HJEMMEOPPGAVER (utgave av ):
|
|
|
- Carl Aamodt
- 9 år siden
- Visninger:
Transkript
1 HJEMMEOPPGAVER (utgave av ): Oppgave 16 til 26 mai: La K være kroppen med 2 elementer og la A = K(t)[x]/(x 2 +t) være residuringen av polynomringen i den varibale x over den rasjonale funksjonsringen K(t) i den variable t, modulo idealet genert av polynomet x 2 + t. Finn ringe B slik at X A X A = X B. Oppgave 1 til 3. februar: Er ringen Q[s, t]/(t 2 s 3 ) et entydig faktoriseringsområde.? Oppgave 2 til 10. februar: (1) La A være en ring som er inneholdt i et entydig faktoriserings område B. Er A et entydig faktoriseringsområde? (2) La B A være en surjektiv avbildning av ringer. Anta at B er et entydig faktoriseringsområde. Er A et entydig faktoriseringsområde? (3) Er en kropp et entydig faktoriseringsområde? Oppgave 3 til 17. februar: La A være en ring og M en A-modul. Vi betegner mengden av alle A-modul homomofier u : M M med End A (M). (1) Vis at End A (M) har en naturlig struktur som en ring. (2) Vis at det finnes en naturlig ring homomorfi A End A (M). (3) Vis at ring homomorfien i punkt (2) er injektiv når M er en tro A-modul. (4) Vis at når M er en endelig generert og tro A-module så er hver kommutativ underring av End A (M) som inneholder A hel over A. (5) Er hver kommutativ underring av End A (M) som inneholder A alltid hel over A når M er en tro A-modul? Oppgave 4 til 24. februar: La Z[s, t] være polynomringen i de to uavhengige variable s og t med koeffisienter i Z. Hvilke av følgende ringer er hele over Z? (1) Z[s, t]/(2s 1, t 2 ). (2) Z[s, t]/(st 1, t 2 ). (3) Z[s, t]/(s 2 t 2 ). (4) Z[s, t]/(st 1, s 2 t 2 ). Oppgave 5 til 3 mars Finn et element u i ringen A = Z[s, t]/(s 2 t st 2 ) som er transcendent over Z og er slik at A er hel over Z[u]. Oppgave 6 til 10 mars: (1) La A være undermodulen over Q av polynomringen Q[s, t] i de uavhengige variable s, t, generert av elementene 1, og s i t j med i < j. 1
2 2 (2) La A være undermodulen over Q av polynomringen Q[s, t] i de uavhengige variable s, t, generert av elementene s i t j der 2 deler i + j. (3) La A være undermodulen over Q av polynomringen Q[s, t] i de uavhengige variable s, t, generert av elementene s i t j der 2 deler j i og j i > 0. Oppgave 7 til 17 mars: La K være en algebraisk lukket kropp, og la K n være mengden av n- tupler av elementer i K. (1) La (a 1, a 2,..., a n ) K n. Vis at {f(t 1, t 2,..., t n K[t 1, t 2,..., t n ] : f(a 1, a 2,..., a n )} = 0 er et ideal i polynomringen K[t 1, t 2,..., t n ] og finn et endelig antall generatorer for dette idealet. (2) La (b 1, b 2,..., b n ) K n og la Vis at V = {(a 1, a 2,..., a n ) K n : a 1 b 1 + a 2 b a n b n = 0}. {f(t 1, t 2,..., t n ) K[t 1, t 2,..., t n ] : f(a 1, a 2,..., a n ) = 0 for alle (a 1, a 2,..., a n ) V er et ideal, og finn et endelig antall generatorer for dette idealet. Oppgave 8 til 24 mars: Hva er (Krull) dimensjonen til ringen K[s, t, u]/(s(t u), t(u s), u(s t))? Oppgave 9 til 31 mars: La X være et topologisk rom. For hver ikke tom åpen undermengde U av X lar vi F(U) være Z. (1) For hver inklusjon U V av ikke tomme åpne mengder i X lar vi ρ V,U : F(V ) F(U) være identitetsavbildningen. Vis at F med disse avbildningene er et pre-knippe. Hvilke av betingelsene for et knippe tilfredsstiller F? (2) For hver ekte inklusjon U V av ikke tomme åpne mengder i X lar vi ρ V,U : F(V ) F(U) være nullavbildningen, og vi lar ρ U,U = id U. Vis at F med disse avbildningene er et pre-knippe. Hvilke av betingelsene for et knippe tilfredsstiller F?
