Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Like dokumenter
Slope-Intercept Formula

Ma Flerdimensjonal Analyse Øving 1

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Ma Flerdimensjonal Analyse Øving 11

UNIVERSITETET I OSLO

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Second Order ODE's (2P) Young Won Lim 7/1/14

TFY4170 Fysikk 2 Justin Wells

SVM and Complementary Slackness

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Generalization of age-structured models in theory and practice

Moving Objects. We need to move our objects in 3D space.

Graphs similar to strongly regular graphs

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Stationary Phase Monte Carlo Methods

UNIVERSITETET I OSLO

Neural Network. Sensors Sorter

Trigonometric Substitution

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

PSi Apollo. Technical Presentation

Ringvorlesung Biophysik 2016

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Perpetuum (im)mobile

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS

Dynamic Programming Longest Common Subsequence. Class 27

GEF2200 Atmosfærefysikk 2017

1 Aksiomatisk definisjon av vanlige tallsystemer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Verifiable Secret-Sharing Schemes

Windlass Control Panel

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Right Triangle Trigonometry

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

Ma Flerdimensjonal Analyse Øving 2

Exercise 1: Phase Splitter DC Operation

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Finite Elements Methods. Formulary for Prof. Estor's exam

Right Triangle Trigonometry

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Emneevaluering GEOV272 V17

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

1 User guide for the uioletter package

Ma Flerdimensjonal Analyse II Øving 9

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EN Skriving for kommunikasjon og tenkning

MA2501 Numerical methods

Lattice Simulations of Preheating. Gary Felder KITP February 2008

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Trust region methods: global/local convergence, approximate January methods 24, / 15

HONSEL process monitoring

TDT4117 Information Retrieval - Autumn 2014

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

TMA4329 Intro til vitensk. beregn. V2017

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Siste seminar: Foreslåtte oppgaver basert på ønsker.

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

SERVICE BULLETINE

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

stjerneponcho for voksne star poncho for grown ups

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

MeijerG1. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized Meijer G-function

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

Profile handbook. for

Utsatt eksamen ECON2915

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Forecast Methodology September LightCounting Market Research Notes

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Øving 5 - Fouriertransform - LF

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Oppgavesett kap. 6 (3 av..) GEF2200

Transkript:

Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill Figure : Gradient of the scalar function φ in D case. The red vector is the unit vector i and the blue vector is the unit vector j. The x y axis is rotated by ) 0, ) 30, 3) 45, 4) 60, and 5) 90 degree in the clockwise direction, respectively. In ), φ = x, φ = i. In ), φ = 3 x y, φ = 3 i j. In 3), φ = x y, φ = i j. In 4), φ = x 3 y, φ = i 3 j. In 5), φ = y, φ = j. These all show the minus of the direction of the gradient is in the steepest descent one. Now we define that the line from r to r + dc is along the contour lined) or hypersurface 3D), then dφ = φr + dc) φr) = 0 ) dφ = φr) + dφ dc φr) = φ dc = 0 3) Then we showed that the gradient direction is normal to the contour line, i.e. the steepest descent direction. Next we define that the line from r to r + ds is along the steepest descent direction, dφ = φr + ds) φr) 4) = φr) + dφ ds φr) = φ ds = φ ds 5) dφ ds = φ 6) Then we showed the slope in the steepest descent direction is given by gradφ. The norm of the gradient is given by φ ) ) φ ) φ gradφ = + + 7) x y

vector field and potential Now we consider the electric field. The point-charge with charge q is moved in the electric filed Er). The force Fr) which act on the point-charge from the field is given by Fr) = qer), The energy difference from point to P is U P) = F ds = q E ds 8) Here ds is taken along the contour form to P. The potential φ is defined by If P is at r + ds and is at r Then we have φp ) φ) = U P) q = = E ds 9) φr + ds) φr) = dφ ds = φ ds = E ds 0) E = φ ) This means the electric field is along the steepest-descent direction of potential. If we remind that E = ρ/), we have Poisson equation div gradφ) = ρ φ = ρ ) 3) 3 D problem of Poisson equation When we know the charge density ρz) and ρ ) = dρ )/ = 0, we can calculate the potential φz) This equation satisfy the Poisson equation, because φz) = z z z )ρz ) 4) φz) = z z ρz ) + z z ρz ) 5) dφ = z ρz ) zρz) + zρz) = z ρz ) 6) d φ = ρz) 7) Here we used dr dq = ρz), = zρz), d d z z ρz ) = d [Rz) R )] = ρz) ρ ) = ρz) 8) z ρz ) = d [Qz) Q )] = zρz) )ρ ) = zρz) 9) In the same way when we know the charge density ρz) and ρ+ ) = dρ+ )/ = 0, φz) = + z z )ρz ) 0) z

