4. D. v = ds=dt = 6:0 t + 2:0 ) v = 14 m/s ved t = 2:0 s ) P = F v = 140 W ved t = 2:0 s.
|
|
- Filip Torfinn Gjerde
- 5 år siden
- Visninger:
Transkript
1 TFY410 Fysikk Eksamen 16. desember 017 Lsningsforslag 1. A. I vakuum er det ingen luftmotstand, og eneste kraft pa W og B er tyngdekraften. Dermed null snordrag. Snordrag forskjellig fra null ville ha gitt strre akselerasjon for W enn for B.. D. Skyvkraften F = 75 N er strre enn maksimal statisk friksjonskraft s mg, slik at kassen akselereres, med a = (F k mg)=m = F=m k g = 5:5 3:4 = :1 m/s. 3. D. Klossen i ro: P F = 0 langs planet, som gir f = mg sin. 4. D. v = ds=dt = 6:0 t + :0 ) v = 14 m/s ved t = :0 s ) P = F v = 140 W ved t = :0 s. 5. E. Nar kulene henger sammen, er dette et fullstendig uelastisk stt, og det vil tapes mekanisk energi, dvs K er ikke bevart. I kollisjonen virker det ingen ytre (horisontale) krefter pa de to kulene. Dermed er p bevart. I kollisjonen virker det heller ikke noe ytre dreiemoment (mhp snorenes festepunkt i taket) pa de to kulene. Dermed er ogsa L bevart. 6. D. Energibevaring: K B = mv B = = U A U B = 3mg`=4 ) v B =` = 3g= ) S B = mg + mv B =` = 5mg=. 7. B. as = v v 1 = (v 1 ) v 1 = 3v 1. Videre er as = v 3 v = v 3 4v 1. Kombinerer vi disse har vi v 3 = 7v 1, dvs v 3 = p 7v C. Uten friksjon er det kun snakk om translasjon. En ytre kraft Mg virker na pa den totale massen M, slik at a = g=. 9. D. Med ren rulling er a = R. Vinkelakselerasjonen for sylinderen kommer fra friksjonskraften f som ma virke mot venstre. N (translasjon) for systemet kloss+sylinder gir mens N for rotasjon for sylinderen gir Uttrykket for f innsatt i N for translasjon gir Mg Mg f = Ma; (1) = I 0 ) fr = 1 a MR R ) f = 1 Ma: () 1 Ma = Ma ) 5 Ma = Mg ) a = 5 g: 10. E. Sylinderen vil gli (slure) bortover med delvis rulling. Friksjonen blir kinetisk, med friksjonskoesient = 0:100. Friksjonskraften virker mot venstre og er lik f = 0:100 N = 0:100 Mg. N for translasjon gir na Mg f = Ma ) Mg 0:100 Mg = Ma ) a = 9 0 g: 11. C. Da ingen ytre krefter virker, er dreieimpulsen L konstant. Studenten gjr et indre arbeid ved a trekke bkene inntil kroppen, slik at den kinetiske energien ker. Dette kan ogsa beregnes: Dreieimpuls L = I 0! konstant mens I 0 avtar og! ker. K = 1I 0! = 1 L! ma da ke. 1. C. Punktet A sin translasjonhastighet er v t = v mot venstre. A's hastighet pga rotasjonen er v r =!R = v t = v med retning rett oppover. Vektorsummen blir p v med retning 45 oppover mot venstre.
