassisk

Detaljer

INF3170 Forelesning 11

INF3170 Forelesning 11 INF3170 Forelesning 11 Intuisjonistisk logikk Roger Antonsen - 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Innhold Intuisjonistisk logikk 1 Innledning........................................... 1

Detaljer

Intuisjonistisk logikk

Intuisjonistisk logikk INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Intuisjonistisk logikk 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) INF3170 Logikk

Detaljer

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Intuisjonistisk logikk INF3170 Logikk

Detaljer

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk.

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk. INF3170 Logikk Dagens plan Forelesning 9: Arild Waaler 1 Institutt for informatikk, Universitetet i Oslo 2 Konsistens 19. mars 2007 Institutt for informatikk (UiO) INF3170 Logikk 19.03.2007 2 / 28 Innledning

Detaljer

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007 Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å

Detaljer

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel.

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel. INF3170 Logikk Dagens plan Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet 1 Sekventkalkyle Christian Mahesh Hansen 2 Institutt for informatikk, Universitetet i Oslo 3 5. februar 2007

Detaljer

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken Forelesning 4: Intuisjonistisk logikk Arild Waaler - 11. februar 2008 1 Intuisjonistisk logikk 1.1 Innledning Til nå i kurset Det utsagnslogiske språket: konnektiver og formler Bevissystem:LK og DPLL for

Detaljer

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo 9. februar 2010 (Sist oppdatert: 2010-02-09 15:10) Utsagnslogikk INF3170

Detaljer

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.

Detaljer

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 1 Sekventkalkyle 1.1 Semantikk for sekventer Semantikk for sekventer Definisjon 1.1 (Gyldig

Detaljer

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen Forelesning 1-23. januar 2006 Introduksjon, mengdelre og utsagnslogikk 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: { Christian Mahesh Hansen (chrisha@ifi.uio.no) { Roger Antonsen (rantonse@ifi.uio.no)

Detaljer

1 Utsagnslogikk (10 %)

1 Utsagnslogikk (10 %) 1 Utsagnslogikk (10 %) a1) A A, C A A C A B A B (A C) B, C B B C B B, C A, C B, C A C B C A C B C B (A C) A (B C) B (A C) Utledningen lukkes ikke og vi får følgende valuasjon v som falsifiserer formelen:

Detaljer

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig. Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Sekventkalkyle for utsagnslogikk Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59)

Detaljer

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2.

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2. Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet 1 Mengdelære III 1.1 Multimengder Multimengder Mengder der antall forekomster av hvert element teller Definisjon (Multimengde). En

Detaljer

INF1800 Forelesning 15

INF1800 Forelesning 15 INF1800 Forelesning 15 Utsagnslogikk Roger Antonsen - 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk Introduksjonseksempel Hvordan finne ut om en gitt formel er en

Detaljer

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere! Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 1 Førsteordens sekventkalkyle 1.1 Introduksjon Vi har til nå sett sekventkalkyle for utsagnslogikk. Vi

Detaljer

2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold

2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold Forelesning 7: Frsteordens logikk { seantikk og sekventkalkyle Roger Antonsen - 6. ars 2006 1 Frsteordens logikk og seantikk 1.1 Repetisjon En odell M for et sprak L bestar av 1. en ikke-to engde jmj,

Detaljer

Forelesning januar 2006 Induktive denisjoner og utsagnslogikk

Forelesning januar 2006 Induktive denisjoner og utsagnslogikk Forelesning 2-30. januar 2006 Induktive denisjoner og utsagnslogikk 1 Praktisk informasjon INF5170 { Logikkseminar Tirsdager 14:15-16:00 pa Buerommet (3. etg, I). Flg med pa forskning og aktuelle temaer

Detaljer

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo 6. april 2010 (Sist oppdatert: 2010-04-06 14:23) Fortsettelse INF3170 Logikk 6.

Detaljer

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fortsettelse 6. april 2010 (Sist oppdatert: 2010-04-06 14:24) INF3170 Logikk 6.

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5. INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen 1 Institutt for informatikk, Universitetet i Oslo 2 5. mars 2007 Institutt for informatikk

Detaljer

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk

Detaljer

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar. Forelesning 16: Repetisjon Christian Mahesh Hansen - 4. juni 2007 1 Kompletthet 1.1 Introduksjon Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Detaljer

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008 Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler - 21. januar 2008 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: Martin Giese (martingi@ifi.uio.no) Arild Waaler

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28 16:50) Førsteordens sekventkalkyle

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Førsteordens sekventkalkyle Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28

Detaljer

Repetisjonsforelesning

Repetisjonsforelesning Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk

Detaljer

INF4170 Logikk. Forelesning 12: Automatisk bevissøk IV matriser og koblingskalkyle. Bjarne Holen. Institutt for informatikk, Universitetet i Oslo

INF4170 Logikk. Forelesning 12: Automatisk bevissøk IV matriser og koblingskalkyle. Bjarne Holen. Institutt for informatikk, Universitetet i Oslo INF4170 Logikk Forelesning 12: matriser og koblingskalkyle Bjarne Holen Institutt for informatikk, Universitetet i Oslo 11. mai 2010 Dagens plan 1 Institutt for informatikk (UiO) INF4170 Logikk 11.05.2010

Detaljer

INF3170 Forelesning 4

INF3170 Forelesning 4 INF3170 Forelesning 4 Sunnhet og kompletthet - 16. februar 2010 (Sist oppdatert: 2010-02-09 17:43) Dagens plan Innhold Sunnhet 1 Introduksjon.......................................... 1 Bevaring av falsifiserbarhet..................................

