Contact: Prof B Skallerud, Prof. L.R. Hellevik, PhD-student S. Dahl,



Like dokumenter
Generalization of age-structured models in theory and practice

NO X -chemistry modeling for coal/biomass CFD

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Slope-Intercept Formula

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Klinisk ultralydforsking i Trondheim - Milepælar. Terje Skjærpe

Emneevaluering GEOV272 V17

TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE:

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

Exercise 1: Phase Splitter DC Operation

HONSEL process monitoring

Dynamic Programming Longest Common Subsequence. Class 27

Information search for the research protocol in IIC/IID

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

Midler til innovativ utdanning

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Neural Network. Sensors Sorter

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

Fakultet for informasjonsteknologi, Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE EKSAMEN I. TDT42378 Programvaresikkerhet

Forecast Methodology September LightCounting Market Research Notes

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Øystein Haugen, Professor, Computer Science MASTER THESES Professor Øystein Haugen, room D

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Accuracy of Alternative Baseline Methods

Emnedesign for læring: Et systemperspektiv

Public roadmap for information management, governance and exchange SINTEF

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

Perpetuum (im)mobile

Tor Haakon Bakken. SINTEF Energi og NTNU

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Trigonometric Substitution

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Samarbeid om forvalting av Havrommet. Per Magne Einang Senterleder Smart Maritime SFI Forum 2016

Improving Customer Relationships

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

The building blocks of a biogas strategy

Examination paper for (BI 2015) (Molekylærbiologi, laboratoriekurs)

Hvor finner vi flått på vårbeiter? - og betydning av gjengroing for flåttangrep på lam på vårbeite

Semesteroppgave. Gassturbinprosess

Salting of dry-cured ham

nye PPT-mal behandlingsretningslinjer

European Crime Prevention Network (EUCPN)

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

Molare forsterkningsbetingelser

Smart High-Side Power Switch BTS730

Numerical Simulation of Shock Waves and Nonlinear PDE

Hovedoppgave. ved IMM. våren Prosjektoppgave ved IPM. Vår 2011

Lydia Rice, Doctoral Student University of Arkansas Advisor: Jean-François Meullenet

What is is expertise expertise? Individual Individual differ diff ences ences (three (thr ee cent cen r t a r l a lones): easy eas to to test

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

INNOVASJONSTOGET GÅR. - hvor er legene?

1. Explain the language model, what are the weaknesses and strengths of this model?

PIM ProsjektInformasjonsManual Tittel: REDUKSJON AV FLUORIDEKSPONERING I ALUMINIUMINDUSTRIEN INKLUDERT GRUNNLAG FOR KORTTIDSNORM FOR FLUORIDER

PSi Apollo. Technical Presentation

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Innovasjonsvennlig anskaffelse

EN Skriving for kommunikasjon og tenkning

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Moving Objects. We need to move our objects in 3D space.

Examination paper for BI2034 Community Ecology and Ecosystems

UNIVERSITETET I OSLO

Software applications developed for the maritime service at the Danish Meteorological Institute

Bostøttesamling

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

UNIVERSITETET I OSLO

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

TFY4170 Fysikk 2 Justin Wells

Graphs similar to strongly regular graphs

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning

Interaction between GPs and hospitals: The effect of cooperation initiatives on GPs satisfaction

Ultralyd i medisin. Page 1. Medisin for ikkemedisinere. Ultrasonic M-Mode (Motion Mode) Ultralyd i medisin

EKSAMENSOPPGAVE I BI3013 EKSPERIMENTELL CELLEBIOLOGI

NORM PRICE FOR CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1 st QUARTER 2015

Multimedia in Teacher Training (and Education)

KONGSBERG MARITIME AS Simulation & Training Tone-Merete Hansen Area Sales Manger

What's in IT for me? Sted CAMPUS HELGELAND, MO I RANA Tid

Kartleggingsskjema / Survey

Issues and challenges in compilation of activity accounts

The internet of Health

Invitation to Tender FSP FLO-IKT /2013/001 MILS OS

SENSORS. HAIN An Integrated Acoustic Positioning and Inertial Navigation System

Splitting the differential Riccati equation

Ph.d-utdanningen. Harmonisering av krav i Norden

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvordan ser pasientene oss?