2 13. C. Treghetsmoment om akse gjennom sentrum: I 0 = 1 1 ml (f.eks fra formelark). Akse 1 L fra den 3 ene enden = 1L 1 L = 1 L fra sentrum. Steiners sats gir treghetsmoment om denne aksen: I = I 0 + m 6 L = m L = m 4 36 L = m 1 9 L : 14. D. Translasjonsfarten v =!R er gitt ved energibevarelse: Mgh = 1 Mv + 1 I 0! = 1 Mv 1 + I 0 = lik for alle: MR En sylinder har strre treghetsmoment enn massive baller, 1 MR vs 5 MR. Da blir v ved bunnen minst for sylinderen og lik for de to ballene. (Ogsa E ble godtatt som riktig svar, da startposisjon og starthastighet til de ulike objektene strengt tatt ikke var spesisert.) 15. C. For harmonisk svingning er a =! x, slik at her er vinkelhastigheten! = 4:0 s 1. Da er perioden T = =! = 1:57 s. 16. C. dx=dt = 0:040 m 30s 1 sin 30s 1 t + =6 og maksimal hastighet er = j 0:040 m 30s 1 j = 1: m=s. 17. C. Tyngden Mg av legemet fordeles med halvparten pa hver av de to snorene i overkant av nedre trinse, dvs 1 Mg. Snorkraften i denne hyre snora ma vre lik over vre trinse og over til venstre snor der F virker. Ved likevekt er derfor F = 1Mg. 18. E. La L vre bjelkens lengde. Vertikalkomponenten F y nnes enkelt ved dreiemomentbalanse om ytterpunktet pa bjelken, der kun denne kraften og bjelkens tyngde G B har dreiemoment: F y L G B L= = 0, som gir F y = G B = = 50:0 N. 19. B. Dette er med god tilnrmelse en matematisk pendel med lengde L = 9 m, og med egenfrekvens (vinkelfrekvens)! 0 = p g=l. Du dytter mest eektivt pa resonans, med! =! 0, dvs med periode T = p L=g ' 6 sekunder. 0. D. Dette er en fysisk pendel med treghetsmoment I = ML =3 mhp akslingen i enden av metallstanga. Den svinger med vinkelfrekvens! 0 = p Mgd=I, der d = L= er avstanden fra akslingen til stangas massesenter. Dermed:! 0 = MgL= ML =3 = 3g L ) L = 3g! 0 = 3gT 0 = 0:70 m: 8 1. D. Minst kinetisk energi og hastighet der potensiell energi er strst, dvs pa toppen av banen. Total kinetisk energi er K = 1 Mv + 1 I 0! = (1 + c) 1 Mv ; med c = =5 for kompakt kule, og der vi har brukt rullebetingelsen! = v=r. Med andre ord, K = 7Mv =10. Energibevarelse gir na MgA = 7 10 Mv 0. B. Helningsvinkelen er gitt ved som er maksimal i (f eks) x = 0, 7 1= 10 Mv min ) v min = v 0 10gA=7 = 0:54 m=s: tan = dy=dx = (A=) cos(x=); max = arctan(a=) = arctan(0:196) = 11 :
3 3. E. Maksimal normalkraft N ved bunnen av banen, for der er farten v strst, krumningsradien minst, og dermed sentripetalakselerasjonen strst: N Mg = Mv =: Krumningsradien er 1 + (dy=dx) 3= = : jd y=dx j Ved bunnen av banen er dy=dx = 0 og jd y=dx j = 4 A=, slik at = =4 A. Farten ved bunnen av banen er 1= v = v max = v gA=7 = 0:995 m=s: Dette gir en maksimal normalkraft N = M(g + v =) = 0:3 N: 4. A. Siden farten er maksimal i banens bunnpunkt, er baneakselerasjonen a = dv=dt = 0. Da kan det heller ikke vre noen horisontale krefter som virker pa kula. Siden det ikke er andre kandidater til horisontalkrefter enn friksjonskraften akkurat her, ma vi ha f = E. N for translasjon tangentielt: f Mg sin = Mdv=dt. N for rotasjon om CM: fr = I 0 d!=dt = (=5)MR (dv=dt)=r, slik at f = (M=5)dv=dt. Som innsatt i translasjonsligningen gir dv=dt = (5g=7) sin. 6. C. Med avstand d fra hver av ladningene benner vi oss i planet som halverer linjen mellom de to. Retningen pa E er her horisontalt mot venstre, nar vi adderer bidragene fra de to ladningene. Feltstyrken til hvert av de to bidragene er q=4" 0 d. Vi trenger komponentene horisontalt, og ma derfor gange dette med cosinus til vinkelen mellom horisontallinjen og linjen fra q til den aktuelle posisjonen. Det gir en faktor cos = (d=)=d = 1=. Dermed: E = (q=4" 0 d ) (1=) = q=4" 0 d : 7. E. p = 1: = Cm = q 0: m, slik at q = 6: C, som er 0:41 e. 8. A. Potensialet fra et elektron