Detaljer

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21. INF3170 Logikk Dagens plan Forelesning 1: Introduksjon. og sekventkalkyle Arild Waaler Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 21. januar 2008 3 Institutt for informatikk

Detaljer

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170.

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170. Forelesning 4: Repetisjon og førsteordens logikk Christian Mahesh Hansen - 12. februar 2007 1 Repetisjon Motivasjon Er utsagnene sanne? Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170,

Detaljer

Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle Bjarne Holen - 7. mai 2007

Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle Bjarne Holen - 7. mai 2007 Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle Bjarne Holen - 7. mai 2007 1 Automatisk bevissøk IV 1.1 Introduksjon Bevissøk med koblinger Vi har til nå sett på forskjellige varianter

Detaljer

Dagens plan. INF3170 Logikk. Redundans i LK-utledninger. Bevissøk med koblinger. Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle

Dagens plan. INF3170 Logikk. Redundans i LK-utledninger. Bevissøk med koblinger. Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle INF3170 Logikk Dagens plan Forelesning 13: matriser og koblingskalkyle Bjarne Holen 1 Institutt for informatikk, Universitetet i Oslo 7. mai 2007 Institutt for informatikk (UiO) INF3170 Logikk 07.05.2007

Detaljer

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon INF3170 Logikk Dagens plan Forelesning 4: og førsteordens logikk Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 12. februar 2007 3 Institutt for informatikk (UiO) INF3170 Logikk

Detaljer

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden.

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden. Forelesning 15: Oppgaveløsing Christian Mahesh Hansen - 21. mai 2007 1 Generelle eksamenstips 1.1 Disponér tiden! Sett opp et grovt tidsbudsjett. En tre timers eksamen har 3 * 60 = 180 minutter. Oppgavene

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF3170 Logikk Forelesning 7: Sekventkalkyle for førsteordens logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Førsteordens sekventkalkyle 16. mars 2010 (Sist oppdatert: 2010-04-06

Detaljer

Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen februar 2006

Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen februar 2006 Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen - 27. februar 2006 1 Frsteordens logikk - syntaks 1.1 Repetisjon og presiseringer Et frsteordens sprak L bestar av: 1. Logiske symboler

Detaljer

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens)

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens) INF3170 Logikk Dagens plan Forelesning 16: Repetisjon Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 4. juni 2007 3 Institutt for informatikk (UiO) INF3170 Logikk 04.06.2007

Detaljer

Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen mai 2006

Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen mai 2006 Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen - 22. mai 2006 1 Automatisk bevissøk IV 1.1 Introduksjon Bevissøk med koblinger Vi har til nå sett på forskjellige

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 1 Repetisjon: Førsteordens syntaks og semantikk Et førsteordens språk L består av: 1. Logiske symboler

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 6: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk

Detaljer

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21.

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21. INF3170 Logikk Dagens plan Forelesning 15: Oppgaveløsing Christian Mahesh Hansen 1 Generelle eksamenstips Institutt for informatikk, Universitetet i Oslo 2 21. mai 2007 Institutt for informatikk (UiO)

Detaljer

INF1800 Forelesning 6

INF1800 Forelesning 6 INF1800 Forelesning 6 Utsagnslogikk Roger Antonsen - 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk Hvordan fange inn utsagn? Jeg spiser det hvis det er godt. Jeg spiser

Detaljer

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L:

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L: INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Repetisjon: Førsteordens syntaks og semantikk

Detaljer

INF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo

INF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo INF3170 { Logikk Forelesning 5: Automatisk bevissk Arild Waaler Institutt for informatikk, Universitetet i Oslo 29. oktober 2013 Dagens plan 1 Automatisk bevissk 2 Automatisk bevissk II 3 Kompletthet av

Detaljer

INF4170 { Logikk. Forelesning 2: Frsteordens logikk. Arild Waaler. 10. september Institutt for informatikk, Universitetet i Oslo

INF4170 { Logikk. Forelesning 2: Frsteordens logikk. Arild Waaler. 10. september Institutt for informatikk, Universitetet i Oslo INF4170 { Logikk Forelesning 2: Frsteordens logikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 10. september 2013 Dagens plan 1 Innledning til frsteordens logikk 2 Frsteordens logikk -

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet.

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet. INF4170 Logikk Dagens plan Forelesning 10: fri-variabel sekventkalkyle og sunnhet Martin iese 1 Institutt for informatikk, Universitetet i Oslo 14. april 2008 Institutt for informatikk (UiO) INF4170 Logikk

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Praktisk informasjon Endringer

Detaljer

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet.

