GEL2150. Felt- og metodekurs i geologi og geofysikk

Like dokumenter
EKSAMENSOPPGAVE I GEO-2006

Siste to sidene av oppgavesett inneholder en samling av ligninger som kan være behjelpelig.

EKSAMENSOPPGAVE I GEO-2006

Siste to sidene av oppgavesett inneholder en samling av ligninger som kan være behjelpelig.

EKSAMENSOPPGAVE. Geo-2006, Innføring i anvendt geofysikk Dato: Torsdag 26. mai 2016 Klokkeslett: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte

TFY4170 Fysikk 2 Justin Wells

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

EKSAMENSOPPGAVE. Eksamen i: Geo-2006, Innføring i anvendt geofysikk Dato: Torsdag 28. mai 2015 Tid: Kl 09:00 13:00 Sted: Adm.bygget, Aud.max.

EKSAMENSOPPGAVE. Geo-2006, Innføring i anvendt geofysikk

EKSAMENSOPPGAVE Eksamen i: Geo-2006 Innføring i anvendt geofysikk Dato: Fredag 24. mai 2013 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Slope-Intercept Formula

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Presisjonsseismologi: Nøyaktig lokalisering av Nord-Koreas prøvesprengninger

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Neural Network. Sensors Sorter

SENSORS. HAIN An Integrated Acoustic Positioning and Inertial Navigation System

Exercise 1: Phase Splitter DC Operation

Emneevaluering GEOV272 V17

EKSAMENSOPPGAVE. Geo-2006, Innføring i anvendt geofysikk. 10 sider inklusiv forside plus 5 vedlegg

Generalization of age-structured models in theory and practice

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Perpetuum (im)mobile

Kjell Arne Mork, Francisco Rey, Henrik Søiland

Experiences with 2D resistivity measurements (ERT) at the surface. Inger-Lise Solberg

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

SiS GO ELECTROLYTE POWDERS

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE

Sitronelement. Materiell: Sitroner Galvaniserte spiker Blank kobbertråd. Press inn i sitronen en galvanisert spiker og en kobbertråd.

Moving Objects. We need to move our objects in 3D space.

Kalibrering. Hvordan sikrer Norsonic sporbarhet av måleresultatene. Ole-Herman Bjor

IPCC, From emissions to climate change

Jeroen Stil Institute for Space Imaging Science. University of Calgary

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Right Triangle Trigonometry

RF Power Capacitors Class1. 5kV Discs

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Havbunnsseismikk En praktisk gjennomgang av utstyr og operasjoner

The building blocks of a biogas strategy

RF Power Capacitors Class kV Discs with Moisture Protection

MÅLING OG VURDERING AV TEKSTUR I VEGOVERFLATER OG KOPLING TIL STØY

Software applications developed for the maritime service at the Danish Meteorological Institute

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

PARABOLSPEIL. Still deg bak krysset

1 Øvelse Dynamic Mercy 1 Exercise Dynamic Mercy

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Péter Bakonyi VITUKI

Right Triangle Trigonometry

HONSEL process monitoring

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

PSi Apollo. Technical Presentation

NO X -chemistry modeling for coal/biomass CFD

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

GEF2200 Atmosfærefysikk 2017

EN Skriving for kommunikasjon og tenkning

How Bridges Work Sgrad 2001

Statoils erfaringer fra CO 2 -lagring

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Stationary Phase Monte Carlo Methods

Quantitative Spectroscopy Quantitative Spectroscopy 2 - Algorithms

Oppgavesett kap. 6 (3 av..) GEF2200

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Ma Flerdimensjonal Analyse Øving 1

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Justeringsanvisninger finnes på de to siste sidene.

SIGNAL LEVELS ABOVE 0.5 uv UTC FMUF ECOF 3.6 MHZ 7.1 MHZ 14.1 MHZ 21.2 MHZ 28.3 MHZ

Semesteroppgave. Gassturbinprosess

Key objectives in lighting design

Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det

Accuracy of Alternative Baseline Methods

Demografisk og økonomisk bærekraft av pensionsreformer i Norge, Sverige og Tyskland

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Skog som biomasseressurs: skog modeller. Rasmus Astrup

Splitting the differential Riccati equation

Ressurser. OpenCV documentation: Eigen documentation : C++: Image Watch: An image debugger plug-in for Visual Studio

Interaction between GPs and hospitals: The effect of cooperation initiatives on GPs satisfaction

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

The Proactima way PREPARED. Hvordan bruke oljedriftsimuleringer til å forbedre planlegging av brønner og optimalisere oljevernberedskap

SERVICE BULLETINE

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Subsea-Muligheter for virksomhet i den maritime klyngen. Utbygging og vedlikehold av subsea anlegg Prosjektleder : Torstein Vinterstø

BEC in microgravity. W. Herr, Institute for Quantum Optics, Leibniz University of Hanover

Data harmonisation. Theme Geology Webinar

Modellering av lyd fra seismikk i forhold til havbunnstopografi

Will future soil investigations be carried out by airborne devices? Airborne Electromagnetic Measurements in a nutshell

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

RIKARD LJØEN Fiskeridirektoratets Havforskningsinstitutt.