3 Oppgave 10 til 7. april: La K være en kropp og la A være en endelig generert K algebra. Sett X = Hom K -alg (A, L) og la D f = {x X : f(x) 0} for hvert element f A. (1) Beskriv de elementene f i A slik at D f =. (2) Gi en algebraisk beskrivelse av de ringene A slik at D f D g for alle f og g slik at D f = D g. Oppgave 11 til 14. april: La K være en kropp og la A = K[s, t] være polynomringen i de to uavhengige variable s og t over K. Videre la B = K[t]. Sett A 1 = X B og A 2 = X A, og la origo 0 i X B og X A være K-algebra homomorfiene B L respektive A L definert ved t 0, respective (s, t) (0, 0). (1) Vis at A 1 \ 0 er en affin varietet. (2) Vis at A 1 \ 0 er isomorf med en lukket varietet i A 2. (3) Vis at A 2 \ 0 er en varietet. (4) Vis at A 2 \ 0 ikke er isomorf med A 2. Oppgave 12 til 28. april La Y være et topologisk rom og F et pre-knippe på Y. Videre, la L være en kropp og la F L være et underknippet av knippet av alle funksjoner på Y, det vil si, for alle åpne V i Y vil F L (V ) bestå av funksjoner V L og for hver inklusjon V V av åpne mengder i Y er restriksjonen ρ V,V : F L (V ) F L (V ) gitt av ρ V,V (s ) = s V. La X være en undermengde av Y. Definer F X (U) for alle åpne undermendger U av X ved F X (U) = {(s x ) x U x U F x : for alle x U finnes en åpen undermengde V x i Y og t x F(V x ) slik at x V x, og slik at ρ Vx,y(t x ) = s y for alle y V x U}. Videre definerer vi (F L X)(U) for alle åpne U i X ved (F L X)(U) = {s F L (U) : for alle x U finnes en åpen V x i Y og t x F(V x ) slik at s(y) = t x (y) for alle y U V x }. (1) Vis at F X er et knippe på X, og bestem (F X ) x for hvert punkt x X. (2) Vis at F L X er et knippe på X, og bestem (F L X) x for hver punkt x X. (3) Vis at for hver åpen V i Y finnes det naturlige avbildninger F(V ) F X (V X) 3 og F L (V ) (F L X)(V X),
4 4 og vis at de tilsvarende avbildningene og F x (F X ) x (F L ) x (F L X) x er surjektive for alle x V X. (4) La F = F L. Vis at avbildningene i del (3) induserer en avbildning F X (V X) (F X)(V X) og at disse avbildningene, for alle åpne V i Y, definerer en avbildning av knipper F X F X. (5) La Y = X A være en affin varietet og la F = O Y. Anta at X er lukket i Y og at L er algebraisk lukket. Beskriv kjernen til avildningen fra (4), for hvert element f A. (O Y ) X (D f ) (O Y X)(D f ) Oppgave 13 til 5 mai La K være en kropp og la A være undermengden av produktet i=1 K = K N av K med seg selv N ganger, som består av elementene (f 1, f 2,... ) der f n = f n+1 = for noe n, som kan variere med elementet. (1) Vis at A er en K-algebra under avbildningen K A som sender f til (f, f,... ). (2) Beskriv alle punktene i X A. (3) Finn de irredusible komponentene til X A. Oppgave 14 til 12 mai: La A n+1 være det affine n + 1-dimensjonale rommet definert over en kropp K med punkter i en utvidelse L. Vi definerer en ekvivalensrelasjon på punktene i A n+1 \ {0} ved (f 0, f 1,..., f n ) (g 0, g 1,..., g n ) når det finnes et element h L slik at f i = hg i for alle i. La P n være rommet som består av ekvivalensklassene. Vi får en residyavbildning ϕ : A n+1 \ {0} P n. Gi P n topologien slik at V er åpen i P n hvis og bare hvis ϕ 1 (V ) is åpen in A n+1 \ {0}. (1) Vis at vi har en kontinuerlig avbildning av topologiske rom ϕ i : A n P n for i = 0, 1,..., n gitt av ϕ i (f 1, f 2,..., f n ) = (f 1,..., f i 1, 1, f i,..., f n ) som er en homeomorfi på sitt bilde U i. (2) Vis at du kan gi P n en entydig struktur som varietet slik at morfismen ϕ i iduserer en isomorfi mellom varieten A n og varietetene indusert av P n på U i.