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet. INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Praktisk informasjon Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Endringer

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 1: INTRODUKSJON Roger Antonsen Institutt for informatikk Universitetet i Oslo 19. august 2008 (Sist oppdatert: 2008-09-03 12:35) Velkommen til INF1800! Introduksjon

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

INF1800 Forelesning 17

INF1800 Forelesning 17 INF1800 Forelesning 17 Førsteordens logikk Roger Antonsen - 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon og kommentarer Vi skal nå kunne Utsagnslogikk: syntaks og semantikk

Detaljer

MAT1030 Forelesning 10

MAT1030 Forelesning 10 MAT1030 Forelesning 10 Mengdelære Roger Antonsen - 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære Oversikt Vi har nå innført de Boolske operasjonene, union snitt komplement

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 17: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon

Detaljer

Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005

Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005 Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005 Oppgave 1 La L være førsteordens språket {a,b,f,r} hvor a og b er konstantsymbol, f er et funksjonsymbol med aritet 2 og

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) MAT1030 Diskret

Detaljer

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens)

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens) INF4170 Logikk Dagens plan Forelesning 11: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 31. april 2008 Institutt

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.

Detaljer

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning. Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 30. april 2008 Oppsummering Mandag så vi på hvordan vi kan finne uttrykk og termer på infiks form,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. november 2012 Tid for eksamen: 13:00 16:00 Oppgave 1 Mengdelære (15 poeng)

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2010 (Sist oppdatert: 2010-02-17 12:41) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)

Detaljer

MAT1030 Forelesning 19

MAT1030 Forelesning 19 MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler

Detaljer

INF1800 Forelesning 4

INF1800 Forelesning 4 INF1800 Forelesning 4 Utsagnslogikk Roger Antonsen - 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger Kursets hjemmeside blir stadig oppdatert: http://www.uio.no/studier/emner/matnat/ifi/inf1800/

Detaljer

Prøveeksamen 2016 (med løsningsforslag)

Prøveeksamen 2016 (med løsningsforslag) Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave

Detaljer

Predikatlogikk Syntaks Semantikk INF3170 / INF4171. Predikatlogikk: Syntaks og semantikk. Andreas Nakkerud. 1. september 2015

Predikatlogikk Syntaks Semantikk INF3170 / INF4171. Predikatlogikk: Syntaks og semantikk. Andreas Nakkerud. 1. september 2015 INF3170 / INF4171 Predikatlogikk: Syntaks og semantikk Andreas Nakkerud 1. september 2015 Predikatlogikk Utsagnslogikk: p 0, p 1, p 1 p 6, p 2 p 1 Predikatlogikk: (( x)p 1 (x)), (( x)(( y)p 4 (x, y)))

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 4: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger

Detaljer

Førsteordens logikk - syntaks

Førsteordens logikk - syntaks INF3170 Logikk Forelesning 5: Førsteordens logikk syntaks og semantikk Institutt for informatikk Universitetet i Oslo Førsteordens logikk - syntaks 23. februar 2010 (Sist oppdatert: 2010-02-09 17:42) INF3170

Detaljer

FOL: syntaks og representasjon. 15. og 16. forelesning

FOL: syntaks og representasjon. 15. og 16. forelesning FOL: syntaks og representasjon 15. og 16. forelesning Førsteordens logikk Førsteordens logikk: et formelt system som man bruker til å representere og studere argumenter. Som utsagnslogikk, men mer uttrykkskraftig,

Detaljer

En formel er gyldig hviss den sann i alle tolkninger. Kan dette sjekkes automatisk?

En formel er gyldig hviss den sann i alle tolkninger. Kan dette sjekkes automatisk? Utsagnslogikk En formel er gyldig hviss den sann i alle tolkninger Tolkning = linje i sannhetsverditabell Altså: En formel er gyldig hviss den har T i alle linjene i sin sannhetsverditabell. Dette kan

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 10. februar 2009 (Sist oppdatert: 2009-02-11 01:52) Kapittel 4: Logikk (predikatlogikk)

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8.

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8. INF3170 / INF4171 Predikatlogikk: kompletthet, kompakthet Andreas Nakkerud 8. september 2015 Forberedelse Theorem La x være en variabel som ikke forekommer i Γ eller i φ. (i) Γ φ Γ[x/c] Γ[x/c]. (ii) Hvis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 21. januar 2009 (Sist oppdatert: 2009-01-22 13:02) Kapittel 4: Logikk (fortsettelse) MAT1030

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 6

INF3170 Logikk. Ukeoppgaver oppgavesett 6 INF3170 Logikk Ukeoppgaver oppgavesett 6 Normalformer Negasjons normalform I dette oppgavesettet skal vi se nærmere på normalformer. Formelen (P Q) kan også skrives som P Q. Formlene er ekvivalente, dvs.

Detaljer