Eksamensoppgave i SOS1000 Innføring i sosiologi Examination paper for SOS1000 Introduction to Sociology

Passasjerer med psykiske lidelser Hvem kan fly? Grunnprinsipper ved behandling av flyfobi

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

Transkript:

7 BIOMEKANIKK 7.1 Biomechanics of the heart: Numerical analysis of the influence of the mitral valve on left ventricle hemodynamics This project addresses use of e.g. FLUENT to determine hemodynamics (velocity and pressure) during pulsatile blood flow around the mitral valve. The main result from the simulations is local pressure distributions on the leaflets of the valve during the heart cycle. Type of task: theoretical/numerical Contact: Prof B Skallerud, Prof. L.R. Hellevik, PhD-student S. Dahl, 7.2 Numerical simulation of pressure and flow wave propagation in blood vessel networks Pressure and flow pulses originating in the heart, propagate and are reflected in the arterial tree. The propagation may be estimated by hyperbolic one-dimensional differential equations accounting for mass and momentum transport. The objective in this thesis will be to investigate and implement adequate numerical methods for such hyperbolic differential equations. In particular, the methods for the boundary conditions will be a focus. Further, the topology of the network must be described, and the geometry and material properties of each blood vessel must be accounted for. Type of task: theoretical/numerical Contact: LR Hellevik Collaborators: Frans van de Vosse, Eindhoven University of Technology (http://www.mate.tue.nl/mate/showemp.php/9) HP Langtangen/GK Pedersen (http://simula.no/research/scientific/cbc)

7.3 Modellering av mekanisk interaksjon mellom syke og friske regioner av hjertemuskelen For effektiv pumping av blod fra Normal forkortning og forlengelse Moderat dysfunksjonell region Totalt dysfunksjonell hjertets venstre hovedkammer (venstre ventrikkel) trekker muskelfibrene rundt hjertekammeret seg sammen synkront og forlenger seg synkront når kammeret fylles med blod. Ved enkelte sykdommer er synkronisiteten dårlig, og det kan forekomme strekning av syke regioner mens de friske forkorter seg og motsatt. Vår hypotese er at dette er forårsakes av balansen av aktive og passive krefter mellom friske og syke regioner. Muskelfibrene genererer de aktive kreftene etter fibrene stimuleres elektrisk ved start av hjertesyklus mens passive krefter hovedsakelig skyldes deformasjon av bindevevet i hjerteveggen. Oppgaven går ut på å sette opp en matematisk modell som representerer de aktive og passive kreftene i friske og syke regioner og hvordan disse endres gjennom hjertesyklus og undersøke hva som skjer ved dyssynkron aktivering og ved forskjeller i aktiv styrke i de forskjellige regionene. En litteraturstudie av tidligere publiserte matematiske modeller av aktive og passive krefter vil inngå i oppgaven. I prosjektet vil det også inngå å sammenlikne simulerte resultater med målinger fra virkelige hjerter i normal tilstand, ved iskemi (forhindret blodtilførsel) og ved regionalt forsinket elektrisk aktivering av hjertemuskelen. Figuren viser målte strain-kurver fra tre områder av hjertemuskelen rundt venstre hjertekammer med varierende grad av iskemi (forhindret blodtilførsel). Type oppgave: teoretisk/numerisk Antall studenter: 1 Kontakt: LR Hellevik Samarbeidspartner: Espen Remme, PhD, Institutt for kirurgisk forskning, Rikshospitalet Universitetssykehus, Oslo 7.4 Non-invasive pressure estimation in the human fetal descending aorta The human fetal circulation has been extensively studied by Doppler ultrasound with emphasis on Doppler flow velocity waveforms and blood flow estimates. Both pressure and blood flow waveforms are needed to describe a circulatory system in terms of peripheral resistance and compliance. In this thesis a