er V (r) = e=4" 0 r nar V (r! 1) er satt til null. Med V = 1:44 V og e = 1: C nner vi r = 1:0 nm. 9. E. Liten ladning dq i posisjon x bidrar med dp = xdq = x(x)dx = 0 x dx=l til totalt dipolmoment. Integrasjon over staven gir p = 0 L Z L= L= x = 1 1 0L : 30. B. E = rv = (V 0 =a )(x; 4y; 6z) som i punktet (0; a; a) er E = (V 0 =a)(0; 8; 6), med absoluttverdi 10V 0 =a. 31. B. Ser pa 3q som tre stk q, som sammen med de tre stk q danner tre dipoler, to med dipolmoment p = qa og retning hhv mot venstre og oppover, og en med dipolmoment p = p qa med retning diagonalt opp mot venstre. Vektorsummen av de to frste er samme vektor som den tredje, slik at totalt dipolmoment er p qa. 3. A. Vi summerer over de 6 ladningsparene: U = h q = p 3 3 3= p i 4" 0 a q = (4 + p ) 4" 0 a
4 33. D. Midt i kvadratet har ladningene nederst til venstre og verst til hyre elektriske felt som kansellerer hverandre. Bidragene fra de to resterende ladningene peker begge diagonalt ned mot hyre, og total feltstyrke blir 3q + q E = 4" 0 (a= p ) = q " 0 a 34. B. Ladningene nederst til venstre og verst til hyre bidrar til sammen med like stort potensial i punktene 1 og. Disse kan vi derfor se bort fra nar vi beregner potensialforskjellen mellom 1 og. Vi nner dermed V 1 V = 35. A. C avtar med plateavstanden d. 3q ( q) 4" 0 a= 3q + q) 4" 0 p 5a= = (1 1= p 5) q " 0 a 36. D. Nettoladningen fordeler seg (ikke ndvendigvis jevnt) pa overaten av et metallstykke, ikke over hele volumet. 37. E. Total kapasitans: C = (1 + 1=8 + 1=4 + 1=8 + 1=) 1 mf = 0.5 mf. Her er det lik ladning pa alle kondensatorer, Q = 0:5 9:0 = 4:5 mc. Spenningen over kapasitansen 1.0 mf er derfor 4.5 V. 38. C. Likespenningskilden srger for a opprettholde potensialforskjell V 0 mellom kondensatorplatene, selv om plateavstanden endres. (Halvering av plateavstanden gir halvert kapasitans, og dermed halvert plateladning, siden C = Q=V.) 39. A. Kretsen blir en seriekobling av de to kobberledningene og den ene motstanden pa 0.3. Hver kobberledning har motstand R l = l=a = 0:90=6: : = 0:90=90 = 0:010, slik at total motstand blir 0.5. Strmstyrken blir dermed I = V=R = 1:5=0:5 = 6:0 A. 40. E. Total motstand i kretsen er R + R + (1=R + 1=3R) 1 = R + 6R=5 = 16R=5 = 6:4. Total strmstyrke blir dermed 9:0=6:4 = 1:4 A. Av dette gar en andel 3/5 gjennom motstanden R, dvs I = 0:84 A. 41. D. Ved konstant trykk vil gassen utvide seg ved tilfrsel av varme. En andel av tilfrt varme vil dermed ga med til a utfre arbeid pa omgivelsene. Dermed ker gassens indre energi med mindre enn 10 J. 4. A. Strst areal under p(v ), og dermed strst utfrt arbeid W p nar gassen utvider seg ved konstant trykk. Adiabaten er brattere enn isotermen, slik at W ad blir mindre enn W T. 43. A. Midlere kvadratiske hastighet hv i er proporsjonal med absolutt temperatur T. Halvering av T reduserer derfor v rms med en faktor q= p ' 0:7, dvs med ca 30 prosent. 44. D. Adiabat fra b til c er brattere enn en isoterm gjennom b. Derfor er T c < T b. Videre er apenbart T d < T c. Dermed: T d < T c < T b = T a. 45. B. Dette er en varmekraftmaskin, med virkningsgrad = W=Q inn = (Q inn jq ut j)=q inn = (1 8)=1 = 1=3 = 33%: 46. C. Varme overfres mellom to objekter (vann og is) med ulik temperatur. Da er prosessen irreversibel, og total entropi ker. 47. C. Samme varmestrm gjennom begge lag: (j = ) 3 T A =` = T B =` ) T B = (3=) T A : 70 K = T A + T B = (5=) T A ) T A = 8 K:
5 48. A. Temperaturkning fra T = (7 + 73) K = 500 K til T 0 =700 K gir P 0 P = T 04 T 4 omg T 4 T 4 omg = = 4:1: 49. B. p d = 61 exp(45000 (73: :15 1 )=8:314) = 678 Pa ) = M=V = Nm=V = m p d =k B T = 18 1: =1: :15 = 0:00 kg=m 3 = 0 g=m B. T 0 V 1 0 = T 1 V 1 1 ) T 1 = T 0 (V 0 =V 1 ) 1 = :4 = 600 K = 37 C