4 gradient in curvlinear coordinate: In the curvlinear coordinate q = {q, q, q 3 } ) q = {x, y, z} : Cartesian coordinates ) q = {r, θ, z} : cylindircal coordinates 3) q = {r, θ, φ} : spherical coordinates 4) If we set x = xq, q, q 3 ), dx = x dq + x q dq + x dq 3 5) y = yq, q, q 3 ), dy = y dq + y q dq + y dq 3 6) z = zq, q, q 3 ), = dq + q dq + dq 3 7) 8) The distance ds between the two infinitesimal points is given by metric ds = dx + dy + = i,j g ij dq i dq j 9) g ij = x x + y y + 30) For orthogonal curvlinear coordinates such as cylinical and spherical coordinates g ij = 0, for i j 3) ) x ) y ) g ii = + + 33) ds = g dq dq + g dq dq + g 33 dq 3 dq 3 = ds + ds + ds 3 34) ds g dq h dq ds g dq h dq ds 3 g 33 dq 3 h 3 dq 3 3) 35) 36) 37) example : cylinical coordinates : x = r cos θ, y = r sin θ, z = z g = x x + y y + = cos θ + sin θ + 0 =, h = 38) g = x x θ + y y θ + = cos θ r sin θ) + sin θr cos θ) + 0 = 0 θ g 3 = x x + y y + = 0 + 0 + 0 = 0 g = x x θ + y y θ + = r sin θ) cos θ + r cos θ sin θ + 0 = 0 θ g = x x θ θ + y y θ θ + θ θ = r sin θ) + r cos θ) + 0 = r, h = r 39) g 3 = x x θ + y y θ + θ = 0 + 0 + 0 = 0 g 3 = x x + y y + = 0 + 0 + 0 = 0 g 3 = x x θ + y y θ + θ = 0 + 0 + 0 = r g 33 = x x + y y + = 0 + 0 + =, h 3 = 40) 3

example : spherical coordinates : x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ g = x x + y y + = sin θ cos φ + sin θ sin φ + cos θ =, h = 4) g = x x θ + y y θ + = sin θ cos φr cos θ cos φ) + sin θ sin φr cos θ sin φ) + cos θ r sin θ) = 0 θ g 3 = x x φ + y y φ + = sin θ cos φ r sin θ sin φ) + sin θ sin φr sin θ cos φ) + 0 = 0 φ g = x x θ + y y θ + θ = g = 0 g = x x θ θ + y y θ θ + θ θ = r cos θ cos φ) + r cos θ sin φ) + r sin θ) = r, h = r 4) g 3 = x x θ φ + y y θ φ + = r cos θ cos φ r sin θ sin φ) + r cos θ sin φr sin θ cos φ) + 0 = 0 θ φ g 3 = x x φ + y y φ + φ = g 3 = 0 g 3 = x x φ θ + y y φ θ + φ θ = g 3 = 0 g 33 = x x φ φ + y y φ φ + φ φ = r sin θ sin φ) + r sin θ cos φ) + 0 = r sin θ, h 3 = r sin θ 43) The differential distance vector and the unit vector e i may be given = 3 h dq e + h dq e + h 3 dq 3 e 3 = h i q i e i 44) i= e i = h i 45) Here we only consider orthogonal curvlinear coordinates such as cylinical coordinate and spherical coordinates. The gradient can be defined by the sum of the product of the slope rate of change) and the unit vector in the i-direction. The slope can be written as Then the gradient in the orthogonal curvlinear coordinates In the cartesian coordinates, In the cylinical coordinates, = 46) s i h i 47) grad q f = q f = e s + e s + e 3 s 48) = e h + e h q + e 3 h 3 49) e = h, e = h q, e 3 = h 3 50) q = {x, y, z}, r = x, y, z) 5) h =, x =, 0, 0), e =, 0, 0) = i 5) h =, y = 0,, 0), e = 0,, 0) = j 53) h 3 =, = 0, 0, ), e = 0, 0, ) = k 54) gradf = f = i x + j y + k ) f 55) q = {r, θ, z}, r = x, y, z) = r cos θ, r sin θ, z) 56) 4

= cos θ, sin θ, 0), h = cos = θ + sin θ =, e = cos θ, sin θ, 0) 57) = r sin θ, r cos θ, 0), h = θ θ cos = r θ + sin θ = r, e = sin θ, cos θ, 0)58) = 0, 0, ), h 3 = =, e 3 = 0, 0, ) 59) ) grad r,θ,z f = r,θ,z = e + e r θ + e 3 f 60) In the spherical coordinates, q = {r, θ, φ}, r = x, y, z) = r sin θ cos φ, r sin θ sin φ, r cos θ) 6) = sin θ cos φ, sin θ sin φ, cos θ), h = sin = θcos φ + sin φ) + cos θ =, e = sin θ cos φ, sin θ sin φ, cos θ) 6) = r cos θ cos φ, r cos θ sin φ, r sin θ), h = θ θ cos = r θcos φ + sin φ) + sin θ = r e = cos θ cos φ, cos θ sin φ, sin θ) 63) φ = r sin θ sin φ, r sin θ cos φ, 0), h 3 = φ sin = r θ sin φ + sin θ cos φ = r sin θ, e 3 = sin φ, cos φ, 0) 64) ) grad r,θ,φ f = r,θ,φ = e + e r θ + e 3 f 65) r sin θ φ 5