5 5 (3) Vis at med denne strukturen som varietet vil avbildningen ϕ være en morfi av varieteter. (4) Er morfismen ϕ affin? (5) La X = V(t 0 t 1 t 2 t 3 ) \ {0} være undervarieteten av A 4 \ {0} av punkter (f 0, f 1, f 2, f 3 ) slik at f 0 f 1 = f 2 f 3. Er den induserte morfismen ϕ X : X P 3 endelig? Oppgave 15 til 19 mai: La A være en algebra over en vilkårlig kropp K som er et integritetsområde. (1) La I være et ideal i polynomringen K[t]. Vis at det finnes en kanonisk isomorfi av K-algebraer K[t]/I K K[t]/I K[x, y]/j til restklasseringen av polynomringen K[, x, y] i to variable modulo idealet J generert av alle elementene f(x) og f(y) med f(t) I. (2) Er A K A et integritetsområde? (3) Er A K A redusert? Gi bevis eller moteksempler.
Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:
HJEMMEOPPGAVER utgave av 8-12-2002): Oppgave 15 til 16 desember: La H være mengden av alle matriser på formen A = a 1 a 12 a 13 a 1n 0 a 2 0 0 0 0 a 3 0 0 0 a n der a 1 a 2 a n 0 Videre la SH være matrisene
Grublegruppe 19. sept. 2011: Algebra I
Grublegruppe 19. sept. 2011: Algebra I Ivar Staurseth [email protected] Innledning, definisjoner Vi har så langt jobbet med mengder, X, hvor vi har hatt et avstandsbegrep og hvor vi har vært i stand
For æresdoktoratet i Bergen 28 august 2008
ITERERTE LINEÆRE REKURSJONER OG SCHUBERT REGNING For æresdoktoratet i Bergen 28 august 2008 1. Adjunksjon av røtter 1.1 Notasjon. La A være en ring. For en A-algebra B betrakter vi Hom A (B, A) som en
Oppgaver i kommutativ algebra
Oppgaver i kommutativ algebra Fredrik Meyer 1 Moduler Oppgave (1). Vis at om m, n er koprimære, så er (Z/mZ) Z (Z/nZ) = 0. Proof. Siden m og n er koprimære, finnes det a, b Z slik at an + bm = 1. La x
MAUMAT644 ALGEBRA vår 2016 Andre samling Runar Ile
MAUMAT644 ALGEBRA vår 2016 Andre samling Runar Ile 1 Ringer og ringhomomorfier 1.1 Hva er en ring? Avsnitt 18: Ringer og kropper Stoff: Ring, direkte produkt av ringer, ringhomomorfi og ringisomorfi, kjernen
OPPGAVER FOR FORUM
OPPGAVER FOR FORUM 2007-2008 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk
Notat i MA2201. Vegard Hagen. 27. mai 2012. La S være en mengde og la f, g, h : S S. Da er
Notat i MA2201 Vegard Hagen 27. mai 2012 Del I - grupper og undergrupper Seksjon 2 - Binære Operasjoner En binær operasjon på en mengde S er en funksjonsavbildning S S S. (a, b) S S betegner vi elementet
OPPGAVER FOR FORUM
OPPGAVER FOR FORUM 2006-2007 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk
MAT Grublegruppen Notat 10
MAT1100 - Grublegruppen Notat 10 Jørgen O. Lye Ringer Vi fortsetter i et lynkurs i algebraiske dyr. Først ut er ringer. En ring A (også kalt R) er en abelsk gruppe med addisjon + som operasjon. I tillegg
Notat med oppgaver for MAT1140
Notat med oppgaver for MAT1140 1 Injeksjon, surjeksjon Oppgave 1.1. La f : A B være en avbildning. Vis at da er f injektiv hvis og bare hvis følgende holder: for hver mengde C og for hver g, h : C A hvis
TOPOLOGISK K-TEORI OG BOTT PERIODISITET. John Rognes. 8. mai 2003
TOPOLOGISK K-TEORI OG BOTT PERIODISITET John Rognes 8. mai 2003 0. Ikke-kommutative rom og bunter Ved Gelfand Naimark korrespondansen svarer det et kompakt Hausdorff rom X til enhver kommutativ C -algebra
Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner
Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 2 Faglig kontakt under eksamen: Dagfinn F. Vatne 901 38 621 EKSAMEN I ALGEBRA OG TALLTEORI (TMA4150) Bokmål Tillatte
Et noget ukomplett oppslagsverk for TMA4150 Algebra og tallteori. Ruben Spaans
Et noget ukomplett oppslagsverk for TMA4150 Algebra og tallteori Ruben Spaans August 19, 2007 2 Part I Leksikon 3 Chapter 1 Alfabetisk oppslagsverk, for alle, kvantifikator. Brukes i forbindelse med utsagn,
UNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT220/MAUMAT44 - Algebra Fredag. juni 204, kl. 09-4 Tillatte hjelpemidler: Kalkulator i samsvar med fakultetets
Eliminasjon av ubetsemthet
1. Del Eliminasjon av ubetsemthet Warning: En svært midlertidig versjon som er ikke er ferdig. Den er rotete og sikkert full av feil. Forbedring følger etterhvert! versjon 0.3 last update: 10/21/15 2:48:38
(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
Utvidet løsningsforslag til Eksamen vår 2010
Utvidet løsningsforslag til Eksamen vår 2010 Morten Brun og Runar Ile 1 Dette er et utvidet løsningsforslag hvor det er gitt alternativer løsninger på flere av punktene og noen tips og kommentarer. På
Oblig 1 - MAT2400. Fredrik Meyer
Oblig 1 - MAT2400 Fredrik Meyer 1 Oppgave 1 Påstand 1 a). Z 5 har fire generatorer og AutZ 5 ) Z 4 Bevis. Hvert ikke-null-element i Z 5 genererer en undergruppe. Siden 5 er et primtall, må denne undergruppen
Cartier-divisorer. Cartier-divisorer. 1. Del
1. Del Cartier-divisorer Cartier-divisorer Warning: En svært midlertidig versjon som er ikke er ferdig. Den er rotete og sikkert full av feil. Forbedring følger etterhvert! versjon 0.2 last update: 10/8/15
MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile
MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile 1 Kroppsutvidelser og geometriske konstruksjoner 1.1 Hva har kroppsutvidelser med geometriproblemer å gjøre? Avsnitt 29: Kroppsutvidelser Stoff: Utvidelseskropper
TOPOLOGI. Dan Laksov
Forum för matematiklärare TOPOLOGI Dan Laksov Institutionen för Matematik, 2009 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Topologi Dan Laksov Notater for Forum för Matematiklärare. Høst
MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile
MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for
Oppgaver MAT2500 høst 2011
Oppgaver MAT2500 høst 2011 31. oktober 2011 Oppgaver avsnitt 1 Oppgave 1. Bruk cosinussetningen til å se at definisjonen av vinkel i planet blir riktig. Oppgave 2. Vis at d(x, y) = 0 hvis og bare hvis
4-torsjonspunkter på elliptiske romkurver
4-torsjonspunkter på elliptiske romkurver Astri Strand Lindbæck Masteroppgave, våren 2015 Innledning I denne oppgaven ønsker vi å undersøke punkter på kurver der det tangerende hyperplanet snitter kurven
Matematisk studentkollokvium. En liten smakebit av Algebraisk geometri og Rasjonale cuspidale plane kurver. Torgunn Karoline Moe. 12.
Matematisk studentkollokvium 12.mars 2010 ebit av geometri og Rasjonale cuspidale plane kurver Torgunn Karoline Moe CMA / Matematisk institutt Universitetet i Oslo De mest spennende objektene i verden
Algebraiske strukturer
MAT1140, H-16 Algebraiske strukturer Vi kan legge samme og multiplisere tall, funksjoner og matriser, og vi kan bruke snitt og union til å danne nye mengder. Mange av disse operasjonene følger de samme
Eksamen i MNFMA205/SIF5021, 19. mai 1999-Løsningsforslag a b Oppgave 2. (a) Vi skal vise at H = 0 a b under matrisemultiplikasjon. Vi har at det.