method to estimate blood pressure waveforms and flow volume information in the human fetal circulation system using ultrasound measurements, should be developed. The method may be based on a previously published model using a 2 element Windkessel and a Hookean wall. An assessment should be made of whether a 3 element Windkessel, and/or a better wall model, will improve the predictions. Type of task: theoretical/numerical Contact: LR Hellevik Collaborators: Prof P Segers (http://navier.ugent.be/public/biomed), Univ. Ghent, Belgium. Prof T Kiserud (Haukeland University Hospital)/(SH Eik-Nes) 7.5 Numerical modeling and analysis of intracranial aneurysms Modeling the material behaviour of soft biological tissues is a challenging topic, both with respect to defining the best model and to find representative material parameters. A key question is whether in vitro tests represent the in vivo behavior. Biomechanical modeling of arteries has been under extensive study over the last decade due to the large mortality rate connected to pathologies in such tissues (aneurysms and stenoses). The project will be based on a previous project which addressed the modeling and simulation of aneurysms in the brain. The soft tissue in a healty artery is composed of three layers with different material behavior, albeit with a more or less isotropic global response. However, the surrounding vessels will be anisotropic. The loading is also a challenge, as the problem at hand is a fluid structure interaction (FSI) problem. Local hemodynamics inside the aneurysm will cause local pressure fluctuations on the wall that give rise to inhomogenous loading and stresses. In order to analyze this problem, a coupled FSI-approach will be taken, utilizing both Fluent (a cfd solver) and ABAQUS (structural solver). Typical global response data such as pressure versus diameter change is of interest. Also stress and strain distribution in the vessel layers should be compared and discussed. A main goal with this research is to discuss wall stress based criteria that can be used as indicators for criticality of the aneurysm. With this a neurosurgeon will have a much more quantitative assessment of need for treatment than the present criteria provide (such as size). In summary the project contains: Literature study Set up Fluent/Abaqus simulations, with different constitutive material models of increasing refinement

Find representative numerical cases to compare with own analyses etc. Compare results Conclusion Type of task: theoretical/numerical Contact: LR Hellevik/B Skallerud/PR Leinan 7.6 Numerical investigation of the hemodynamics in the human fetal umbilical vein/ ductus venosus bifurcation Knowledge about the central venous pressure in the human fetus is generally accepted as a key to understand central blood circulation and hemodynamic changes in disease. In this thesis a numerical investigation of the hemodynamics in the human fetal umbilical vein/ductus venosus bifurcation will be conducted. In particular two aspects will be of interest: 1) the pressure drop from the umbilical vein to the fetal heart via the ductus venosus and 2) how the pulsations in pressure and flow in the ductus venosus affect the umbilical flow pattern. FLUENT and ABAQUS will be used for the fluid structure interaction simulations, but user defined functions need to be programmed to account for blood vessel wall motion. The simulations should be validated against results from experimental investigations. Type of task: theoretical/numerical Contact: LR Hellevik Collaborators: PR Leinan, Prof J Vierendeels/J Degroote (http://users.ugent.be/~jjdgroot/), Univ. Ghent, Belgium. Prof T Kiserud, Haukeland University Hospital, Bergen. 7.7 Experimental investigation of the hemodynamics in the human fetal umbilical vein/ ductus venosus bifurcation Knowledge about the central venous pressure in the human fetus is generally accepted as a key to understand central blood circulation and hemodynamic changes in disease. In this thesis an in vitro model of the human fetal umbilical vein/ductus venosus bifurcation should be developed for hemodynamic investigations. In particular two aspects will be of interest: 1) the pressure drop from the umbilical vein to the fetal heart via the ductus venosus and 2) how the pulsations in pressure and flow in the ductus venosus affect the umbilical flow