Paris avtalen, klimapolitikk og klimapartnere Rogaland - Hvorfor er fokus på klima og miljø lønnsomt for Rogaland?

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Transkript:

GEL2150 Felt- og metodekurs i geologi og geofysikk

Oppbygging av kurset Geofysiske undersøkelsesmetoder (MH, ØP) Teori Praktiske øvelser Syntetisk seismikk (MH, JJ) Innledning Feltkurs Ringerike Tektonikk og Sedimentasjon (JPN, JJ) Innledning Feltkurs Mjøsa-traktene Geologiske Feltmetoder (ON) Forelesninger Feltkurs Nevlunghavn

Geofysiske undersøkelsesmetoder Mål: Praktisk innledning i de viktigste geofysiske metodene som blir brukt i industrien og forskningen Arbeidsplan: Forelesning: Innføring geofysiske metoder (26.3) Praksis: Seismisk tolkningsøvelse (27.3; 1 dag) Innsamling seismikk øvelse (29.3; 1 dag) Innsammling tyngdeanomali øvelse (30.3; 1 dag)

Geofysiske undersøkelsesmetoder Teori Innsamling og Prosessering Styrke og Svakheter

Geofysiske undersøkelsesmetoder Passiv: Metode som bruker Jordens naturlige egenskaper, f.e. tyngde og magnetisme Aktiv: Metode som krever input av kunstig generert energi, f.e. innsamling av seismisk refleksjons data Mål med geofysikk er å lokalisere eller oppdage tilstedeværelsen av strukturer og legemer som befinner seg under jordoverflaten og bestemme deres størrelse, omfang, dybde og fysiske egenskaper (tetthet, hastighet, porositet o.l.) + væske innhold

Geofysiske undersøkelsesmetoder Metode Engelsk Parameter som måles Tyngde Gravity Romlige variasjoner i styrken til Jordens tyngdefelt Fysiske egenskap Tetthet Anvendelse Fossile brennstoffer Mineral avsetninger Konstruksjon Magnetisme Magnetics Romlige variasjoner i styrken til det geomagnetiske felt Magnetisk mottagelighet og remanence Fossile brennstoffer Metalliske mineral avsetninger Konstruksjon Seismikk Seismic Gangtid av reflekterte/refrakterte seismiske bølger Seismisk hastighet (og tetthet) Fossile brennstoffer Mineral avsetninger Konstruksjon Electromagnetics Elektromagnetisme (SeaBed Logging) Respons til elektromagnetisk stråling Elektrisk ledningsevne/motstand og induktanse Fossile brennstoffer Metalliske mineral avsetninger Elektrisk -Motstand -Egenpotensial Electrical -Resistivity -Self Potential Jordens motstand Elektriske potensialer Elektrisk motstand Elektrisk ledningsevne Utbredt brukt, bl.a. i brønnlogging Radar Radar Gangtid av reflekterte radar pulser Dielektrisk konstante Miljø Konstruksjon

Litteratur Keary, P. & Brooks, M. (1991) An Introduction to Geophysical Exploration. Blackwell Scientific Publications. Mussett, A.E. & Khan, M. (2000) Looking into the Earth An Introduction to Geological Geophysics. Cambridge University Press.* http://www.learninggeoscience.net/modules.php * This presentation contains several figures from this publication

Gravity Gravity surveying measures spatial variations in the Earth s gravitational field caused by differences in the density of sub-surface rocks In fact, it measures the variation in the accelaration due to gravity It is expressed in so called gravity anomalies (in milligal, 10-5 ms -2 ), measured in respect to a reference level, usually the geoid Gravity is a scalar

Gravity: Newton s Law of Gravitation Newton s Universal Law of Gravitation for small masses, m 1 and m 2 separated by a distance r, at the earth surface: Attractive force, F = G m m 1 r 2 2 With G ( big gee ) is the Universal Gravitational Constant: 6.67x10-11 m 3 /kg 1 s 2 m 1 force r force m 2

Gravity: Earth F E = G M R E 2 E m s = m g s g = G M 2 R E E Spherical Non-rotating Homogeneous g ( little gee ) is constant!