Eksamen i MNFMA205/SIF5021 19. mai 1999-Løsningsforslag { } Oppgave 2. a Vi skal vise at H 0 a C er en gruppe under matrisemultiplikasjon. Vi har at det aā + a 2 + 2 > 0 da enten a 0 eller 0. Dette fører
En rekke av definisjoner i algebra
En rekke av definisjoner i algebra Martin Strand, [email protected] 11. november 2010 Definisjonene som er gitt her, kommer i MA2201 Algebra og MA3201 Ringer og moduler. Forhåpentligvis blir det
9 Lineærtransformasjoner TMA4110 høsten 2018
9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har:
Notat 4 for MAT1140 4 Mer om mengder 4.1 Familier av mengder Union og snitt. Aksiom 4.1. Dersom A er en mengde bestående av mengder, kan de sistnevnte føyes sammen til en stor mengde, kalt unionen til
a b c d e f g h i j k l m n o p q a b c d e f g h i j k l m n o p q A B C D E F G H I J K L M N O P Q
Forkunnskaper MAT4250 Høst 2013 Forkunnskaper Idetteavsnittetskalvirasktrepetereenkelteavdegrunnleggenderesultatenefra kurset i kommutativ algebra. De ringene som opptrer i algebraisk tallteori er spesielle
DISKRET MATEMATIKK FINNES IKKE. Dan Laksov KTH, Stockholm
DISKRET MATEMATIKK FINNES IKKE Dan Laksov KTH, Stockholm matematikk/thorup/dlbook/april 11, 2005 DISKRET MATEMATIKK FINNES IKKE Diskret matematikk finnes ikke Dan Laksov Notater for Forum för Matematiklärare.
Eksamensoppgave i TMA4150 Algebra
Institutt for matematiske fag Eksamensoppgave i TMA4150 Algebra Faglig kontakt under eksamen: Torkil Utvik Stai Tlf: 47638459 Eksamensdato: 29. mai 2018 Eksamenstid (fra til): 15:00 19:00 Hjelpemiddelkode/Tillatte
TOPOLOGISKE MODULÆRE FORMER. John Rognes 20.03.01
TOPOLOGISKE MODULÆRE FORMER John Rognes 20.03.01 Gruppoider Grafer, små kategorier og gruppoider. En graf, eller en liten pre-kategori, består av en mengde objekter O, en mengde morfismer M og to funksjoner
INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til
Direkte produkter. (a, b)(a 0,b 0 )=(ab, a 0 b 0 ).
Direkte produkter Vi kjenner det kartesiske produktet av to mengder Y.Detbeståravallepar(x, y) av elementer x 2 og y 2 Y.OrdetkartesiskerdannetavegennavnetRenéDécartes, en fransk filosof og matematiker
INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den
Lineærtransformasjoner
Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
Forslag til løsninger, TMA4150 Algebra, 29. mai 2018 Side 1 av 5
Forslag til løsninger, TMA4150 Algebra, 29. mai 2018 Side 1 av 5 Oppgave 1 isomorfi, nemlig 24 = 2 3 3, så det finnes tre abelske grupper av orden 24 opp til Z 2 Z 2 Z 2 Z 3 ; Z 2 Z 4 Z 3 ; Z 8 Z 3. O
MAT1140 Strukturer og argumenter
12. november 2018 MAT1140 Strukturer og argumenter Innleveringsfrist Obligatorisk oppgave 2 av 2 Torsdag 8. november 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om
Zorns lemma og utvalgsaksiomet
MAT1140, H-16 Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma bygger på det
Kommentarer til Eksamen IM005 - V02
Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple
MA3002 Generell topologi
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Richard Williamson, (735) 90154 MA3002 Generell topologi Lørdag 1. juni 2013 Tid:
En studie av Letterplace- og Co-letterplace-idealer over et poset P, når
En studie av Letterplace- og Co-letterplace-idealer over et poset P, når P = 2, 3 Nils Petter Storset November 20, 2017 1 2 Innhold 1 Monomiale idealer 7 1.1 Simplisielle komplekser........................
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
MA2201/TMA4150 Vår 2018
MA2201/TMA4150 Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Seksjon 14 34 La G = n < og la H G være eneste undergruppe av G av orden m.
Notat om Peanos aksiomer for MAT1140
Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi
Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200
Holomorfe symplektiske avbildninger, former og mangfoldigheter. Darboux teorem.