pattern. The experiments will be conducted at the premises of Institute of Biomedical Technology (IBITECH) of the Ghent University, Belgium. The experimental results are intended to be used for validation of numerical simulations. Type of task: experimental/theoretical Contact: LR Hellevik Collaborators: PR Leinan, Prof P. Segers (http://navier.ugent.be/public/biomed), Univ. Ghent, Belgium. Prof T Kiserud, Haukeland University Hospital, Bergen. 7.8 Numerical analysis of the mitral valve dynamics during diastolic filling The mitral valve is located between the left atrium and the left ventricle in the heart. It controls blood flow into the ventricle during diastole and prevents backflow into the atrium during systole. The objective of this thesis is further development of previous work on simulation of the diastolic filling phase. The motion of the arterial and ventricular walls will be prescribed based on ultrasound speckle tracking, whereas the motion of the mitral valves and the blood flow will be simulated. FLUENT will be used for the fluid structure interaction simulations, but user defined functions need to be modified to account for valve motion. The simulations should be validated against ultrasound recordings. The focus will be on improvement on numerical schemes, parallelization, and possible extension to 3D. Type of task: theoretical/numerical Contact: LR Hellvik/B Skallerud/SK Dahl 7.9 Sammenheng mellom kardiameter og ultralydresonansfrekvens til mikro- gassbobler i små kar Mikrobobler av gass (3 micron diam) benyttes til å forsterke visualiseringen av små blodkar (diam 10-100 micron) ved ultralyd, for eksempel for å detektere kreftsvulster eller redusert blodstrøm i hjerteveggen ved infarkt. Mikroboblene er mye mindre enn ultralydbølgelengde (1:100) slik at væsken (blod,vann) rundt mikroboblene i det vesentlig beveger seg med skjærdeformasjon, og relativt liten volumkompresjon. Dette gir en medsvingende masse av den omliggende væsken som er ca 3 ganger boblens volum i uendelig væske. Medsvingende masse vekselvirker med gassen og skallet elastisitet, som er ulineær, og skaper resonans. Når boblen kommer i nærheten av grenseflater vil disse påvirke strømningsmønsteret rundt boblen, og derved den medsvingende massen og resonansfrekvensen.

Det er publisert resultater fra FEM simuleringer som viser at resonansfrekvensen begynner å falle for kardiametre under 70 micron, fra 3.5 MHz for bobler i uendelig væske ned til under 1MHz for bobler i kappilærer med 10 micron diameter,. Det stilles en del kritiske spørsmål til forutsetningene for disse simuleringene og det er et stort behov for nærmere studier av fenomenet. Resonansfrekvensen benyttes aktivt i deteksjon av bobler ved ultralyd og et slikt fall vil bety at dagens deteksjonsmetoder er langt fra optimale for å detektere boblene i de små karene. Det er derfor av stor interresse å undersøke dette fenomenet nærmere. Arbeidet kan gjøres teoretisk eller eksperimentelt, eller som en kombinasjon, eventuelt også ved besøk ved Erasmus University, Rotterdam. Type oppgave: teoretisk/eksperimentelt Antall studenter: 1 Kontakt: LR Hellevik Medveiledere: Prof BA Angelsen, Medisinsk Fakultet, Sirkulasjon og bildediagnostikk, NTNU. Seniorforsker Harald Laux, Prosessteknologi SINTEF. Samarbeidspartner: Erasmus University, Rotterdam. 7.10 FEM simulering av deformasjon i vev ved trykk og skjærbølger Bløtt vev består av 60-70% vann, med resterende del som cellestrukturer av store molekyler. Den store vannmengden gjør at volumelastisiteten er som i vann og gir opphav til ultralyd kompresjonsbølger (trykkbølger) med forplantningshastighet som i vann ~ 1500 m/s. Væsker har ingen skjærelastisitet ved null hastighet (ingen form stivhet), men cellestrukturene gir bløtt vev en viss skjærelastistet som gir vevet form. Forplantningshastigeten for skjærbølger er lav ~ 1-10 m/sec. Svulster har høyere skjærstivhet enn normalt vev og de kjennes da som en "kul" når man trykker (palperer) på vevet. For små svulster som ligger dypt i vevet kan det være vanskelig å kjenne dette. Ultralyd trykkbølger kan benyttes til å måle strain når man trykker vevet sammen, og kan derved benyttes til å observere økning i skjærstivhet dypt i vevet. Vi har utviklet nye ultralydmetoder som måler strain med større nøyaktiget: Metodenes nøyaktighet testes best ved simuleringer, og det er i den sammenheng nyttig å kunne foreta FEM simuleringer av skjærdeformasjon i bløtt vev med en kuleformet svulst, som utsettes for et ytre trykk. Type oppgave: teoretisk/eksperimentelt Antall studenter: 1 Kontakt: LR Hellevik Medveiledere: Prof BA Angelsen, Medisinsk Fakultet, Sirkulasjon og bildediagnostikk, NTNU.