4. D. v = ds=dt = 6:0 t + 2:0 ) v = 14 m/s ved t = 2:0 s ) P = F v = 140 W ved t = 2:0 s.
TFY4104 Fysikk Eksamen 16. desember 017 Lsningsforslag 1. A. I vakuum er det ingen luftmotstand, og eneste kraft pa W og B er tyngdekraften. Dermed null snordrag. Snordrag forskjellig fra null ville ha
DetaljerTFY4102 Fysikk Eksamen 16. desember 2017 Side 1 av 10
TFY4102 Fysikk Eksamen 1 desember 2017 Side 1 av 10 1 Systemet i guren bestar av ei stalkule B forbundet med ei snor til en trekloss W Hvis systemet slippes i vakuum, blir snorkraften A) null B) lik dieransen
DetaljerTFY4104 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
TFY4104 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv 5.729 og 5.425 cm 3, sa
DetaljerTFY4106 Fysikk Lsningsforslag til Eksamen 2. juni 2018
TFY406 Fysikk Lsningsforslag til Eksamen 2. juni 208 ) D: = m=v = m=(4r 3 =3) = m=(d 3 =6) = 6 30:0= 2:00 3 = 7:6 g=cm 3 2) E: = = ( m=m) 2 + ( 3 d=d) 2 = (0:=30) 2 + (0:3=20) 2 = 0:05 = :5% 3) B: U =
DetaljerTFY4104 Fysikk Eksamen 16. desember 2017 Side 1 av 10
TFY4104 Fysikk Eksamen 16 desember 2017 Side 1 av 10 1 Systemet i guren bestar av ei stalkule B forbundet med ei snor til en trekloss W Hvis systemet slippes i vakuum, blir snorkraften A) null B) lik dieransen
DetaljerTFY4106 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
TFY4106 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv 5.729 og 5.425 cm 3, sa
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m
TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. Ogave 1 L/ d A F A B F B L mg Stuebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter i vertikal retning
DetaljerTFY4106 Fysikk Lsningsforslag til Eksamen 16. mai t= + t 2 = 2 ) exp( t=);
TFY46 Fysikk Lsningsforslag til Eksamen 6. mai 9 ) D Bilen snur der v = : dvs v = for t =, som tilsvarer v = d=dt = a (t t =) ep( t=); ) E Maksimal positiv hastighet nar a = (og v > ): = a () ep( ) = 4:5
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen
Detaljerr+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
DetaljerTFY4115 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. ) v 1 = p 2gL. S 1 m 1 g = L = 2m 1g ) S 1 = m 1 g + 2m 1 g = 3m 1 g.
TFY4 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. Ogave. a) Hastigheten v til kule like fr kollisjonen nnes lettest ved a bruke energibevarelse Riktig svar C. gl v ) v gl b) Like fr sttet
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11.