Gravity Non-spherical Ellipse of rotation Rotating Centrifugal forces Non-homogeneous Subsurface heterogeneities Lateral density differences in the Earth g ( little gee ) is NOT constant

Gravity units d = 100m C P Δρ = 0.3 Mg/m 3 An object dropped at C falls with a little greater acceleration than at P Difference in acceleration can be measured: δg = Δm G 4 G = πr 2 2 d d 3 3 δρ r = 50m Here: δg = 1.048 10-6 m/s 2 Small values, therefore we measure gravity anomalies in milligals (mgal), or gravity units, g.u. 1 mgal = 10 g.u. = 10-5 m/s 2 ~ 10-6 g

Gravity anomalies P F b total pull of excess mass of body pull of rest of Earth The Gravity anomaly is positive if the body is more dense than its surroundings, negative if less F C = combined force F E vertical component of F b Gravity is a scalar: the combined pull has approx. the same direction as the Earth pull; we measure therefore only the size, or magnitude, of g

Gravity anomalies of specific bodies sphere & horizontal cylinder at different depths

Gravity anomalies of specific bodies sheets (dykes or veins)

Gravity anomalies of specific bodies horizontal sheet/slab δg = 2πG Δρt

Gravity anomalies of specific bodies horizontal half-sheet/half-slab δg = 2πG Δρt

Gravity anomalies of specific bodies horizontal layers offset by vertical faulting Δρ = ρ 1 - ρ 1 = 0 Δρ = ρ 2 ρ 1 Δρ = ρ 2 ρ 1 Δρ = ρ 3 ρ 1 Δρ = ρ 2 ρ 3 Δρ = ρ 2 ρ 3 Δρ = ρ 3 ρ 3 = 0 Δρ = ρ 4 ρ 3 Δρ = ρ 4 ρ 3 Δρ = ρ 4 ρ 5 Δρ = ρ 4 ρ 5 δg = 2πG Δρt

Measurement of Gravity Absolute gravity difficult to measure Relative values of gravity, i.e. difference of gravity between locations is simpler and standard procedure in gravity surveying Absolute value at a location is obtained by measuring the relative gravity between that location and a location with a known absolute gravity value (IGSN, 1971)

Measurements of Gravity m m g m m (g+δg) Extension = δs Spring or Beam Hooke s Law: mδg = kδs with k is the elastic spring constant Corrections Instrumental drift and tidal Latitude Elevation Eötvös

Gravity meter at IG, UiO LaCoste & Romberg Model G

Gravity correction - Drift Correction for instrumental drift and tidal influence is based on repeated reading at the base station (red dots) at recorded times during the day Drift correction, d, is subtracted from the observed value After drift correction, the difference in gravity between an observation point and the base is found by multiplication of the difference in meter reading with the calibration factor of the gravimeter Gravity reading Time Reading at Time, t d = drift correction value t

Gravity correction - Latitude g λ Latitude (λ)correction is necessary because of the rotation of the Earth Centrifugal forces tend to fling bodies away depending on the distance from the axis, being a maximum at the equator decreasing to zero at the poles Due to centrifugal forces, the Earth is not spherical but slightly flattened, causing an equatorial bulge. Therefore, g is smaller at the equator Combined effect can be expressed in a formula (International Gravity Formula): = ( 2 2 978031.8 1 + 0.0053024 sin λ 0.0000059 sin λ)mgal For surveys not extending more than some tens of kilometers, the variation can be regarded as simply proportional to distance: δg = 0.812 sin 2λ g λ,blindern = 981912.25 mgal / km polewards

Gravity correction - Eötvös Only needed if gravity is measured from a moving vehicle, like a ship or air-plane The motion of the vehicle causes a centrifugal force, depending on which way the vehicle is moving The correction is: δg = 4.040 vsinαcosλ + Eötvös 0.001211v 2 mgal with v is the speed in km/h λ is the latitude α is the direction of travel measured clockwise from north, since only E-W motion matters For 55 N, the correction is about +2½ mgal for each km/h in an east-west direction

Gravity correction - Elevation Correction is necessary for changes in elevation; three separate effects have to be taken into account: Free-air correction (FAA) Bouguer correction (BC) Bouguer Anomaly Terrain correction (TC) pull of H B plateau C H D V h A base station A datum δg = g A g B = GM E 2 2 ( R R ) 1 g decreases with 0.3086 mgal/m FAC = 0.3086 h mgal A B infinite sheet: δg = g A g c = 2πGρh BC = 0.04192 ρh mgal Pull of H reduces g δg = h( 0.3086 0.04192ρ)mGal

Gravity Anamolies Free Air Anomaly (FAA): =g obs g λ + FAC (± EC) Bouguer Anomaly (BA) =g obs g λ + FAC - BC (+ TC ± EC)

Residual and Regional anomalies residual anomaly = observed field regional field background value of g signal vs. noise residual anomaly vs. regional field/anomaly concepts depending on the survey target interest

Residual and Regional anomalies signal vs. noise residual anomaly vs. regional field/anomaly concepts depending on the survey target interest By filtering away the large wavelenghts of the regional field, we obtain gravity anomalies that represent small scaled bodies at shallow depth