7.11 Nano-indentation of anisotropic material: numerical approaches to extract elasticities from nano-indentation This project relates to the increased use of nano-indentation of bone tissue in order to establish elastic properties bone. The stiffness measured from nano-indentation is a stiffness describing the average response of the material beneath the tip of the indenter. Som analytical or numerical (FEM) tool must be used in order to find the actual Young s moduli. For anisotropic materials this can be a challenge. The project will utilize (nonlinear ) finite element tools, e.g. ABAQUS, to analyse materials of different levels of anisotropies (starting with isotropic material) and relate anisotropy effects to the global indentation stiffness measured in tests. Experimental and numerical results found in the literature, if available., should be considered also. Type of task: numerical/analytical No. students: 1-2 Supervisors: Prof B Skallerud, Dr J He, Prof ZL Zhang 7.12 Nano-indentation of microbubbles coated with nano-particles: stiffness and strength This project relates to targeted drug delivery, where the drug is inside the nano-particles attached to the surface of gas bubbles. The micro-bubble is the vehicle to transport the medicine to the intended location (e.g. a tumor) via the blood stream. This work is a collaboration with NT- and Medical Faculty. It is very important to characterize mechanical properties of the bubble/nano-particle system in order to understand response to different loading scenarios. The microbubbles coated with nano-particles will be provided by SINTEF Materials and Chemistry. The nano-indentation tests are carried out in our own lab. The measured stiffness of the bubbles should be analysed by means of some numerical scheme in order to extract mechanical stiffness and strength for the bubble shell surface. Type of task: experimental/numerical/maybe some analytical No. students: 1-2 Supervisors: Dr J He, Prof B Skallerud, Prof ZL Zhang 7.13 Effects of scatter in material parameters on the global response of the left ventricle during diastolic filling This project addresses the global motion of the left ventricle in the filling phase of the heart cycle (diastole). In this phase the heart muscle mainly is passive, i.e. no active muscle contraction. The heart muscle (myocardium) can be modeled as an orthotropic hyperelastic material in this phase. Several material parameters appear in the material models, and these parameters have significant variability between persons and due to different diseases. The

project will apply recently implemented material models in ABAQUS, and run nonlinear simulations with different material parameters in order to investigate how a given variability in material parameters is correlated with corresponding variability in global ventricular response. Type of task: numerical No. students: 1-2 Supervisors: Assoc Prof V Prot, Prof B Skallerud 7.14 Finite element studies on composite materials as an alternative for steel/titanium hip prostheses In total hip replacement it is a goal to have as long as possible durability of the prosthesis. Loosening of prosthesis with need for re-operation should be minimized. Some studies show that prostheses made of composite materials may provide a smoother load transfer from upper body to the leg via the prosthesis compared to prostheses made of traditional materials (e.g. titanium). The project will employ extensive finite element analyses in order to investigate the load transfer between the prosthesis and the femur. Both linear and nonlinear finite element simulations (accounting for contact) should be employed. Discussion of results in relation to findings in the literature should be included. Type of task: numerical No. students: 1 Supervisors: Prof B Skallerud