TFY0 Fysikk. Institutt for fysikk, NTNU. ving. Opplysninger: Noe av dette kan du fa bruk for: =" 0 = 9 0 9 Nm /, e = :6 0 9, m e = 9: 0 kg, m p = :67 0 7 kg, g = 9:8 m/s Symboler angis i kursiv (f.eks
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerTFY4104/TFY4115 Fysikk Eksamen 6. desember Lsningsforslag Oppgave 1 { 25 Mekanikk
TFY4104/TFY4115 Fysikk Eksamen 6. desember 2018 Lsningsforslag Oppgave 1 { 25 Mekanikk 1) A: Ingen horisontale krefter pa kula, sa a x = 0, v x er konstant, og x ker linert med tiden t. 2) A: Energibevarelse
DetaljerAnsla midlere kraft fra foten pa en fotball i et vel utfrt straespark.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 4. Oppgave 1 To like biler med like stor fart kolliderer fullstendig uelastisk front mot front. Hvor mye mekanisk energi gar tapt? A 10% B 30% C 50% D 75%
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet
DetaljerStivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM MV + I 0!
TFY404 Fysikk Eksamen 6. desember 207 Formelside av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
DetaljerF B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 3. Oppgave 1 En takstein med masse 1.0 kg faller ned fra et 10 m yt us. Hvor stort arbeid ar tyngdekraften gjort pa taksteinen nar den treer bakken? A 9.8
DetaljerTFY4104 Fysikk Eksamen 6. desember 2018 { 6 sider
TFY404 Fysikk Eksamen 6. desember 08 { 6 sider FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas forvrig
DetaljerLØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
DetaljerLøsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007
Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det
Detaljer2) Hva er tykkelsen på kuleskallet av stål i ei hul petanquekule med diameter 80.0 mm og masse 800 g?
TFY4104 Fysikk Eksamen 17. august 2016 Side 1 av 10 I petanque brukes hule stålkuler med diameter mellom 70.5 og 80.0 mm og masse mellom 650 og 800 g. Oppgavene 1 4 dreier seg om slike kuler. 1) Stål har
Detaljer9) Mhp CM er τ = 0 i selve støtet, slik at kula glir uten å rulle i starten. Dermed må friksjonskraften f virke mot venstre, og figur A blir riktig.
TFY4115 Fysikk Eksamen 18. desember 2013 Løsningsforslag, kortversjon uten oppgavetekst og figurer 1) (4 0.264/0.164) (USD/USgal)(NOK/USD)(USg/L) = 6.44 NOK/L C) 6.44 2) N2: F = ma i a i = F/m B) a 1 =
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 12.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 12. Oppgave 1 En liten kloss med starthastighet v 0 glir nedover et skraplan med helningsvinkel. Hva er friksjonskoesienten mellom kloss og skraplan dersom
DetaljerEKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål
Detaljer6. Rotasjon. Løsning på blandede oppgaver.
6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
DetaljerKap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerTFY4104_S2018_Forside
TFY4104_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4104 Fysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 17. august 2018 ksamenstid (fra-til): 09.00-13.00
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerKrefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
DetaljerTFY4104 Fysikk Eksamen 4. desember Løsningsforslag. 1) m = ρv = ρ 4πr 2 t = π g 24g. C
TFY4104 Fysikk ksamen 4. desember 2015 Løsningsforslag 1) m = ρv = ρ 4πr 2 t = 19.32 4π 100 2 10 5 g 24g. 2) a = v 2 /r = (130 1000/3600) 2 /(300/2π)m/s 2 27m/s 2. 3) ω(4) = 0.25 (1 e 0.25 4 ) = 0.25 (1
DetaljerTFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg
TFY4104 Fysikk ksamen 17. august 2016 Løsningsforslag 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. ) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3 π ( R
DetaljerStivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM M V + I 0!
TFY40 Fysikk Eksamen 6. desember 07 Formelside av 7 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerEKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:
DetaljerTFY4106_M2_V2019 1/6
1/6 rstatt denne teksten med ditt innhold... 1 n bil kjører på en rett vei. ilens posisjon ved tidspunktet er gitt ved funksjonen med m/s og s. Hvor langt kjører bilen før den snur? 12.4 m 14.4 m 16.4
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerFaglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
DetaljerOppsummert: Kap 1: Størrelser og enheter
Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark
DetaljerFlervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7. Oppgave 1 Prinsippet for en mekanisk klokke er et hjul med treghetsmoment I festet til ei spiralfjr som virker pa hjulet med et dreiemoment som er proporsjonalt
Detaljerr+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag
TFY45 Fysikk Eksamenstrening: Løsningsforslag ) I oljebransjen tilsvarer fat ca 0.59 m 3. I går var risen for WTI Crude Oil 97.44 US dollar r fat. Hva er dette i norske kroner r liter, når NOK tilsvarer
DetaljerLøsningsforslag til midtveiseksamen i FYS1001, 26/3 2019
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerUNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.