Bouguer Anomaly map Southern Norway NGU, 1992

Magnetics Magnetic surveying aims to investigate the subsurface geology by measuring the strength or intensity of the Earth s magnetic field. Lateral variation in magnetic susceptibility and remanence give rise to spatial variations in the magnetic field It is expressed in so called magnetic anomalies, i.e. deviations from the Earth s magnetic field. The unit of measurement is the tesla (T) which is volts s m -2 In magnetic surveying the nanotesla is used (1nT = 10-9 T) The magnetic field is a vector Natural magnetic elements: iron, cobalt, nickel, gadolinium Ferromagnetic minerals: magnetite, ilmenite, hematite, pyrrhotite

Magnetic Anomaly map Southern Norway NGU, 1992

Electromagnetic methods use the response of the ground to the propagation of incident alternating electromagnetic waves, made up of two orthogonal vector components, an electrical intensity (E) and a magnetizing force (H) in a plane perpendicular to the direction of travel Electromagnetics

Electromagnetics Transmitter Primary field Receiver Primary field Secondary field Conductor Electromagnetic anomaly = Primary Field Secondary Field

Electromagnetics Sea Bed Logging SBL is a marine electromagnetic method that has the ability to map the subsurface resistivity remotely from the seafloor. The basis of SBL is the use of a mobile horizontal electric dipole (HED) source transmitting a low frequency electromagnetic signal and an array of seafloor electric field receivers. A hydrocarbon filled reservoir will typically have high resistivity compared with shale and a water filled reservoirs. SBL therefore has the unique potential of distinguishing between a hydrocarbon filled and a water filled reservoir

Reflection Seismology Principle of reflection seismology What is reflection seismology Seismic wave propagation Acquisition collecting seismic data Prosessing Limitations and Pitfalls Resolution (Horizontal and Vertical) Velocity Effects (Seismic velocities Depth Conversion Geometrical Effects (Migration) Seismic Modelling (Synthetic seismograms) 2D vs. 3D seismic reflection

Reflection Seismology

Reflection Seismology

Reflection Seismology

Reflection Seismology Spherical spreading Absorption Transmission/conversion

Reflection Seismology Incident ray Amplitude: A 0 Layer 1 Layer 2 Transmitted ray Amplitude: A 2 Reflected ray Amplitude: A 1 ρ 1, v 1 ρ 2, v 2 ρ 2, v 2 ρ 1, v 1 Acoustic Impedance: Z = ρ v Reflection Coefficient: R = A 1 /A 0 R = ρ2v ρ v 2 2 2 ρ1v + ρ v 1 1 1 = Z Z 2 2 + Z Z Transmission Coefficient: T = A 2 /A 0 T = 2ρ1v1 ρ v + ρ v 2 2 1 1 1 1-1 R 1 R = 0 All incident energy transmitted (Z 1 =Z 2 ) no reflection R = -1 or +1 All incident energy reflected strong reflection R < 0 Phase change (180 ) in reflected wave

Reflection Seismology

Reflection Seismology

Reflection Seismology

Reflection Seismology Shotpoint interval 60 seconds 25-120 receivers Sampling rate 4 milliseconds Normal seismic line ca. 8 stwt

Reflection Seismology

Reflection Seismology SEISMIC PROSESSING The objective of seismic prosessing is to enhance the signal-to-noise ration by means of e.g. filtering

Reflection Seismology Limitations and Pitfalls Interference Horizontal and Vertical Resolution Velocity Effects Geometrical Effects Multiples

INTERFERENCE

Reflection Seismology Interference

Interference Reflection Seismology

VERTICAL RESOLUTION

Reflection Seismology 100 Hz Wavelength increases Frequency decreases with depth 67 Hz Reduced vertical resolution 40 Hz f v λ λ/4 z 100 Hz 2 km/s 20 m 5 m ~250 m 40 Hz 4 km/s 100 m 25 m ~2250 m

Reflection Seismology (Brown 1999)

Reflection Seismology (Brown 1999)

Reflection Seismology

HORIZONTAL RESOLUTION

Reflection Seismology

Reflection Seismology ~690 m ~2500 m ~25 m

Reflection Seismology

Reflection Seismology

GEOMETRICAL EFFECTS

Reflection Seismology

Reflection Seismology

VELOCITY EFFECTS

MULTIPLES

Magnetics Magnetic susceptibility a dimensionless property which in essence is a measure of how susceptible a material is to becoming magnetized Sedimentary Rocks Limestone: 10-25.000 Sandstone: 0-21.000 Shale: 60-18.600 Igneous Rocks Granite: 10-65 Peridotite: 95.500-196.000 Minerals Quartz: -15 Magnetite: 70.000-2x10 7

Magnetics Induced and remanent magnetization Intensity of magnetization, J Magnetic anomaly = regional - residual H J i J res J r