Holomorfe symplektiske avbildninger, former og mangfoldigheter. Darboux teorem. av Knut Petersen-Øverleir MASTEROPPGAVE for graden Master i matematikk Det matematisk- naturvitenskapelige fakultet Universitetet
MAT1030 Forelesning 23
MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter
Noen løsningsforslag/fasitsvar
Kapittel 8 Noen løsningsforslag/fasitsvar Etter ønske fra kursdeltagerne suppleres heftet med fasit for noen av oppgavene. Der det er aktuelt, gir vi også mer utfyllende forslag til hvordan oppgaven kan
UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april
Normal oppdeling og produkt av endelige simplisielle mengder
Normal oppdeling og produkt av endelige simplisielle mengder Rune Vegard S. Fjellbo Masteroppgave for graden Master i matematikk Det matematisk-naturvitenskapelige fakultet, februar 2012 Forord Våren
Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier
A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
Lineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
Traseringen til 2-dimesnsjonale representasjoner av kvosienter av k x, y
Traseringen til 2-dimesnsjonale representasjoner av kvosienter av k x, y av ASMAA QURESHI THESIS for the degree of MASTER OF EDUCATIONAL SCIENCE (Master i realfagsutdsnning Det matematisk- naturvitenskapelige
(ii) g = (f B)^{-1} \: V \to B \subset R^m er deriverbar med Dg(f(u)) = (Df(u))^{-1} \: R^m \to R^m for alle u i B.
MAT1300 Analyse I 5. mai 2009 13.3. Det inverse funksjonsteoremet Vi vil bruke kontraksjonsprinsippet for å bevise følgende teorem: Teorem 13.13 (Det inverse funksjonsteoremet): La U \subset R^m være åpen,
Dette er altså et slags produkt av undermengder. Man sjekker lett at dette produktet har en assosiativitetsegenskap 1,nemlig:
Kvotientgrupper En helt sentral konstruksjon i gruppeteorien er dannelsen av kvotienten av en gruppe G med en normal undergruppe. I et spesialtilfelle har vi allerede gjort denne konstruksjonen, nemlig
Emnerapport for MAUMAT vår og 2015 vår av Runar Ile 11/ Navn på emneansvarlig: Runar Ile (begge årene) Hvilke styringsorgan har
Emnerapport for MAUMAT644 2014 vår og 2015 vår av Runar Ile 11/9 2015 Navn på emneansvarlig: Runar Ile (begge årene) Hvilke styringsorgan har behandlet evalueringen/når: Referanse til eventuelle saksforelegg
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
Forord. Denne oppgaven markerer slutten på min tid som student ved Lektorutdanningen i realfag
Sammendrag I denne oppgaven studerer vi Cartanmatriser, additive og subadditive funksjoner og translasjonsquivre. Spesielt vil vi se hvordan additive og subadditive funksjoner er definert både for Cartanmatriser
Representasjoner av den Modulære Gruppa
Representasjoner av den Modulære Gruppa av Håkon Hobæk KORT MASTEROPPGAVE for graden Master i Matematikk (Master of Science) Det matematisk- naturvitenskapelige fakultet Universitetet i Oslo Mai 2009 Faculty
Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.
Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.
Oppgaver MAT2500. Fredrik Meyer. 29. september 2014
Oppgaver MAT2500 Fredrik Meyer 29. september 2014 Oppgave 1. La K være et tredimensjonalt konvekst polyeder. La K være mengden av hjørner, K mengden av kanter, og F K mengden av sideflater. To 3-dimensjonale
12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.
Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere
Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF10705 Dato: 4. januar 2019 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide Kalkulator
MA3301 Beregnbarhets- og kompleksitetsteori Høsten
MA3301 Beregnbarhets- og kompleksitetsteori Høsten 2012 1 Notat 2 Om den kanoniske automaten til et språk og minimalisering. Vi vil si at en automat M = Q, Σ, q 0, A, δ er redusert enhver tilstand q Q
UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =
Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon
Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og
Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 3.00 Faglærer: Christian F Heide Kalkulator
Eksamen i Geometrisk Modellering
Eksamen i Geometrisk Modellering STE6038 Sivilingeniørutdanningen ved Høgskolen i Narvik, Produktutformingsteknologi (1. PUT), 9. august 1995 Til denne eksamenen er alle skrevne hjelpemidler samt alle
Gröbnerbaser og kryptosystemet HFE
Gröbnerbaser og kryptosystemet HFE Jon Inge Kolden Master i fysikk og matematikk Oppgaven levert: Juni 2009 Hovedveileder: Aslak Bakke Buan, MATH Biveileder(e): Petter Andreas Bergh, MATH Norges teknisk-naturvitenskapelige
Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 9. 3. Faglærer: Christian F Heide Kalkulator er ikke
Løsningsforslag øving 7
Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også
Permutasjoner og symmetriske grupper
4. Del Permutasjoner og symmetriske grupper Verbet permutere kommer av det latinske verbet permutare og betyr å bytte om, og ombyttinger,elleraltsåpermutasjoner,ernoevikjennerfradagliglivet.imatematikker
Repetisjonsforelesning - INF1080
Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en