DetaljerTFY4104 Fysikk Eksamen 16. desember 2017 Formelside 1 av 6
TFY404 Fysikk Eksamen 6. desember 07 Formelside av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
DetaljerFYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
DetaljerTFY4104 Fysikk Eksamen 28. november Løsningsforslag. L = V/A = m/ρπ(d/2) 2 = / π ( /2) 2 = 4.
TFY4104 Fysikk ksamen 28. november 2016 Løsningsforslag 1) L = V/ = m/ρπ(d/2) 2 = 1.0 10 3 /10.5 10 3 π (55 10 9 /2) 2 = 4.0 10 7 m 2) Med startposisjon x = y = 0 har vi ligningene for konstant akselerasjon:
DetaljerLøysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
Detaljer1) Hva blir akselerasjonen (i absoluttverdi) til en kloss som glir oppover et friksjonsfritt skråplan med helningsvinkel
FY1001/TFY4145 Mekanisk Fysikk Eksamen August 2015 Løsningsforslag OPPGAVE 1: Flervalgsoppgaver (Teller 45%, 18 stk som teller 2.5% hver) 1) Hva blir akselerasjonen (i absoluttverdi) til en kloss som glir
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 10.
TFY404 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 0. Oppgave A B C D x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0 x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 29 x 20 x ) Glass-staven er ikke i berring med
DetaljerFasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
DetaljerTFY4104 Fysikk Eksamen 28. november 2016 Side 1 av 22
TFY4104 Fysikk Eksamen 28. november 2016 Side 1 av 22 1) ed moderne nanoteknologi er det mulig å lage svært tynne metalltråder. Hva blir total lengde av tråder av rent sølv med diameter 55 nm og total
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn
DetaljerLøsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
DetaljerNewtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerTFY4104 Fysikk Eksamen 15. august 2017 Side 1 av 12
TFY4104 Fysikk Eksamen 15. august 2017 Side 1 av 12 1) Med moderne nanoteknologi er det mulig å lage svært tynne metalltråder. Hvor mye sølv inneholder tråder av rent sølv med diameter 55 nm og total lengde
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerFlervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p
DetaljerTFY4104 Fysikk Eksamen 4. august 2014
TFY4104 Fysikk Eksamen 4. august 2014 Løsningsforslag 1) Panama gikk offisielt over fra US gallons til liter den 30. april i 2013. Bensinprisen var da ca 4 US dollar pr US gallon. Hvor mange desiliter
DetaljerLøsningsforslag til øving 5
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir
DetaljerEKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:
DetaljerRotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst
Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerFY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20
FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 1) Ei kule slippes (dvs med null starthastighet) fra en høyde 2.0 m over gulvet. Hva er kulas hastighet 0.5 s etter at den ble sluppet?
DetaljerLøsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerKeplers lover. Statikk og likevekt
Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m
DetaljerArbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerTFY4115 Fysikk Eksamen 6. desember 2018 { 6 sider
TFY45 Fysikk Eksamen 6. desember 208 { 6 sider FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas forvrig
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er
DetaljerLøsningsforslag til midtveiseksamen i FYS1001, 19/3 2018
Løsningsforslag til midtveiseksamen i FYS1001, 19/3 2018 Oppgave 1 Figuren viser kreftene som virker på kassa når den ligger på lasteplanet og lastebilen akselererer fremover. Newtons 1. lov gir at N =
DetaljerTFY4104 Fysikk Eksamen 4. august 2014 Side 1 av 15
TFY4104 Fysikk Eksamen 4. august 2014 Side 1 av 15 1) Panama gikk offisielt over fra US gallons til liter den 30. april i 2013. Bensinprisen var da ca 4 US dollar pr US gallon. Hvor mange desiliter bensin
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:
Detaljer